11) Publication number:

0 082 586

A2

(12)

ĩ

EUROPEAN PATENT APPLICATION

21) Application number: 82304209.8

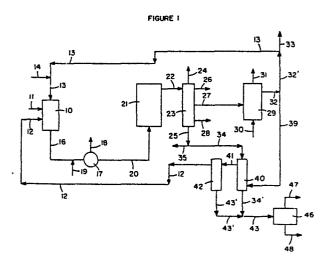
(51) Int. Cl.3: C 10 G 1/04

22 Date of filing: 10.08.82

(30) Priority: 21.12.81 US 332583

Date of publication of application: 29.06.83 Bulletin 83/26

Designated Contracting States:
 DE FR GB


71) Applicant: Exxon Research and Engineering Company P.O.Box 390 180 Park Avenue Florham Park New Jersey 07932(US)

(72) Inventor: Bauman, Richard Frank 18607 Point Lookout Houston Texas(US)

(74) Representative: Field, Roger Norton et al, ESSO Engineering (Europe) Ltd. Patents & Licences Apex Tower High Street New Malden Surrey KT3 4DJ(GB)

(54) An improved process for the liquefaction of solid carbonaceous materials.

(57) An improved process for liquefying solid carbonaceous materials wherein liquefaction yields are increased by extracting the normally solid bottoms product with a solvent containing donatable hydrogen. The extraction is accomplished at a temperature within the range from about 50 to about 600°F and at a pressure within the range from about 0 to about 750 psig and at least a portion of the extract is recycled to the liquefaction reaction zone.

This invention relates to a process for 3 converting coal or similar solid carbonaceous materials. 4 More particularly, this invention relates to an improved 5 process for liquefying coal and similar solid carbonaceous 6 materials. As is also well known, proven petroleum and gas re-8 serves are shrinking throughout the world and the need for alternative sources of energy is becoming more and more appar-10 ent. One such alternative source is, of course, coal since 11 coal is an abundant fossil fuel in many countries throughout Before coal will be generally accepted by the 12 the world. 13 ultimate consumer, however, it will be necessary to convert 14 the same to a form which will permit use in those areas 15 where liquid or gaseous fuels are normally required. To this end, several processes wherein coal is ei-16 17 ther liquefied and/or gasified have been proposed hereto-18 fore. Of these, the processes wherein coal is liquefied appear to be more desirable since a broader range of pro-20 ducts is produced and these products are more readily trans-21 ported and stored. 22 Of these several liquefaction processes which have 23 heretofore been proposed, those processes wherein coal is 24 liquefied in the presence of a solvent or diluent, particu-25 larly a hydrogen-donor solvent or diluent, and in the pre-26 sence of a hydrogen-containing gas appear to offer the 27 greater advantages. In these processes, liquefaction is 28 accomplished at elevated temperatures and pressures and 29 hydrocarbon gases are invariably produced as by-products. 30 For the most part, however, these and other liquefaction 31 processes yield a normally solid bottoms product containing 32 relatively large quantities of carbon, which bottom product 33 cannot be discarded without further processing when an eco-34 nomic, waste-free process is sought. Heretofore, several 35 methods have been proposed in an effort to avoid this defi-

36 ciency. For example, the normally solid, bottoms product

37 can be subjected to further liquefaction in a separate stage

- or stages until such time as the carbon content of the 1 normally solid, bottoms product has been reduced to a 2 point where the carbon content thereof is sufficiently low 3 such that discarding thereof does not significantly and adversely affect the economics of the process. 5 liquefaction, however, significantly increases both invest-6 ment and operating costs as a result of the additional 7 equipment required and as a result of the energy and other 8 utilities required to effect the further liquefaction. 9 has also been proposed, heretofore, to recycle all or a 10 portion of the normally solid, bottoms product to a single 11 or plural liquefaction stage. When this is done, however, 12 a large portion of the material recycle is either unreac-13 14 tive (ash) or it is difficult to convert (fusinite). materials can amount to 60% of the recycle material and re-15 cycle of these materials raises costs and lowers thermal 16 17 efficiency. It has also been proposed, heretofore, to simply burn the normally solid, bottoms product, directly, 18 or to gasify the normally solid, bottoms product to produce 19 20 a gaseous product which can then be burned as a fuel. 21 Operation in this manner, however, reduces the yield of normally liquid products, thereby reducing thermal effi-22 ciency, and increases both investment and operating costs 23 24 for essentially the same reasons already noted with respect 25 to staged or further liquefaction. Finally, it has been 26 proposed, heretofore, to separate the unreactive and fusi-27 nite portions of the bottoms from the reactive portion 28 thereof by extraction. Generally, however, these operations 29 depend upon the use of a relatively expensive solvent (such 30 as toluene) which must then be separated from the extract, 31 generally, by vaporization. This type of operation too has 32 proven expensive due primarily to the high energy require-33 ment for separation of the solvent. 34 In light of the foregoing, the need for a liquefac-
- In light of the foregoing, the need for a liquefaction process which can be operated in a mode requiring fewer liquefaction stages at an increased thermal efficiency to yield a normally solid, bottoms product relatively low in

carbon, which product may be discarded, is believed readily apparent. More particularly, the need for a lique-faction process wherein a significant portion of the carbon contained in the normally solid, bottoms product can be efficiently recovered via extraction is believed to be readily apparent.

7 8

9

10

11

12

13

14

15

16

17

18

19

20

2122

23

2425

26

27

28

29

30

31

32

33

3435

36

37

38

It has now been discovered that the foregoing and other disadvantages of the prior art processes can be reduced with the method of the present invention and an improved liquefaction process provided thereby. therefore, an object of this invention to provide an improved liquefaction process wherein the yield of liquid product is increased without further liquefaction at elevated temperatures and pressures and without recycling the inactive and fusinite portions of the normally solid, bottom product which preferably can be discarded, directly, after an extraction operation with a reduced impact on process economics and thermal efficiency. Fusinite is the woody material which was charred before being incorporated in the peat that ultimately formed coal. The foregoing and other objects and advantages will become apparent from the description set forth hereinafter and from the drawings appended thereto.

In accordance with the present invention, the foregoing and other objects and advantages are accomplished by liquefying a coal or similar solid carbonaceous material in the presence of a hydrogen donor solvent at elevated temperatures and pressures and thereafter extracting at least a portion of the reactive bottoms from the normally solid bottoms product. The extraction will be accomplished with a hydrogen donor solvent derived from the solid carbonaceous material subjected to liquefaction. The raffinate from the extraction, without separation of the solvent, will be recycled to the liquefaction stage thereby increasing the overall liquid yield of the process. The normally solid bottoms product remaining after extraction will contain less carbon than the feed to the extraction step and may be discarded, directly, with less adverse impact on economics

than would be the case if the original, unextracted normally solid bottoms product were discarded. As indicated more fully hereinafter, however, maximum conversion of the solid carbonaceous material and maximum thermal efficiency will be realized either by burning the remaining normally solid bottoms product or by further treating the same to produce a useful fuel.

As indicated, supra, the present invention relates to an improved process for liquefying coal and similar solid carbonaceous materials such as trash, coke and the like, wherein the yield of liquid products is increased in a more thermally efficient manner and a normally solid bottoms product containing less reactive carbon produced thereby. The liquefaction is accomplished at an elevated temperature and pressure and in the presence of a hydrogen donor solvent which is prepared from a portion of the liquefaction liquid product. At least a portion of the hydrogen donor solvent used during liquefaction will be used to extract the normally solid bottoms product obtained from the liquefaction and at least a portion of the carbonaceous materials extracted from the normally solid bottoms product will be present during liquefaction.

In general, the method of the present invention can be used to liquefy any solid carbonaceous material which can, effectively, be hydrogenated and liquefied. Such solid carbonaceous materials include, but are not necessarily limited to, coal, trash, biomass, coke and the like. The method of this invention is particularly useful in the liquefaction of coal and may be used to liquefy any of the coals known in the prior art including anthracite, bituminous coal, subbituminous coal, lignite, peat, brown coal and the like.

In general, the solid carbonaceous material will be 1 ground to a finely divided state. The particular particle 2 size or particle size range, actually employed, however, is 3 not critical to the invention and, indeed, essentially any 4 particle size can be employed. Notwithstanding this, 5 generally, the solid carbonaceous material which is lique-6 7 fied in accordance with this invention, will be ground to a particle size of less than 1/4 inch and preferably to a 8 particle size of less than about 8 mesh (M.B.S.Sieve size). 9 10 . After the solid carbonaceous material has been sized, the same will be slurried with a hydrogen donor solvent. 11 As indicated more fully hereinafter, at least a portion of 12 the hydrogen donor solvent used in preparing the slurry will 13 14 have been used to extract the normally solid bottoms product 15 from the liquefaction step. In general, the solid carbonaceous material will be slurried with sufficient donor sol-16 17 vent to produce a slurry containing a solvent: solid car-18 bonaceous material ratio within the range from about 0.8:1 19 to about 10:1 on a weight basis. As used herein the reci-20 tation hydrogen donor solvent shall mean a hydrogen donor 21 solvent produced from a portion of the liquefaction liquid 22 product and will include any non-donor species that might 23 be contained therein. 24 The hydrogen donor solvent used in the process of 25 this invention may be any portion of the liquefaction product from liquefaction containing at least about 0.8 weight 26 27 percent of donatable hydrogen based on the weight of total 28 solvent or which can be treated to contain at least about ຶ 29 0.8 weight percent of donatable hydrogen based on the weight 30 of total solvent. Particularly effective solvents are dis-31 tillate fractions cut from the liquefaction product and 32 having an initial boiling point within the range from about 33 350°F to about 425°F and a final boiling point within the

36 of donatable hydrogen based on the weight of total solvent

range from about 700° to about 900°F. Generally, these

fractions will not contain at least about 0.8 weight percent

37 but do contain sufficient aromatic concentrations as to

permit the production of a suitable hydrogen donor solvent 1 2 by hydrogenating at least a portion of the aromatics to a corresponding hydroaromatic compound. In this regard, it 3 should be noted that compounds capable of donating hydro-4 gen during liquefaction are well-known in the prior art 5 6 and many are described in U.S. Patent 3,867,275. Compounds capable of donating hydrogen during liquefaction include 7 the indanes, the dihydroflourines, the $C_{10}-C_{12}$ tetra-hydro-8 9 naphathalenes, the hexahydrofluorenes, the dehydro-, tetrahydrohexahydro-, and octohydrophenanthrenes, the $C_{12}-C_{13}$ 10 11 acenaphthenes, the tetrahydro-, hexahydro-, and decahydro-12 pyrenes, the di-, tetra-, and octahydroanthracenes, and 13 other derivatives of partially saturated aromatic compounds. 14 As is also well-known in the prior art, hydrogenation of 15 various coal liquefaction liquid products will produce one 16 or more of these known hydrogen donor compounds. 17 During start-up of the process of this invention and 18 while solvent produced from the solid carbonaceous materials 19 subjected to liquefaction is not available the process may 20 be started-up or operated with any of the known hydrogen 21 donor compounds mentioned above. Either as a pure compound 22 or as a mixture of such compounds either alone or in com-23 bination with components which will not donate hydrogen at 24 liquefaction conditions. Hydrogenated creosote oil may 25 also be used during start-up or at other times when a sol-26 vent derived from the solid carbonaceous material subject 27 to liquefaction is not available. -- Generally, the creosote 28 oil will be hydrogenated in the same manner as is the sol-29 vent derived from the solid carbonaceous materials sub-30 jected to liquefaction, which method is described in further 31 detail hereinafter. After the solid carbonaceous material 32 has been slurried, the slurry will then be subjected to 33 liquefaction at a temperature within the range from about 34 700 to about 950°F and at a pressure within the range from 35 about 800 to about 3000 psig. In general, from about 20 to about 100 weight percent of the total solvent used in 36

preparing the slurry will have first been used to extract 1 2 reactive bottoms from the normally solid bottoms product 3 produced during liquefaction. This solvent will contain from about 5 to 50 weight percent reactive bottoms. 4 liquefaction will, therefore, be accomplished in the 5 presence of from about 0.05 to 0.5 parts of reactive bot-6 toms per part of coal, based on weight. During liquefac-7 8 tion, the reactive bottoms will be converted to gaseous 9 and liquid products thereby increasing the total conversion 10 of solid carbonaceous material and the yield of normally 11 liquid products. 12 During liquefaction, the solid carbonaceous material 13 will be converted in part to a normally gaseous product, 14

and part to a normally liquid product, and in part, to a 15 normally solid bottoms product. In general, the normally 16 solid bottoms product will have an initial boiling point 17 within the range of about 900°F to about 1100°F and will 18 contain unconverted carbonaceous material, inorganic mate-19 rial and high boiling but converted carbonaceous material. Generally, the high boiling, but converted carbonaceous 20 material could be further reduced in molecular weight 21 if the bottoms were subjected to further liquefaction or 22 if the entire bottoms were recycled. Similarly, at least 23 a portion of the unconverted material could be converted if 24 the bottoms were subjected to further liquefaction or if 25 the bottoms were recycled to a liquefaction stage. 26 more difficult to convert portion of the unconverted car-27 bonaceous material (fusinite) would not, normally, be con-28 verted through further liquefaction or recycle of the bot-29 Similarly, the inorganic material (ash) would not be 30 converted through further liquefaction of the bottoms or 31 via recycle thereof. 32

It has now surprisingly been discovered that a substantial portion of the reactive material; i.e., normally solid carbonaceous material which could be converted to either a gaseous or liquid product when subjected to further liquefaction or recycled to a liquefaction stage, can be separated from the nonreactive portion of the normally

33

34

35

36

37

solid bottoms product; viz., the ash and fusinite, by 1 extraction of the bottoms with a donor solvent and parti-2 cularly a donor solvent derived from the solid carbona-3 ceous material being subjected to liquefaction. 5 traction may be accomplished at relatively mild conditions 6 and the extracted reactive portion of the normally solid bottoms product further converted by recycling the same 7 to one or more of the liquefaction stages. 8 9 conversion of the reactive portion of the normally solid bottoms product will, then, be accomplished with less 10 11 energy than would be required to subject the normally 12 solid bottoms product to further liquefaction in a sepa-13 rate stage and with less energy than would be required to 14 recycle the entire normally solid bottoms product. process of this invention is, therefore, more energy effi-15. 16 cient than processes heretofore proposed in the prior art. 17 In general, the extraction will be accomplished at 18 a temperature within the range from about 50 to about 600°F and at a pressure within the range from about 0 to a-19 20 bout 750 psig. The extraction may be accomplished with any 21 suitable means known in the prior art to be effective for 22 the extraction of a soluble or extractable portion of a 23 normally solid material with a liquid. In general, the 24 extraction will be accomplished in a well-mixed vessel so 25 as to ensure good contact between the normally solid bot-26 toms product and the solvent used during extraction. 27 solvent containing the extracted portion of the normally 28 solid bottoms product can then be separated from the rela-29 tively unreactive portion of the normally solid bottoms 30 product by any suitable means such as decanting, centrifu-31 gation, filtration or the like. Of these, decanting after 32 a gravitational separation is most preferred since less energy is required for this particular mode of separation. 33 Following the separation, the solvent portion may be used 34 35 directly in the preparation of a slurry of the solid carbonaceous material to be subjected to liquefaction. Any 36 37 solvent that might be entrained in the ash and fusinite

rich raffinate stream could be removed by flash vapori-1 zation or by displacement with water. The remaining bot-2 toms, especially when the carbon content thereof is rela-3 tively low, could be discarded. For maximum efficiency, 4 however, it is believed most expedient to either subject 5 the ash and fusinite rich raffinate to combustion so as to 6 recover the fuel value thereof or to subject the same to 7 gasification to produce a gas containing hydrogen which 8 9 could then be used to effect the liquefaction and hydrogenation of the solvent fraction. When a partial oxidation 10 11 process is used to effect the gasification, displacement 12 of entrained solvent with water would offer certain advan-13 tages. 14 As indicated previously, the liquefaction will, 15 generally be accomplished at a temperature within the 16 range from about 700 to about 900°F and at a pressure with-17 in the range from about 800 to 3000 psig. Any number of 18 liquefaction stages or zones may be used to effect the 19 liquefaction but a single stage is generally preferred 20 since this reduces the initial investment cost and the 21 energy requirement for effecting the liquefaction. 22 total nominal holding time required is that sufficient to 23 effect at least a partial liquefaction of the solid carbona-24 ceous material and will, generally, range from about 10 to 25 about 200 minutes. 26 As also indicated previously, the liquefaction will 27 result in the production of a gaseous product, a normally liquid product and a normally solid bottoms product. After 28 liquefaction, these products may be separated into respec-29 30 tive phases using conventional techniques. For example, the 31 gaseous products may be flashed overhead and the liquid and 32 solids then separated using filtration, centrifugation or 33 distillation. Of these, distillation is preferred. 34 After separation, the gaseous product may be upgraded 35 to a pipeline gas or the same may be burned to provide ener-

gy for the liquefaction process. Alternatively, all or a

portion of the gaseous product may be reformed to provide
pydrogen for the liquefaction process.

The liquid product may be fractioned into essen-3 tially any desired product distribution and/or a portion 4 thereof may also be used directly as a fuel or upgraded 5 using conventional techniques. In accordance with the pre-6 sent invention, a portion of the liquid product will be 7 separated and used as a solvent or diluent in the liquefac-8 9 tion process of this invention. This portion of the liquid 10 product will be hydrogenated to increase the amount of 11 donatable hydrogen therein prior to its use as a solvent or 12 diluent. Generally, a naphtha fraction will be recovered 13 and the naphtha fraction will be further processed to yield 14 a high quality gasoline or similar fuel boiling in the nap-15 tha range.

Finally, in accordance with the improvement of this invention, at least a portion of the normally solid bottoms product will be withdrawn, extracted by contacting with at least a portion of the solvent separated from the liquid product and this solvent containing the extracted components from the normally solid bottoms product will be used in the preparation of a solid carbonaceous material slurry which is, ultimately, subjected to liquefaction in the process of this invention. In general, from about 1 to about 6 parts of solvent or diluent per part of normally solid bottoms product, by weight, will be contacted with the bottoms product in the extraction step. As a result of this extraction, from about 20 to about 80 weight percent of the reactive portion of the bottoms will be separated from the normally solid bottoms product during extraction. Slurry preparation will then be controlled to provide from about 0.05 to about 0.5 parts of "reactive" components per part of solid carbonaceous material fed to the liquefaction stage or zone.

3435

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

In a preferred embodiment of the present invention, a coal will be liquefied in a single stage liquefaction

operation in a temperature within the range from about 1 80 to about 880°F, and at a pressure within the range from 2 about 1500 to about 2000 psig. In the preferred embodiment, 3 the coal will be slurried with a solvent or diluent cut 4 from the coal liquefaction liquid product and hydrogenated 5 such that the solvent contains at least 45 weight percent 6 hydrogen donor species and contains at least 1.25 weight 7 percent donatable hydrogen. All of the solvent used in 9 preparing the slurry will have been used to extract reactive 10 material from the normally solid bottoms product produced during liquefaction. The slurry after preparation will 11 12 contain from about 0.1 to about 0.3 parts of reactive 13 material from the bottoms per part of coal when fed to the liquefaction stage or zone. The solvent to coal ratio in 14 15 the slurry will be within the range from about 1:1 to 16 about 5:1. The nominal holding time during liquefaction 17 will be within the range from about 40 to about 140 minutes. 18 In a preferred embodiment, the extraction will be accom-19 plished at a temperature within the range from about 100 to 20 about 400°F and at a pressure within the range from 0 to 21 The contacting between the solvent and about 500 psig. 22 the normally solid bottoms product will be accomplished in 23 a countercurrent baffled contacting vessel at a solvent to 24 normally solid bottoms product ratio within the range from 25 about 4:1 to about 8:1 (v/v). In the preferred embodiment, 26 the baffled contacting vessel will be disposed vertically 27 with the solvent flowing upwardly and with the normally 28 solid bottoms product settling downwardly. The solvent will 29 then be withdrawn at or near the top of the baffled con-30 tacting vessel and the normally solid bottoms product free 31 of extracted reactive material will be withdrawn at or near 32 the bottom. 33 It is believed that the invention will be better 34 understood by reference to the attached Figure 1 which il-35 lustrates a particularly preferred embodiment. Referring 36 then to Figure 1, a finely divided coal or similar solid

carbonaceous material is introduced into mixing vessel 10

through line 11 and slurried with a hydrogen donor solvent or diluent introduced through line 12. In a preferred embodiment, the solvent will be all or a portion of a distillate fraction cut from the liquefaction liquid product, which fraction will be hydrogenated to produce a solvent containing at least 45 weight percent hydrogen donor species and which will be used in the extraction of reactive solid 7 carbonaceous materials from the normally solid bottoms pro-9 duct. When all of the solvent is not used in the extraction 10 step, any additional solvent required to effect the liquefaction may be recycled through line 13. During start-up, 12 however, or when a recycle solvent is not available, any of the known useful hydrogen donor solvents or diluents may be 14 introduced into line 13 through line 14. 15 In mixing vessel 10 and after normally solid bottoms 16 product is available, the coal or similar solid carbonaceous 17 material will also be mixed with reactive material extracted 18 from said bottoms. In the embodiment illustrated, the reac-19 tive material will be contained in the solvent fed into 20 mixing vessel 10 through line 12. In the preferred embodi-21 ment, the reactive material and solid carbonaceous material 22 will be combined in a ratio within the range from about 23 0.1:1 to about 0.3:1 by weight. The reactive material and 24 solid carbonaceous material will be combined with sufficient 25 solvent including that used in the extraction step and in-26 troduced into mixing vessel 10 through line 12 to produce a 27 slurry wherein the solvent-to-solid carbonaceous material 28 ratio is within the range from 4:1 to about 8:1. 29 In the embodiment illustrated, the slurry is with-30 drawn from mixing vessel 10 through line 16 and passed 31 through preheater 17. In the preheater 17 the slurry will, 32 generally, be preheated to the desired temperature and gen-33 erally to a temperature of about 50 to about 100°F below the 34 temperature at which liquefaction is accomplished. When de-35 sired, and particularly when the solid carbonaceous material 36 has not been previously dried, steam will be flashed over-37 head through line 18.

In general, the slurry of solid carbonaceous 1 material will be combined with molecular hydrogen. In a 2 preferred embodiment, the molecular hydrogen will be added prior to preheating through line 19. This is not, however, critical, and the hydrogen could be added downstream of pre-5 heater 17 or added directly into the liquefaction vessel. In any case, the hydrogen will be introduced after the 8 steam is flashed overhead. In the preferred embodiment, the hydrogen will be produced either by the steam reforming of product gas from the liquefaction; by gasification of the 10 11 nonreactive portion of the solid bottoms product or by gasi-12 fication of solid carbonaceous material in a separate step, 13 all in accordance with conventional technology. In general, sufficient hydrogen will be introduced to provide from about 2 to about 10 weight percent, preferably from about 3 to 15 about 8 weight percent, molecular hydrogen based on dry, 17 solid carbonaceous material. 18 The slurry is withdrawn from the preheater through line 20 and passed directly to liquefaction vessel 21. 20 the liquefaction vessel 21, the solid carbonaceous material 21 is at least partially liquefied and, generally, at least partially gasified, generally, in the absence of any added catalyst. Preferably, the liquefaction vessel will be sized 24 so as to provide a nominal holding time within the range 25 from about 40 to about 140 minutes and in a preferred embo-26 diment, a single vessel will be employed. Also, the temper-27 ature within the liquefaction zone-21 will, preferably, be 28 within the range from about 800 to about 880°F and the pressure will be, preferably, controlled within the range 30 from about 1500 to abou t 2000 psig. 31 In the embodiment illustrated, the combined product 32 from liquefaction vessel 21 is withdrawn through line 22 and 33 passed to separating means 23. In the embodiment illustrat-34 ed, the separating means may be a combined atmospheric and 35 vacuum distillation column wherein gaseous products and pro-36 ducts boiling below the naphtha boiling range are withdrawn 37 overhead through line 24 while a bottoms product comprising

1 unconverted solid carbonaceous material, mineral matter and 2 converted materials having an initial boiling point within 3 the range from about 950°F to about 1050°F is withdrawn 4 through line 25. The liquid product is then fractionated 5 into desired fractions and in the embodiment illustrated, a 6 naphtha product having an initial boiling point of about 7 150°F and a final boiling point within the range from about 8 350°F to about 425°F is withdrawn through line 26; a middle 9 distillate fraction having an initial boiling point within 10 the range from about 350°F to about 425°F and a final boiling 11 point within the range from about 650°F to about 850°F is 12 withdrawn through line 27 and a vacuum gas-oil fraction 13 having an initial boiling point within the range from about 14 650°F to about 850°F and a final boiling point within the 15 range from about 950°F to about 1050°F is withdrawn through 16 line 28. 17 In general, the overhead, gaseous material will com-18 prise gaseous and lower hydrocarbons, steam, carbon oxides, 19 acid gases such as SO_2 and H_2S_4 any ammonia which may have 20 been produced during liquefaction and any hydrogen not con-21 sumed during liquefaction. This stream may be scrubbed and 22 further divided to yield a high Btu gas, lighter hydrocarbons 23 and hydrogen. Generally, any hydrogen recovered from this 24 stream will be reused in either the liquefaction or hydrogen-25 ation step. The naptha stream may be subjected to further 26 upgrading to yield a good quality gasoline and the heavier 27 stream withdrawn through line 28 may be upgraded to produce 28 a heavy fuel oil or hydrocracked and reformed to yield a 29 gasoline boiling fraction. Generally, the solvent boiling 30 range material or at least a portion thereof will be cataly-31 tically hydrogenated to increase the concentration of hydro-32 gen.donor species and at least a portion of the hydrogenated 33 fraction will then be used to extract reactive material from 34 at least a portion of the normally solid bottoms product 35 withdrawn through line 25. As indicated supra, the particular separation scheme

37 employed is not critical to the present invention and, indeed,

any of the separation techniques known in the prior art
could be used to affect a separation of the gaseous, liquid
and solid products. For example, the gaseous product could
be flashed directly after liquefaction and the liquid-solid
mixture then subjected to separation via distillation,
filtration, extraction, centrifugation or the like. In any
case, however, a bottoms product containing unreacted coal,
mineral matter and high boiling hydrocarbons will be available for extraction with a solvent separated from the liquefaction product.

In the preferred embodiment, the solvent fraction
withdrawn through line 27 will be hydrogenated before the
same is used either as the extraction solvent or the liquefaction solvent or diluent. Preferably, the hydrogenation

same is used either as the extraction solvent or the lique-15 Will be accomplished catalytically at conditions known to 16 be effective for this purpose in the prior art. 17 embodiment illustrated, hydrogenation is accomplished in 18 hydrogenation vessel 29 with molecular hydrogen introduced 19 through line 30. The hydrogen actually used may be from any 20 source but in a preferred embodiment will be produced either 21 through the steam reforming of at least a portion of the 22 gaseous product from liquefaction, by gasification of at 23 least a portion of the normally solid bottoms product or by 24 the gasification of a portion of the solid carbonaceous 25 material being subjected to liquefaction. In the embodiment 26 illustrated, unreacted hydrogen and the gaseous products of 27 hydrogenation are withdrawn through line 31. When desired, 28 this gaseous product may be treated to recover recycle hy-29 drogen. Also in the embodiment illustrated, the hydrogena-30 tion product is withdrawn through line 32. The hydrogena-31 tion product includes that portion of the solvent to be 32 used in the extraction step, that portion of the solvent, if 33 any, to be returned directly to mixing vessel 10 and any 34 excess solvent that may have been produced. That portion of 35 the hydrogenation product to be used as a solvent during ex-36 traction is withdrawn through line 39 and the remaining por-37 tion of the hydrogenation product is withdrawn through line

- 1 32'. Any excess solvent may be withdrawn through line 33
- 2 as product or stored for future use during liquefaction.
- 3 That portion of the solvent, if any, fed directly to mixing
- 4 vessel 10 is recycled through line 13.
- Normally, the hydrogenation will be accomplished at
- 6 a temperature within the range from about 600°F to about
- 7 950°F and a pressure within the range from about 650 to
- 8 about 2000 psig, preferably 1000 to 1500 psig. The hydro-
- 9 gen treat rate during the hydrogenation generally will be
- 10 within the range from about 1000 to about 10,000 scf/bbl.
- 11 Any of the known hydrogenation catalysts may be employed but
- 12 a nickel moly catalyst is most preferred.
- In accordance with the improved method of the pre-
- 14 sent invention, the bottoms product withdrawn through line
- 15 25 may be divided and all or a portion thereof subjected to
- 16 extraction. The portion to be subjected to extraction will
- 17 be withdrawn through line 34 and fed to contacting vessel
- 18 40. In a preferred embodiment, the entire normally solid
- 19 bottoms product will be passed through contacting vessel 40.
- 20 Any portion of the bottoms product not subjected to extrac-
- 21 tion may be withdrawn through line 35 and processed in
- 22 accordance with conventional technology. In general, from
- 23 about 80 to about 100 weight percent of the bottoms product
- 24 will be subjected to extraction.
- In contacting vessel 40 the fraction of hydrogenated
- 26 product from hydrogenation vessel 29 used as the extraction
- 27 solvent is introduced at or near the bottom of contacting
- 28 vessel 40 and flows upwardly through the contacting vessel
- 29 and is withdrawn at or near the top thereof through line 41.
- 30 The bottoms introduced through line 34 flow generally down-
- 31 wardly and are withdrawn from the contacting vessel at or
- 32 near the bottom thereof through line 34'. In the embodiment
- 33 illustrated, the solvent withdrawn through line 41 contain-
- 34 ing the extracted reactive materials is then passed through
- 35 knock-out drum 42 to faciliate the separation of any unre-
- 36 active materials contained therein. The unreactive materials
- 37 will be separated from knock-out drum 42 through line 43'.

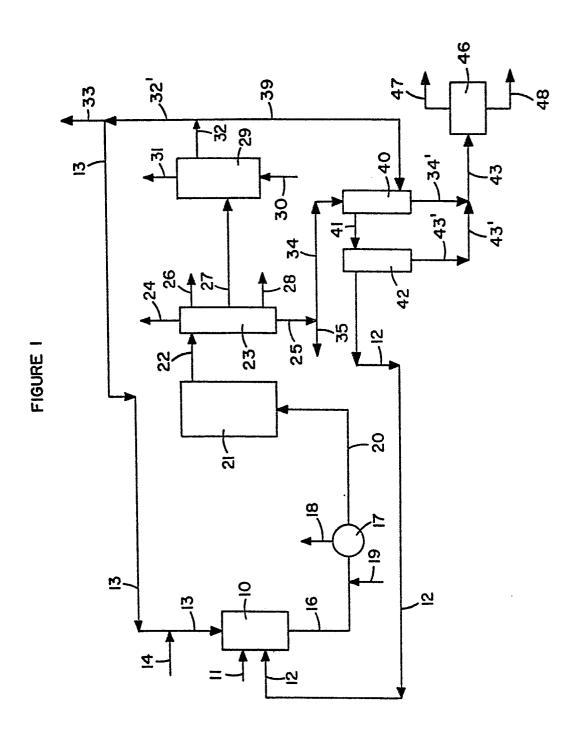
The unreactive materials separated in the knock-out drum may then be combined with unreactive materials separated from the contacting vessel 40 in line 43 and introduced into 3 separator 46. In the separator, entrained solvent may be flashed overhead and the remaining portion of the normally solid bottoms product withdrawn through line 48. covered solvent, though not illustrated, may be combined 8 with solvent withdrawn from knock-out drum 42 or with sol-9 vent withdrawn from hydrogenation vessel 29 through line 32. The solvent, generally free of unreactive materials, is 11 withdrawn from knock-out drum 42 through line 12 and fed to 12 mixing vessel 10. The remaining portion of the normally solid bottoms product withdrawn through line 48 may be directly discarded or otherwise treated in accordance with 15 conventional technology to recover the energy value thereof. 16 As indicated, supra, and in a preferred embodiment, 17 the extraction will be accomplished at a temperature within the range from about 100 to about 400°F and at a pressure 19 within the range from about 0 to about 500 psig. In the 20 embodiment illustrated, the treat rate in contacting vessel 21 40 will be within the range from about 4 v/v/hour to 8 22 v/v/hour. Though not illustrated, contacting vessel 40 23 could be a stirred vessel and the entire solvent/normally solid bottoms product could be withdrawn and passed to a 25 gravity separator. The major portion of the solvent could, then, be separated by withdrawing the same from the decanting 27 vessel at a point above the solid level. Solvent entrained 28 in the remaining solids portion could then be separated in 29 the same manner as illustrated. When a stirred vessel is employed, space velocity is not important but sufficient 31 contacting time should be allowed to ensure that from about 32 20 to about 80 weight percent of the reactive material is 33 separated from the normally solid bottoms product. The 34 reactive material thus separated is recovered with less ener-35 gy than would be required with the use of a more conventional 36 solvent such as toluene or the like which would, normally, be separated and reused in the extraction operation rather than as a solvent in the liquefaction step.

Having thus broadly described the present invention and a preferred embodiment thereof, it is believed that the same will become more apparent by reference to the following examples. It will be appreciated, however, that the examples are presented solely for purposes of illustration and should not be construed as limiting the invention.

9 EXAMPLE 1

In this example, a run was completed in a 100 pound 10 per day continuous unit using an Illinois seam coal (Illi-11 nois No. 6) as the solid carbonaceous material and a hydro-12 genated recycle liquid having an initial boiling point of 13 about 400°F and a final boiling point of about 800°F and 14 containing from about 40 to about 45 weight percent hydro-15 gen donor species was used as the extraction solvent and 16 as the solvent or diluent for liquefaction. The unit was 17 operated in a mode similar to that illustrated in Figure 1. 18 All of the solvent withdrawn from hydrogenation vessel 29 19 was used to extract bottoms from the separation vessel. As 20 withdrawn, the bottoms contain 40 weight percent of toluene 21 soluble material. The bottoms were extracted with the hy-22 drogen donor solvent at 300°F and 0 psig with a nominal 23 24 contacting time of 5 minutes. After extraction, the re-25 maining portion of the normally solid bottoms product contained 10 weight percent toluene soluble material. Use of 26 the solvent intended for slurry preparation to extract the 27 28 bottoms therefore resulted in the recovery of about 75 weight percent of the reactive material from the bottoms 29 and the gaseous and liquid product yields were increased 30 accordingly. 31

32 EXAMPLE '2


In this example, a run was completed in a 100 pound per day continuous unit using an Wyodak coal as the solid carbonaceous material and a hydrogenated recycle liquid having an intial boiling point of about 400°F and a final boiling point of about 800°F and containing from about 40

- to about 45 weight percent hydrogen donor species was used
- 2 as the extraction solvent and as the solvent or diluent for
- 3 liquefaction. The unit was operated in a mode similar to
- 4 that illustrated in Figure 1. All of the solvent withdrawn
- 5 from hydrogenation vessel 29 was used to extract bottoms
- 6 from the separation vessel. As withdrawn, the bottoms con-
- 7 tain 50 weight percent of toluene soluble material. The
- 8 bottoms were extracted with the hydrogen donor solvent at
- 9 300°F and 0 psig with a nominal contacting time of 5 minutes.
- 10 After extraction, the remaining portion of the normally so-
- 11 lid bottoms product contained 10 weight percent toluene
- 12 soluble material. Use of the solvent intended for slurry
- 13 preparation to extract the bottoms therefore resulted in the
- 14 recovery of about 80 weight percent of the reactive material
- 15 from the bottoms and the gaseous and liquid product yields
- 16 were increased accordingly.
- 17 From the foregoing it will be apparent that the to-
- 18 tal conversion of the coal was increased by about 10-15
- 19 weight percent and the yield of both gaseous and liquid pro-
- 20 ducts was increased. This increase was, effectively, accom-
- 21 plished with less equipment and less energy than would have
- 22 been required if an additional liquefaction stage were em-
- 23 ployed, if the entire bottoms were recycled or if a solvent
- 24 had been used to extract the bottoms which would then have
- 25 been separated via distillation.

CLAIMS:

- 1. A process for liquefying coal or a similar solid carbonaceous material which comprises: =-
- (a) forming a slurry of a coal or similar solid carbonaceous material in a hydrogen donor solvent;
- b) subjecting the slurry from step (a) to an elevated temperature and pressure to convert the coal or similar solid carbonaceous material in part to a normally gaseous product, in part to a normally liquid product and in part to a normally solid bottoms product;
- (c) separating the normally gaseous product, the normally liquid product and the normally solid bottoms product from step (b);
- (d) extracting at least a portion of the normally solid bottoms product with a donor solvent; and
- (e) recycling at least a portion of the extract phase from the extraction in step (d) to the liquefaction accomplished in step (b).
- 2. A process according to claim 1 in which the donor solvent is a distillate fraction separated from the liquid product obtained in step (c).
- 3. A process according to claim 2 in which at least a portion of the distillate fraction used as a donor solvent is used to extract the bottoms product in step (d).
- 4. A process according to any one of claims 1 3
 in which . the extract phase from the extraction of step (d) is used at least in part as the solvent
 used in preparing the slurry in step (a).

- 5. A process according to any one of claims 1-4 in which the extraction of step (d) is accomplished at a temperature within the range from about 50 to about $600^{\circ}F$ and at a pressure within the range from about 0 to about 750 psig.
- 6. A process according to any one of claims l 5 further in which the ratio of solvent to normally solid bottoms product is within the range from about 4:1 to about 8:1 v/v.
- 7. A liquid product whenever produced by the process of any one of claims 1-6.

