(1) Publication number:

0 085 548

A2

12

EUROPEAN PATENT APPLICATION

(21) Application number: 83300442.7

(51) Int. Cl.³: C 12 N 15/00

(22) Date of filing: 28.01.83

- 30 Priority: 01.02.82 US 344710
- 43 Date of publication of application: 10.08.83 Bulletin 83/32
- Designated Contracting States:
 BE CH DE FR GB IT LI LU NL SE
- 71 Applicant: ELI LILLY AND COMPANY 307, East McCarty Street Indianapolis Indiana 46285(US)
- (72) Inventor: Miller, James Robert 9244 Thrushwood Lane Indianapolis Indiana 46250(US)
- 72) Inventor: Fayerman, Jeffrey Tobin 3617 East Carolee Court Indianapolis Indiana 46227(US)
- inventor: Kovacevic, Steven 4722 Primrose Indianapolis Indiana 46205(US)
- 72 Inventor: Malin née Beerman, Nancy Ellen 10104 Liberty Oak Lane Cupertino California 95014(US)
- Representative: Hudson, Christopher Mark et al, Erl Wood Manor Windlesham Surrey GU20, 6PH(GB)

64 Cloning vectors.

57) The present invention discloses multi-functional recombinant DNA cloning vectors comprising

- a) two or more functionally different origins of replication that are indpendently selected from the group consisting of any origin of replication that is functional in *Strep*tomyces, any origin of replication that is functional in Bacillus, and any origin of replication that is functional in E. coli, and
- b) one or more DNA segments that confer resistance to at least one antibiotic when transformed into a sensitive host cell in which an origin of replication comprising said vector is functional, said host cells being susceptible to transformation, cell division, and culture,

subject to the limitation that when said vector is limited to two functionally different origins of replication, neither of the origins of replication is functional in *E. coli*.

548 A2

X-5863

5

10

CLONING VECTORS

-1-

The present invention relates to novel multifunctional recombinant DNA cloning vectors comprising a functional Streptomyces origin of replication, a functional Bacillus origin of replication, a functional E. coli origin of replication, and one or more DNA segments that confer resistance to antibiotics. The invention further relates to transformants of the aforementioned vectors.

Heretofore, the development and exploitation of recombinant DNA technology in <u>Streptomyces</u>, <u>Bacillus</u>, and <u>E. coli</u> has been retarded and made especially difficult in part because of the general lack of selectable multifunctional cloning vectors. The vectors to which the present invention relates are functional and selectable in <u>Streptomyces</u>, <u>Bacillus</u>, and <u>E. coli</u> and therefore represent a significant advance in the technical art.

The vectors to which the present invention 20 relates are particularly useful because they are small, versatile, and can be transformed and selected in Streptomyces, Bacillus, or E. coli cells that are sensitive to an antibiotic for which resistance is -conferred. Since over half of the clinically important 25 antibiotics are produced by Streptomyces strains, it is desirable to develop cloning systems and vectors that are applicable to that industrially important group. Moreover, since the vectors are also functional in Bacillus and E coli, the intergeneric transfer and 30 expression of genetic material is facilitated. context, the vectors provide for flexibility in the

10

15

20

25

30

selection of host cells for the production of products by recombinant DNA techniques. This is critically important because genetic expression of vector borne genes is limited and influenced by the cellular genetic background into which the genes are transformed. These host cell differences are exploited by providing vectors that can be used intergenerically. Thus, the vectors can be used to clone genes for increasing the yields of known antibiotics as well as for producing new antibiotics and antibiotic derivatives in a variety of host cells including especially either or both of Streptomyces and Bacillus.

The multifunctional recombinant DNA cloning vectors to which this invention relates can not only be cloned into Streptomyces, Bacillus, and E. coli host cells, but also allow for the convenient selection of transformants. Since transformation is a very low frequency event, such a functional test is a practical necessity for determining which cell(s), of among the millions of cells, has acquired the plasmid DNA. This is important because DNA sequences that are non-selectable can be inserted onto the vectors and, upon transformation into a host, cells containing the vector and the particular DNA sequence of interest can be isolated by appropriate antibiotic selection.

For purposes of the present invention as disclosed and claimed herein, the following terms are as defined below.

Recombinant DNA Cloning Vector - any autonomously replicating agent, including but not limited to plasmids, comprising a DNA molecule to which one or more additional DNA segments can or have been added.

10

15

20

Transformation - the introduction of DNA into a recipient host cell that changes the genotype and consequently results in a stable and heritable change in the recipient cell.

Transformant - a recipient host cell that has undergone transformation.

Multifunctional - denotes intergeneric functionality.

Sensitive Host Cell - a host cell that cannot grow in the presence of a given antibiotic without a DNA segment that confers resistance thereto.

Restriction Fragment - any linear portion or whole of a plasmid generated by the action of one or more restriction enzymes on the plasmid.

Insertional Isomer - one of the two or more possible recombinant DNA molecules formed when a DNA fragment is inserted at one of two or more compatible sites on the recipient DNA.

Plasmid pLR2 1.6 kb <u>Bam</u>HI Restriction Fragment - the same 1.6 kb <u>Bam</u>HI thiostrepton resistance conferring fragment contained in plasmid pIJ6.

Plasmid pLR1 3.4 kb <u>Bam</u>HI Restriction Fragment - the same 3.4 kb <u>Bam</u>HI neomycin resistance conferring fragment contained in plasmid pIJ2.

Amp^R - the ampicillin resistant phenotype.

Tet^S - the tetracycline sensitive phenotype.

Thio^R - the thiostrepton resistant phenotype.

Neo^R - the neomycin resistant phenotype.

Cm^R - the chloramphenicol resistant phenotype.

Kn^R - the kanamycin resistant phenotype.

25

X-5863 -4-

5

10

15

20

30

The present invention specifically relates to multifunctional recombinant DNA cloning vectors comprising:

a) two or more functionally different origins of replication that are independently selected from the group consisting of any origin of replication that is functional in Streptomyces, any origin of replication that is functional in Bacillus, and any origin of replication that is functional in E. coli, and

b) one or more DNA segments that confer resistance to at least one antibiotic when transformed into a sensitive host cell in which an origin of replication comprising said vector is functional, said host cells being susceptible to transformation, cell division, and culture,

subject to the limitation that when said vector is limited to two functionally different origins of replication, neither of the origins of replication are functional in E coli.

The invention further relates to transformants of the aforementioned vectors.

least two of 1) a restriction fragment comprising both an origin of replication that is functional in Strepto-myces and also one or more DNA segments that confer resistance to at least one antibiotic when transformed

X-5863 -5-

into Streptomyces, 2) a restriction fragment comprising both an origin of replication that is functional in Bacillus and also one or more DNA segments that confer resistance to at least one antibiotic when transformed into Bacillus, 3) a replicon containing and antibiotic resistance conferring restriction fragment of an E. coli plasmid. Ligation of 1) and 2) results in a plasmid that is functional in both Streptomyces and Bacillus. Ligation of 3) to the plasmid resulting from ligation of 1) and 2) yields a plasmid that is functional in each of Streptomyces, Bacillus, and E. coli.

A preferred first fragment, exemplified herein for illustrative purposes by the ~4.4 kb BamHI restriction fragment of plasmid pEL105, is constructed 15 by ligating the thiostrepton resistance conferring ∿1.6 kb BamHI restriction fragment of plasmid pLR2 onto the ∿2.8 kb BamHI restriction fragment of plasmid The latter fragment contains an origin of replication that is functional in Streptomyces and thus 20 is especially useful for constructing the present invention. A preferred second fragment is the ∿4.6 kb BamHI restriction fragment of plasmid pHI-16. plasmid pHI-16 fragment contains a Bacillus functional origin of replication and also DNA segments that confer 25 antibiotic resistance in Bacillus. Ligation of the

5

10

X-5863 -6-

5

30

first and second restriction fragments results in the novel illustrative multifunctional plasmid pBS2. Ligation of BamHI restricted plasmid pBS2 with BamHI restricted plasmid pBR322 results in the novel multifunctional illustrative plasmid pBS49. Plasmids of the latter type are highly versatile and can be used in each of Streptomyces, Bacillus, and E. coli.

Plasmid pEL103, which contains an origin of replication that is functional in Streptomyces, is approximately 20.0 kb and contains several restriction 10 sites which are particularly advantageous for molecular cloning. Since the origin of replication of plasmid pEL103 has been localized to within the ~2.8 kb BamHI restriction fragment, a variety of different origin of replication containing fragments can be generated by 15 digesting the plasmid with restriction enzymes that cut outside the ~2.8 kb BamHI region. A detailed restriction site and functional map of plasmid pEL103 is presented in Figure 1 of the accompanying drawings. For purposes of the present application, Figure 1 and 20 all subsequent figures are not drawn to scale.

Plasmid pEL103 can be conventionally isolated from Streptomyces granuloruber No. A39912.13/pEL103, a strain deposited and made part of the permanent stock culture collection of the Northern Regional Research Laboratory, Peoria, Illinois. It is available to the public, as a preferred source and stock reservoir of the plasmid, under the accession number NRRL 12549.

Although many different origin of replication containing fragments of plasmid pEL103 can be constructed, the ~2.8 kb BamHI restriction fragment is

most preferred for purposes of constructing the present invention. The ~2.8 kb fragment is ligated to one or more antibiotic resistance conferring DNA fragments which are exemplified herein, for illustrative purposes, by the thiostrepton resistance conferring ~1.6 kb BamHI restriction fragment of plasmid pLR2 and the neomycin resistance conferring ~3.4 kb BamHI restriction fragment of plasmid pLR1.

Plasmid pLR2, the source of the thiostrepton resistance conferring fragment, is approximately 10 18.7 kb and is constructed by ligating HindIII treated plasmid pIJ6, disclosed in Thompson et al., 1980, Nature 286:525, to HindIII treated plasmid pBR322. Plasmid pLR1, the source of the neomycin resistance conferring fragment, is approximately 14.8 kb and is 15 similarly constructed, except that plasmid pIJ2, disclosed in Thompson et al., 1980, is used instead of plasmid pIJ6. Both plasmids pLR2 and pLR1 are functional in E. coli and therefore can be amplified and isolated conveniently for subsequent manipulation. A 20 restriction site and functional map of each of plasmids pLR1 and pLR2 is presented respectively in Figures 2-3 of the accompanying drawings.

The thiostrepton resistance conferring v1.6 kb

BamHI fragment and the neomycin resistance conferring

v3.4 kb BamHI fragment are ligated to the v2.8 kb origin of replication containing BamHI fragment of plasmid pEL103 to produce plasmids useful as starting materials for constructing the present invention. The plasmid starting materials are of two orientations depending

upon the orientation of the particular resistance

X-5863 -8-

conferring DNA fragment. Thus, ligation of the ~1.6 kb BamHI fragment of plasmid pLR2 onto the ~2.8 kb BamHI fragment of plasmid pEL103 results in useful starting material plasmids pEL107 and pEL105; ligation of the ~3.4 kb BamHI fragment of plasmid pLR1 results in useful starting material plasmids pEL109 and pEL110; and ligation of both of the fragments results in useful starting material plasmids pEL113, pEL114, pEL115, and pEL116. The aforementioned plasmid starting materials can be partially BamHI digested to generate restriction fragments that are useful for constructing the present vectors as described herein below.

Plasmid pHI-16 contains both an origin of replication that is functional in Bacillus and also DNA segments that respectively confer resistance to anti-15 biotics chloramphenicol and kanamycin. Therefore. plasmid pHI-16 is an excellent starting material for purposes of the present invention. Plasmid pHI-16 is 14.6 kb and results from an in vivo deletion of known chimeric plasmid pBD12 (disclosed in Gryczan et al., 20 1980, J. Bacteriology 141 (1):246) and can be conventionally isolated from Bacillus subtilis MIl12/ pHI-16, a constructed strain deposited and made part of the permanent stock culture collection of the Northern Regional Research Laboratory, Peoria, Illinois. 25 available to the public, as a preferred source and stock reservoir of the plasmid, under the accession number NRRL B-12597. A detailed restriction site and functional map of plasmid pHI-16 is presented in Figure 4 of the accompanying drawings. For simplicity,

5

10

only three MboII and TaqI restriction sites are shown for plasmid pHI-16 and the pHI-16 fragments illustrated herein.

also be used as starting materials. For example,
deletion of the ~.7 kb HpaII restriction fragment of
plasmid pHI-16 results in the novel plasmid pHI-18.
Plasmid pHI-18 is ~3.9 kb and contains a chloramphenicol resistance conferring DNA segment as well as an
origin of replication that is functional in Bacillus.
A restriction site and functional map of plasmid pHI-18
is presented in Figure 5 of the accompanying drawings.
For simplicity, only three MboII and TaqI restriction
sites are shown for plasmid pHI-18 and the pHI-18 fragments illustrated herein.

15 The BamHI digestion of plasmids pHI-16 and pHI-18 results respectively in ∿4.6 kb and ∿3.9 kb fragments which, with respect to Bacillus, each contain an origin of replication and also DNA conferring antibiotic resistance. Therefore, multifunctional cloning 20 vectors, illustrative of the present invention, can be readily constructed by ligating the ~3.9 kb BamHI restriction fragment of plasmid pHI-18 or the ∿4.6 kb BamHI restriction fragment of plasmid pHI-16 with the ∿4.4 kb BamHI restriction fragment of plasmid pEL105 25 disclosed above. The resulting multifunctional plasmids are herein respectively designated as plasmids pBSl and Ligation of the ~4.6 kb BamHI restriction fragment of plasmid pHI-16 with the ∿6.2 kb BamHI restriction fragment of plasmid pEL110 results in the novel 30 multifunctional plasmid pBS5. Similarly, ligation of

10

15

20

25

30

the plasmid pHI-16 BamHI fragment with the ~7.8 kb

BamHI restriction fragment of plasmid pEL113 results in
the multifunctional plasmid pBS7. A detailed restriction site and functional map of each of plasmids pBS1,
pBS2, pBS5, and pBS7 are presented respectively in
Figures 6, 7, 13, and 14 of the accompanying drawings.

The present vectors such as, for example, plasmid pBS1, pBS2, pBS5 and pBS7, can be ligated to a functional replicon containing and antibiotic resistance conferring restriction fragment of an E. coli plasmid such as, for example, plasmid pBR322, pBR324 (disclosed in Bolivar, F., 1978, Gene 4:121), pBR325 (disclosed in Bolivar, F., 1978), pBR328 (disclosed in Soberon, X., 1980, Gene 9:287), or the like, to produce novel multifunctional plasmids for use in E. coli, Streptomyces, and Bacillus. These constructions, exemplified for illustrative purposes by plasmids pBS9 and pBS10, are particularly advantageous because amplification and manipulation of plasmids can be done faster and more conveniently in E. coli than in either Streptomyces or Bacillus. Thus, after desired recombinant DNA procedures are accomplished within the E. coli host system, the particular DNA can be removed, reconstructed to plasmid form (if necessary), and then transformed into a Streptomyces or Bacillus host cell.

Although the <u>Streptomyces</u> functional origin of replication that is exemplified in the present multifunctional pBS plasmids is contained in the v2.8 kb <u>BamHI</u> fragment of plasmid pEL103, analogous pEL103 fragments can also be used provided that the origin of replication is present. Such analogous plasmid pEL103

30

restriction fragments include, but are not limited to, the PstI, SphI, BglII, ClaI, XhoI, and the other BamHI fragments. Moreover, a particular antibiotic resistance conferring DNA segment is not limited to a single position on a plasmid pEL103 restriction fragment but can be ligated or inserted at varying sites provided that the origin of replication or other critical plasmid controlled physiological functions are not disrupted. Therefore, many different plasmid pEL103 restriction fragments and derivatives can be used in place of those 10 exemplified herein. Those skilled in the art understand or can readily determine which sites are advantageous for the ligation or insertion of a particular DNA segment.

While the ∿4.6 and 3.9 kb BamHI restriction 15 fragments of plasmids pHI-16 and pHI-18 respectively are preferred for constructing the present multifunctional plasmids, many different origin of replication containing and antibiotic resistance conferring fragments of plasmids pHI-16 and pHI-18 can also be used. Analogous 20 single cut restriction fragments of plasmids pHI-16 and pHI-18 include, for example, the BglII, XbaI, EcoRI, PvuII, and AvaI fragments of plasmid pHI-16 and the XbaI, EcoRI, PvuII, and AvaI fragments of plasmid pHI-18. In addition, the antibiotic resistance con-25 ferring DNA segments, contained in the plasmid pHI-16 and pHI-18 fragments, are not limited to a single position. Rather, the segments can be positioned and inserted and ligated at varying sites provided that the origin of replication or other critical plasmid con-

X-5863 -12-

5

10

30

trolled physiological functions are not disrupted. Those skilled in the art understand or can readily determine which sites are advantageous for the ligation or insertion of a particular DNA segment. Therefore, a large number of restriction fragments can be constructed that both express antibiotic resistance and also contain an origin of replication that is functional in <u>Bacillus</u>. Such fragments can be used in place of those exemplified herein for constructing additional multifunctional vectors that are also within the scope of the present invention.

Antibiotic resistance conferring DNA segments can also be ligated onto other Bacillus functional plasmids such as, for example, plasmid pBD15 and plasmids (disclosed in NIH Publication No. 82-99, 1981, 15 Recombinant DNA Technical Bulletin 4(4):143) pPL10, pPL7065, pIM13, pPL576, pBC16, pAM77, pC194, pC221, pC223, pE194, pSA2100, pSA0501, TP2, pUB110, pUB112, pBD6, pBD8, pBD9, pBD10, pBD11, pBD12, pBD20, pBD35, pBD64, pOG1196, pHV12, pHV14, pHV33, pOG2165, and 20 The resulting plasmids confer antibiotic resistance, contain an origin of replication that is functional in Bacillus, and thus can be used in place of plasmids pHI-16 and pHI-18 for purposes of the present invention. Therefore, the present invention is 25 not limited to the illustrative multifunctional vectors that require plasmids pHI-16 or pHI-18 for construction.

Although the thiostrepton, neomycin, kanamycin, and chloramphenicol antibiotic resistance conferring DNA segments are, for illustrative purposes, respectively exemplified by the ~1.6 kb BamHI restric-

10

15

20

tion fragment of plasmid pLR2, the ~3.4 kb BamHI restriction fragment of plasmid pLR1, the ~4.6 BamHI restriction fragment of plasmid pHI-16, and the ~3.9 BamHI restriction fragment of plasmid pHI-18, those skilled in the art can construct and substitute either individually or in combination, other DNA segments that also confer resistance to the aforementioned antibiotics. Other thiostrepton resistance conferring DNA segments of plasmid pLR2 include, for example, the ∿13 kb PstI restriction fragment and also the BclI subfragment of the ∿1.6 kb BamHI restriction fragment. Other neomycin resistance conferring DNA segments of plasmid pLRL include, for example, the ~3.5 kb PstI restriction fragment and also the larger of the SstI-KpnI subfragments of the ~3.4 kb BamHI restriction fragment. Other kanamycin resistance conferring DNA segments of plasmid pHI-16 include, for example, the ∿.74 kb HpaII fragment and also the larger of the XbaI-PvuII, AvaI-EcoRI, EcoRI-PvuII, and BamHI-EcoRI fragments. Other chloramphenicol resistance conferring DNA segments of plasmid pHI-18 include, for example, the ∿.84 kb HpaII fragment and also the larger of the EcoRI-PvuII, BamHI-EcoRI, and XbaI-PvuII fragments.

25 to the above or to different antibiotics such as, for example, hygromycin, bacteriocin, viamycin, streptomycin, tylosin, and erythromycin, can also be used for purposes of the present invention. Moreover, various functional derivatives of the above described antibiotic resistance conferring DNA segments can be constructed by adding, eliminating, or substituting nucleotides in

10

15

20

25

accordance with the genetic code. Those skilled in the art will understand that ligation of these, or any of the other antibiotic resistance conferring DNA segments, with <u>Streptomyces</u> and <u>Bacillus</u> origins of replication containing restriction fragment, results in multifunctional vectors that are within the scope of the present invention.

The above described origin of replication containing restriction fragments and also the antibiotic resistance conferring DNA segments can be conveniently modified to facilitate subsequent ligation. For example, addition of molecular linkers provides for the construction of specific restriction sites that are useful for ligation or for other purposes known in the art. Moreover, the various restriction fragments can also be modified by adding, eliminating, or substituting nucleotides to alter characteristics and to provide a variety of unique or additional restriction sites. Those skilled in the art understand nucleotide chemistry and the genetic code and thus which nucleotides are interchangeable and which DNA modifications are desirable for a specific purpose.

The recombinant DNA cloning vectors of the present invention are not limited for use in a single species or strain of either Streptomyces or Bacillus.

To the contrary, the vectors are broadly applicable and can be transformed into host cells of many Bacillus and Streptomyces taxa, particularly the restrictionless strains thereof. Moreover, with respect to Streptomyces, many of the strains are economically important

10

and produce antibiotics such as aminoglycoside, macrolide, β -lactam, polyether, and glycopeptide antibiotics. Restrictionless strains are readily selected and isolated from Streptomyces and Bacillus taxa by conventional procedures and extensions of principles well known in the art (Lomovskaya et al., 1980, Microbiological Reviews 44:206). Host cells of restrictionless strains lack restriction enzymes and therefore do not cut or degrade plasmid DNA upon transformation. For purposes of the present application, host cells containing restriction enzymes that do not cut any of the restriction sites of the present vectors are also considered restrictionless.

Preferred host cells of restrictionless strains of Streptomyces taxa that produce aminoglyco-15 side antibiotics and in which the present vectors are especially useful and can be transformed, include restrictionless cells of, for example: S. kanamyceticus (kanamycins), S. chrestomyceticus (aminosidine), S. griseoflavus (antibiotic MA 1267), S. 20 microsporeus (antibiotic SF-767), S, ribosidificus (antibiotic SF733), S. flavopersicus (spectinomycin), S. spectabilis (actinospectacin), S. rimosus forma paromomycinus (paromomycins, catenulin), S. fradiae var. italicus (aminosidine), S. bluensis var. bluensis 25 (bluensomycin), S. catenulae (catenulin), S. olivoreticuli var. cellulophilus (destomycin A), S. tenebrarius (tobramycin, apramycin), S. lavendulae (neomycin), S. albogriseolus (neomycins), S. albus var. metamycinus (metamycin), S. hygroscopicus var. sagamiensis 30 (spectinomycin), S. bikiniensis (streptomycin), S.

griseus (streptomycin), S. erythrochromogenes var. narutoensis (streptomycin), S. poolensis (streptomycin), S. galbus (streptomycin), S. rameus (streptomycin), S. olivaceus (streptomyciń), S. mashuensis (streptomycin), S. hygroscopicus var. limoneus (validamycins), S. rimofaciens (destomycins), S. hygroscopicus forma glebosus (glebomycin), S. fradiae (hybrimycins neomycins), S. eurocidicus (antibiotic Al6316-C), S. aguacanus (N-methyl hygromycin B), S. crystallinus (hygromycin A), S. noboritoensis (hygromycin), S. 10 hygroscopicus (hygromycins), S. atrofaciens (hygromycin), S. kasugaspinus (kasugamycins), S. kasugaensis (kasugamycins), S. netropsis (antibiotic LL-AM31), S. lividus (lividomycins), S. hofuensis (seldomycin complex), and S. canus (ribosyl paromamine).

15. Preferred host cells of restrictionless strains of Streptomyces taxa that produce macrolide antibiotics and in which the present vectors are especially useful and can be transformed, include restrictionless cells of, for example: S. caelestis 20 (antibiotic M188), S. platensis (platenomycin), S. rochei var. volubilis (antibiotic T2636), S. venezuelae (methymycins), S. griseofuscus (bundlin), S. narbonensis (josamycin, narbomycin), S. fungicidicus (antibiotic NA-181), S. griseofaciens (antibiotic 25 PA133A, B), S. roseocitreus (albocycline), S. bruneogriseus (albocycline), S. roseochromogenes (albocycline), S. cinerochromogenes (cineromycin B), S. albus (albomycetin), S. felleus (argomycin, picromycin), S. rochei (lankacidin, borrelidin), S. violaceoniger 30 (lankacidin), S. griseus (borrelidin), S. maizeus

(ingramycin), S. albus var. coilmyceticus (coleimycin), 5. mvcarofaciens (acetyl-leukomycin, espinomycin), S. hygroscopicus (turimycin, relomycin, maridomycin, tylosin, carbomycin), S. griseospiralis (relomycin), S. lavendulae (aldgamycin), S. rimosus (neutramycin), S. 5 deltae (deltamycins), S. fungicidicus var. espinomyceticus (espinomycins), S. furdicidicus (mydecamycin), S. ambofaciens (foromacidin D), S. eurocidicus (methymycin), S. griseolus (griseomycin), S. flavochromogenes (amaromycin, shincomycins), S. fimbriatus 10 (amaromycin), S. fasciculus (amaromycin), S. erythreus (erythromycins), S. antibioticus (oleandomycin), S. olivochromogenes (oleandomycin), S. spinichromogenes var. suraçaoensis (kujimycins), S. kitasatoensis (leucomycin), S. narbonensis var. josamyceticus (leuco-15 mycin A3, josamycin), S. albogriseolus (mikonomycin), S. bikiniensis (chalcomycin), S. cirratus (cirramycin), S. djakartensis (niddamycin), S. eurythermus (angolamycin), S. fradiae (tylosin, lactenocin, macrocin), S. goshikiensis (bandamycin), S. griseoflavus (acumycin), 20 S. halstedii (carbomycin), S. tendae (carbomycin), S. macrosporeus (carbomycin), S. thermotolerans (carbomycin), and S. albireticuli (carbomycin).

Preferred host cells of restrictionless

strains of Streptomyces taxa that produce β-lactam

antibiotics and in which the present vectors are

especially useful and can be transformed, include

restrictionless cells of, for example: S. lipmanii

(A16884, MM4550, MM13902), S. clavuligerus (A16886B,

clavulanic acid), S. lactamdurans (cephamycin C), S.

griseus (cephamycin A, B), S. hygroscopicus (deacetoxy-

15

20

25

30

cephalosporin C), S. wadayamensis (WS-3442-D), S. chartreusis (SF 1623), S. heteromorphus and S. panayensis (C2081X); S. cinnamonensis, S. fimbriatus, S. halstedii, S. rochei and S. viridochromogenes (cephamycins A, B); S. cattleya (thienamycin); and S. olivaceus, S. flavovirens, S. flavus, S. fulvoviridis, S. argenteolus, and S. sioyaensis (MM 4550 and MM 13902).

Preferred host cells of restrictionless strains of Streptomyces taxa that produce polyether antibiotics and in which the present vectors are especially useful and can be transformed, include restrictionless cells of, for example: S. albus (A204, A28695A and B, salinomycin), S. hygroscopicus (A218, emericid, DE3936), A120A, A28695A and B, etheromycin, dianemycin), S. griseus (grisorixin), S. conglobatus (ionomycin), S. eurocidicus var. asterocidicus (laidlomycin), S. lasaliensis (lasalocid), S. ribosidificus (lonomycin), S. cacaoi var. asoensis (lysocellin), S. cinnamonensis (monensin), S. aureofaciens (narasin), S. callinarius (RP 30504), S. longwoodensis (lysocellin), S. flaveolus (CP38936), S. mutabilis (S-11743a), and S. violaceoniger (nigericin).

Preferred host cells of restrictionless strains of <u>Streptomyces</u> taxa that produce glycopeptide antibiotics and in which the present vectors are especially useful and can be transformed, include restrictionless cells of, for example: <u>S. orientalis</u> and <u>S. haranomachiensis</u> (vancomycin); <u>S. candidus</u> (A-35512, avoparcin), and <u>S. eburosporeus</u> (<u>TL-AM 374</u>).

Preferred host cells of other <u>Streptomyces</u> restrictionless strains in which the present vectors

20

25

30

are especially useful and can be transformed, include restrictionless cells of, for example: S. coelicolor, S. granuloruber, S. roseosporus, S. lividans, S. espinosus, and S. azureus.

Preferred host cells of restrictionless strains of Bacillus in which the present vectors are especially useful and can be transformed, include restrictionless cells of, for example, B. subtilis, B. subtilis MIll2, B. thuringiensis, B. thuringiensis var. israeliensis, B. cereus, B. anthracis, B. piliformis, 10 B. tropicus, B. alvei, B. megaterium, B. pumilus, B. licheniformis, B. polymyxa, B. macerans, B. circulans, B. stearothermophilus, B. coagulans, B. firmus, B. brevis, B. sphaericus, B. pasteurii, B. fastidiosus, B. larvae, B. lentimorbus, B. apiarus, B. amylo-1.5 liquifaciens, B. laterosporus, and B. popillae.

In addition to the representative Streptomyces and Bacillus host cells described above, the present vectors are also useful and can be transformed into cells of restrictionless strains of other taxa such as, for example: Staphylococcus, Staphylococcus aureus, Streptococcus, related Actinomycetes, including Streptosporangium, Actinoplanes, Nocardia, and Micromonospora, and Lactobacillus. Furthermore, the multifunctional vectors that contain an E. coli replicon can also be transformed into E. coli. Thus, the vectors of the present invention have wide application and are useful and can be transformed into host cells of a variety of organisms.

While all the embodiments of the present invention are useful, some of the present recombinant

30

DNA cloning vectors and transformants are more preferred than others. Accordingly, preferred vectors are plasmids pBS1, pBS2, pBS5, pBS7 and pBS9; and preferred transformants are Streptomyces ambofaciens/pBS1, S. ambofaciens/pBS2, S. ambofaciens/pBS5, S. ambofaciens/-pBS7, S. ambofaciens/pBS9, Bacillus subtilis MIl12/pBS1, B. subtilis/MIl12/pBS2, B. subtilis/MIl12/pBS5, B. subtilis/MIl12/pBS7, B. subtilis/MIl12/pBS9, and E. coli K12 HB101/pBS9.

The recombinant DNA cloning vectors and 10 transformants of the present invention have broad utility and help fill the need for suitable multifunctional cloning vehicles for use in Streptomyces, Bacillus, E. coli, and related organisms. Moreover, the ability of the present vectors to confer resistance 15 to antibiotics that are toxic to non-transformed host cells, also provides a functional means for selecting transformants. This is important because of the practical necessity for determining and selecting the particular cells that have acquired vector DNA. 20 Additional DNA segments, that lack functional tests for their presence, can also be inserted onto the present vectors and then transformants containing the nonselectable DNA can be isolated by appropriate antibiotic selection. Such non-selectable DNA segments can 25 be inserted at any site, except within regions necessary for plasmid function and replication, and include, but are not limited to, genes that specify antibiotic modification enzymes and regulatory genes of all types.

More particularly, a non-selectable DNA segment that comprises a gene can be inserted on a plasmid

10

15

20

such as for example, illustrative plasmid pBS9, at the central SalI restriction site of the ∿1.6 kb BamHI resistance conferring fragment. Such an insertion inactivates the thiostrepton resistance gene and thus . allows for the easy identification of Streptomyces transformants containing the recombinant plasmid. This is done by first selecting for neomycin resistance and, secondarily, identifying those neomycin resistant Streptomyces transformants that are not resistant to thiostrepton. In a similar manner, insertion of a DNA segment of interest at, for example, the internal BamHI restriction site of the ∿3.4 kb BamHI resistance conferring fragment inactivates the neomycin resistance gene. Thus, Streptomyces transformants carrying this recombinant plasmid also are identified easily by first selecting for thiostrepton resistance and, secondarily, identifying those thiostrepton resistant transformants that are not resistant to neomycin. Therefore, the ability to select for antibiotic resistance in Streptomyces allows for the efficient isolation of the extremely rare cells that contain the particular nonselectable DNA of interest.

In addition, a non-selectable DNA segment that comprises a gene can also be inserted on a plasmid such as for example, illustrative plasmid pBS9, at the BglII restriction site of the kanamycin resistance conferring fragment. Such an insertion inactivates the kanamycin resistance gene and thus allows for the easy identification of Bacillus transformants containing the recombinant plasmid. This is done by first selecting for chloramphenicol resistance and, secondarily, iden-

-22-X-5863

5

25

30

tifying those chloramphenical resistant Bacillus transformants that are not resistant to kanamycin. similar manner, insertion of a DNA segment of interest at, for example, the internal MboII restriction site of the chloramphenical resistance conferring fragment inactivates the chloramphenical resistance gene. Thus, Bacillus transformants carrying this recombinant plasmid also are identified easily by first selecting for kanamycin resistance and, secondarily, identifying those kanamycin resistant transformants that are not 10 resistant to chloramphenicol. Therefore, the ability to select for antibiotic resistance in Bacillus also allows for the efficient isolation of the extremely rare cells that contain the particular non-selectable DNA of interest. Similar selections can also be done 15 in E. coli.

The functional test for antibiotic resistance, as described herein above, is also used to locate DNA segments that enhance copy number or act as control elements and direct expression of an individual antibiotic resistance gene. Such segments, including but not limited to, promoters, attenuators, repressors, inducers, ribosomal binding sites, and the like, are used to control the expression of other genes in cells of Streptomyces, Bacillus, E. coli, and related organisms.

The thiostrepton, neomycin, kanamycin, and chloramphenicol resistance conferring vectors of the present invention are also useful for insuring that linked DNA segments are stably maintained in host cells over many generations. These genes or DNA fragments,

covalently linked to the thiostrepton, neomycin, kanamycin, or chloramphenicol resistance conferring fragment and propagated either in Streptomyces, Bacillus, E. coli, or in the cells of related organisms, are maintained by exposing the transformants to levels of thiostrepton, neomycin, kanamycin, or chloramphenicol that are toxic to non-transformed cells. Therefore, transformants that lose the vector, and consequently any covalently linked DNA, cannot grow and are eliminated from the culture. Thus, the vectors of the 10 present invention can stabilize and maintain any DNA sequence of interest, particularly in Streptomyces, Bacillus, and E. coli.

5

The cloning vectors and transformants of the present invention provide for the cloning of genes to 15 improve yields of various products that are currently produced in Streptomyces and related cells. Examples of such products include, but are not limited to, Streptomycin, Tylosin, Cephalosporins, Actaplanin, Narasin, Monensin, Apramycin, Tobramycin, Erythromycin, 20 and the like. The present invention also provides selectable vectors that are useful for cloning, characterizing, and reconstructing DNA sequences that code for commercially important proteins such as, for example, human insulin, human proinsulin, glucagon, inter-25 feron, human growth hormone, bovine growth hormone, and the like; for enzymatic functions in metabolic pathways leading to commercially important processes and compounds; or for control elements that improve gene expression. These desired DNA sequences include, but 30

are not limited to, DNA that codes for enzymes that catalyze synthesis of derivatized antibiotics such as, for example, Streptomycin, Cephalosporin, Tylosin, Actaplanin, Narasin, Monensin, Apramycin, Tobramycin, and Erythromycin derivatives, or for enzymes that mediate and increase bioproduction of antibiotics or other products. The capability for inserting and stabilizing such DNA segments thus allows for increasing the yield and availability of antibiotics.

5

30

The present multifunctional cloning vectors 10 also allow for the genetic expression in Streptomyces of products now bioproduced in E. coli and Bacillus. This is especially advantageous because large scale Streptomyces fermentation is better known and understood than is fermentation of either Bacillus or E. 15 coli. In fact, large scale commercial fermentation of E. coli is still highly experimental and sometimes difficult. The present invention circumvents this problem by providing the alternative of producing compounds now biosynthesized in E. coli such as, for 20 example, human insulin, human proinsulin, glucagon, interferon, human growth hormone, bovine growth hormone, and the like, in Streptomyces. This can be done because the present vectors are highly versatile and can accommodate either or both of DNA sequences which 25 express the aforementioned products or sequences comprising entire product producing E. coli plasmids. Thus, the present invention allows for flexibility in the choice of hosts and provides a means for the bioproduction of polypeptides and other products in Streptox-5863 -25-

5

10

15

20

25

30

myces, <u>Bacillus</u>, and <u>E. coli</u>. Those skilled in the art know or can readily determine which host is most advantageous for both producing a particular product and for a given fermentation.

Streptomyces granuloruber No. A39912.13/pEL103 and Bacillus subtilis/MI112/pHI-16, as respective sources of plasmids pEL103 and pHI-16, can be cultured in a number of ways using any of several different media. Carbohydrate sources which are preferred in a culture medium include, for example, molasses, glucose, dextrin, and glycerol, and nitrogen sources include, for example, soy flour, amino acid mixtures, and peptones. Nutrient inorganic salts are also incorporated and include the customary salts capable of yielding sodium, potassium, ammonia, calcium, phosphate, chloride, sulfate, and like ions. As is necessary for the growth and development of other microorganisms, essential trace elements are also added. Such trace elements are commonly supplied as impurities incidental to the addition of other constituents of the medium.

Streptomyces granuloruber No. A39912.13/
pEL103 is grown under aerobic culture conditions over a
relatively wide pH range of about 5 to 9 at temperatures ranging from about 15° to 40°C. For production
of plasmid pEL103 at highest copy number, however, it
is desirable to start with a culture medium at a pH of
about 7.2 and maintain a culture temperature of about
30°C. Culturing Streptomyces granuloruber No. A39912.13/
pEL103, under the aforementioned conditions, results in

a reservoir of cells from which plasmid pEL103 is isolated conveniently by techniques well known in the art.

Bacillus subtilis MI112/pHI-16 is grown under aerobic culture conditions over a relatively wide pH range of about 5.0 to 8.5 at temperatures ranging from about 25° to 45°C. For production of plasmid pHI-16 at highest copy number, however, it is desirable to start with a culture medium at a pH of about 7 and maintain a culture temperature of about 37°C. Culturing Bacillus subtilis MI112/pHI-16, under the aforementioned conditions, results in a reservoir of cells from which plasmid pHI-16 is isolated conveniently by techniques well known in the art.

The following examples further illustrate

and detail the invention disclosed herein. Both an explanation of and the actual procedures for constructing the invention are described where appropriate.

Example 1

Isolation of Plasmid pEL103

20

30

A. Culture of Streptomyces granuloruber No. A39912.13/pEL103

A vegetative inoculum of Streptomyces granuloruber No. A39912.13/pEL103 (NRRL 12549) was conventionally prepared by growing the strain under submerged aerobic conditions in 50 ml. of sterilized trypticase soy broth* at 35 g./l. in deionized water.

The trypticase soy broth inoculum was incubated for 48 hours at a temperature of 30°C. After

30

incubation, about 10 ml. of the inoculum was transferred to 500 ml. of the sterilized broth and was incubated for about 20 hours at 30°C. The pH was not adjusted. After incubation, the <u>Streptomyces granuloruber</u> No. A39912.13/pEL103 cells were ready for harvest and subsequent isolation of plasmid DNA.

About 12 g. (wet wgt) of Streptomyces granuloruber No. A39912.13/pEL103 cells were centrifuged (10 minutes, 4°C., 10,000 rpm), washed in 10% glycerol, and then harvested by recentrifugation under the afore-15 mentioned conditions. About 50 ml. of TES buffer (.01M Tris(hydroxymethyl)aminoethane [Tris], .001M EDTA, 34% sucrose, pH 8) were added to the cells followed by about 0.25 g. of lysozyme in 10 ml. of 0.25M EDTA. After the mixture was incubated at 37°C. for about 15 20 minutes, about 0.5 ml. of 10% Triton X-100 in TE buffer (.01M Tris, .001M EDTA, pH 8) was added. The resultant mixture was then incubated at 65°C. for about 15 minutes. After the lysate was centrifuged (45 minutes, 4°C., 18,000 rpm), the supernatant was extracted four times 25 with isoamyl alcohol and once with a chloroformisoamyl alcohol solution (24:1). Next, .1 volume of 3M sodium acetate was added to the aqueous phase followed by 3 volumes of cold (-20°C.) 95% ethanol.

ethanol precipitation was rapidly performed in a dry

^{*}Trypticase soy broth is obtained from BBL Division, Becton-Dickinson & Company, Cockeysville, Maryland 21030

B. Plasmid Isolation

ice-ethanol bath and the DNA precipitate was collected by centrifugation (15 minutes, 4°C., 10,000 rpm). The precipitate was vacuum dried and then resuspended in 1.1 ml. of STE buffer (.01M Tris, .001M EDTA, .01M sodium chloride). Centrifugation (40 hours, 15°C., 35,000 rpm) using cesium chloride gradients, with ethidium bromide, was carried out to purify the plasmid DNA. Following centrifugation, the desired plasmid pEL103 DNA band was removed and the ethidium bromide extracted by conventional procedures. After precipitation of the DNA in 3 volumes of ethanol, the thus isolated plasmid pEL103 DNA was dissolved in 1 ml. of 10 fold diluted TE buffer and was then stored at -20°C.

Example 2

Construction of Plasmid pLR2

5

10

A. HindIII Digestion of Plasmid pIJ6

About 20 μl. (20 μg.) of plasmid pIJ6 DNA, disclosed in Thompson et al., 1980, Nature 286:525, 5 μl. BSA(Bovine Serum albumin, 1 mg./ml.), 19 μl. water, 1 μl. of HindIII (containing 3 New England Bio Labs units) restriction enzyme*, and 5 μl. reaction mix** were incubated at 37°C. for 2 hours. The reaction was terminated by the addition of about 50 μl. of 4M ammonium acetate and 200 μl. of 95% ethanol. The resultant DNA precipitate was washed twice in 70% ethanol, dried in vacuo, suspended in 20 μl. of TE buffer, and stored at -20°C.

Restriction enzymes can be obtained from the following sources:

New England Bio Labs., Inc. 32 Tozer Road Beverly, Massachusetts 01915

Boehringer-Mannheim Biochemicals 7941 Castleway Drive Indianapolis, Indiana 46250

5

** Reaction mix for <u>HindIII</u> restriction enzyme was prepared with the following composition.

600mM NaCl

100mM Tris-HCl, pH7.9

10 7 GmM MgCl₂

10mM Dithiothreitol

B. <u>Hind</u>III Digestion of Plasmid pBR322

About 8 μl. (4 μg.) of plasmid pBR322 DNA,

5 μl. reaction mix, 5 μl. BSA (1 mg./ml.), 31 μl.

water, and 1 μl. of HindIII restriction enzyme were incubated at 37°C. for 2 hours. After the reaction was terminated by incubating at 60°C. for 10 minutes, about 50 μl. of ammonium acetate and 200 μl. of 95% ethanol were added. The resultant DNA precipitate was washed twice in 70% ethanol, dried in vacuo, and suspended in 45 μl. of water.

^{*}Plasmid pBR322 can be obtained from Boehringer-Mannheim Biochemicals the address of which is disclosed in Example 2A.

C. Ligation of HindIII Digested Plasmids pIJ6 and pBR322

About 20 µl. of <u>HindIII</u> treated plasmid pIJ6 (from Example 2A), 20 µl. of <u>HindIII</u> treated plasmid pBR322 (from Example 2B), 5 µl. BSA (1 mg./ml.), 1 µl.

10

25

30

of T4 DNA ligase*, and 5 µl. ligation mix** were incubated at 16°C. for 4 hours. The reaction was terminated by the addition of about 50 µl. 4M ammonium acetate and 200 µl. of 95% ethanol. The resultant DNA precipitate was washed twice in 70% ethanol, dried in vacuo, and suspended in TE buffer. The suspended DNA constituted the desired plasmid pLR2.

New England Bio Labs., Inc. 32 Tozer Rd. Beverly, Massachusetts 01915

15 500mM Tris-HCl, pH7.8 200mM Dithiothreitol 100mM MgCl₂ 10mM ATP

20 Example 3

Construction of E. coli K12 HB101/pLR2

About 10 ml. of frozen competent <u>E. coli</u> K12 HB101 cells (Bolivar et al., 1977, Gene 2:75-93) were pelleted by centrifugation and then suspended in about 10 ml. of 0.01M sodium chloride. Next, the cells were pelleted again, resuspended in about 10 ml. of 0.03M calcium chloride, incubated on ice for 20 minutes, pelleted a third time, and finally, resuspended in 1.25 ml. of 0.03M calcium chloride. The resultant cell suspension was competent for subsequent transformation.

^{*}T4 DNA ligase can be obtained from the following source:

^{**}Ligation mix was prepared with the following composition.

Plasmid pLR2 in TE buffer (prepared in Example 2C) was ethanol precipitated, suspended in 150 µl. of 30mM calcium chloride solution, and gently mixed in a test tube with about 200 µl. of competent E. coli K12 HB101 cells. The resultant mixture was incubated on ice for about 45 minutes and then at 42°C. for about 1 minute. Next, about 3 ml. of L-broth (Bertani, 1951, J. Bacteriology 62:293) containing 50 ug./ml. of ampicillin was added. The mixture was incubated with shaking at 37°C. for 1 hour and then 10 plated on L-agar (Miller, 1972, Experiments in Molecular Genetics, Cold Spring Harbor Labs, Cold Spring Harbor, New York) containing ampicillin. Surviving colonies were selected and tested for the expected phenotype (Amp^R, Tet^S), and constituted the desired <u>E</u>. <u>coli</u> K12 15 HB101/pLR2 transformants.

Example 4

Construction of Plasmid pLR1

Plasmid pLR1 was prepared in substantial 20 accordance with the teaching of Example 2A-C except that plasmid pIJ2, disclosed in Thompson et al., 1980, Nature 286:525, was used in place of plasmid pIJ6. desired plasmid pLRl was suspended in TE buffer.

Example 5

5

25

30

Construction of E. coli K12 HB101/plR1

The desired construction was carried out in substantial accordance with the teaching of Example 3 except that plasmid pLR1, rather than plasmid pLR2, was used for transformation. Surviving colonies were

selected and tested for the expected phenotype (Amp^R , Tet^S), and constituted the desired <u>E</u>. <u>coli</u> Kl2 HBl01/pLRl transformants.

Example 6

- 5 Construction of Plasmids pEL107 and pEL105
 - A. BamHI Digestion of Plasmid pLR2 and Isolation of the ~1.6 kb Thiostrepton Resistance Conferring Fragment
- 10 About 50 µg. of plasmid pLR2 DNA, 10 µl reaction mix*, 10 µl. BSA (1 mg./ml.), 29 µl. water, and 1 μl. (4 units/μl) of BamHI restriction enzyme were incubated at 37°C. for 2 hours. After adding an equal volume of 4M ammonium acetate and 2.5 volumes of 95% ethanol, the mixture was cooled at -20°C. for about 18 15 hours to precipitate the DNA. The DNA precipitate was collected by centrifugation and then suspended in about 50 µl. of TE buffer. The desired ∿l.6 kb BamHI restriction fragment was isolated conventionally from the DNA suspension by gel electrophoresis. Following isolation, 20 the fragment was resuspended in about 20 ul. of TE buffer for subsequent ligation.

Reaction mix for BamHI restriction enzyme was prepared with the following composition.

^{1.5}M NaCl 60mM Tris-HCl, pH7.9 60mM MgCl

B. Partial BamHI Digestion of Plasmid pEL103

About 20 µg. of plasmid pEL103 DNA, 10 µl. reaction mix, 10 µl. BSA (l mg./ml.), 39 µl. water, and

15

20

1 μl. of BamHI restriction enzyme (prepared by diluting 2 μl. of enzyme in 8 μl. of water) were incubated at ambient temperature for about 15 minutes. After adding an equal volume of 4M ammonium acetate and 2 volumes of 95% ethanol, the mixture was cooled at -20°C. for about 18 hours to precipitate the DNA. The DNA precipitate was collected by centrifugation, rinsed in 70% ethanol, dried in vacuo, and then suspended in about 50 μl. of TE buffer.

10 C. Ligation

A mixture of about 20 μg. of the partially digested plasmid pEL103 DNA, 10 μg. of the ~1.6 kb BamHI restriction fragment of plasmid pLR2, 5 μl. ligation mix, 5 μl. BSA (1 mg./ml.), 10 μl. water, and 1 μl. T4 DNA ligase were incubated at about 16°C. for about 4 hours. After adding 40 μl. of 4M ammonium acetate and 200 μl. of cold ethanol, the mixture was cooled to -20°C. for about 18 hours to precipitate the DNA. The DNA precipitate was collected by centrifugation, washed with 70% ethanol, collected again, and then suspended in 50 μl. of medium P (Hopwood and Wright 1978, J. Molecular and General Genetics 162:307) for subsequent transformation.

Recombinant plasmids of various types result

depending upon which of the possible pEL103 restriction
fragments becomes ligated to the ~1.6 kb BamHI thiostrepton resistance conferring fragment. Ligation to
the ~2.8 kb BamHI restriction fragment of plasmid pEL103
results in the desired ~4.4 kb plasmids pEL107 and
pEL105. Recombinant plasmids of two orientations

10

15

25

30

result because the ~1.6 kb BamHI resistance conferring fragment can be oriented in either direction. A restriction site and functional map of each of plasmids pEL107 and pEL105 is presented in Figure 8 of the accompanying drawings.

Those skilled in the art will recognize and understand that the partial BamHI digestion of plasmid pEL103 produces a mixture of different restriction fragments that can be ligated with each other and also with one or more resistance conferring DNA fragments to produce several additional recombinant plasmids. Any additional plasmids that contain the ~2.8 kb BamHI origin of replication containing fragment can also be used to further exemplify the construction of the present invention. The aforementioned additional plasmids can be conventionally transformed into appropriate host cells and then identified by restriction enzyme and gel electrophoretic analysis.

Example 7

Construction of Streptomyces ambofaciens/pEL107 and S. ambofaciens/pEL105

Using about 20 µg. of the DNA from Example 6C and 1X10⁹ protoplasts (prepared according to Baltz, 1978, J. of General Microbiology 107:93) of Streptomyces ambofaciens, a strain deposited and made part of the permanent stock culture collection of the Northern Regional Research Laboratory, Peoria, Illinois, from which it is available to the public under the accession number NRRL 2420, the desired constructions were made in substantial accordance with the teaching of International Publica-

10

15

20

25

30

tion (of International Patent Application No. PCT/GB79/00095) No. WO79/01169, Example 2. The desired transformants were selected for thiostrepton resistance by overlaying the regenerating protoplasts with modified R2 medium (Baltz, 1978, J. of General Microbiology 107:93) top agar containing sufficient thiostrepton to bring the final plate concentration to 50 µg./ml. The resultant Streptomyces ambofaciens/pEL107 and S. ambofaciens/pEL105 thiostrepton resistant colonies were isolated according to known procedures, cultured, and then identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids.

Accordingly, vegetative inocula (10 ml.) of different isolated colonies are conventionally prepared by inoculating trypticase soy broth containing sufficient thiostrepton to bring the final concentration to 50 ug./ml. Several inocula are prepared and the following procedure performed until all the desired transformant types and constitutive plasmids are isolated. Thus, after cells are incubated at 30°C. until fully grown, 6 ml. of the cell containing broth are centrifuged. The resultant pellet is washed in TE buffer, pelleted again, and then suspended in 400 µl. 50mM Tris, pH 8.0. Next, about 80 µl. of .25M EDTA, 20 µl. RNase, and 100 µl. (10 mg./ml. in TE) lysozyme are added. After the mixture is incubated at 37°C. for about 15 minutes, about 10 µl. of 10% Triton X-100 and 150 µl. 5M NaCl are added followed by a final incubation at 60°C. for 15 minutes. The resultant lysate is centrifuged (15 minutes, 4°C., 15,000 rpm)

15

and then the supernatant is conventionally extracted twice with phenol, once with a chloroform-isoamyl alcohol solution (24:1), and then ethanol precipitated. The identity of the constitutive plasmids and thus the transformants is determined conventionally by restriction enzyme and gel electrophoretic analysis.

Example 8

Construction of Plasmids pEL109 and pEL110

A. Partial BamHI Digestion of Plasmid pLR1 and Isolation of the ~3.4 kb Neomycin Resistance Conferring Fragment

The desired partial digestion and isolation are carried out in substantial accordance with the teaching of Example 6B. The ~3.4 kb BamHI restriction fragment is suspended in about 20 µl. of TE buffer for subsequent ligation.

B. Ligation

- The ∿3.4 kb BamHI neomycin resistance conferring restriction fragment is ligated to partially

 BamHI digested plasmid pEL103 (prepared in Example 6B)

 in substantial accordance with the teaching of Example

 6C.
- Recombinant plasmids of various types result depending upon which of the possible pEL103 restriction fragments becomes ligated to the ~3.4 kb BamHI neomycin resistance conferring fragment. Ligation to the ~2.8 kb BamHI restriction fragment of plasmid pEL103 results in the desired ~6.2 kb plasmids pEL109 and pEL110. Recom-

10

15

30

binant plasmids of two orientations result because the $^{3.4}$ kb BamHI resistance conferring fragment can be oriented in either direction. A restriction site and functional map of each of plasmids pEL109 and pEL110 is presented in Figure 9 of the accompanying drawings.

Those skilled in the art will recognize and understand, as described in Example 6C, that additional recombinant plasmids containing the ~2.8 kb BamHI origin of replication containing fragment can be generated by the above procedure. These plasmids can be used to further exemplify the construction of the present invention. The aforementioned additional plasmids can be conventionally transformed and then identified by restriction enzyme and gel electrophoretic analysis.

Example 9

Construction of Streptomyces ambofaciens/pEL109

and S. ambofaciens/pEL110

using about 20 µg. of the DNA from Example 8
and 1X10⁸ protoplasts of Streptomyces ambofaciens (NRRL
No. 2420), the desired constructions are made in
substantial accordance with the teaching of Internation—
al Publication (of International Patent Application No.
PCT/GB79/00095) No. W079/01169, Example 2. The desired
transformants are selected for neomycin resistance by
overlaying the regenerating protoplasts with modified
R2 medium top agar containing sufficient neomycin* to
bring the final plate concentration to 1 µg./ml.

The resultant <u>Streptomyces ambofaciens/pEL109</u> and <u>S. ambofaciens/pEL110</u> neomycin resistant colonies

X-5863 -38-

are isolated according to known procedures cultured, and then identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids. The identity of the constitutive plasmids and thus the transformants is determined in substantial accordance with the teaching of Example 7 except that neomycin (1 µg./ml.), rather than thiostrepton, is added to the trypticase soy broth.

Antibiotic neomycin can be obtained from Sigma, St. Louis, Missouri.

Example 10

Construction of Plasmids pEL113 and pEL114

Plasmid pEL107 is isolated from Streptomyces 15 ambofaciens/pEL107 (prepared in Example 7) according to the procedure of Example 1 and then is partially digested with BamHI restriction enzyme in substantial accordance with the teaching of Example 6B. partial BamHI digest is then ligated, in substantial 20 accordance with the teaching of Example 6C, with the ∿3.4 kb neomycin resistance conferring BamHI fragment (prepared in Example 8A) of plasmid pLRl to produce the desired plasmids. The insertional isomers of plasmids pEL113 and pEL114 are also produced since plasmid 25 pEL107 has more than a single BamHI restriction site for the insertion of the neomycin resistance fragment. Recombinant plasmids of two orientations result because the ~3.4 kb BamHI neomycin resistance conferring fragment can be oriented in either direction. A restriction

site and functional map of each of plasmids pEL113 and pEL114 is presented in Figure 10 of the accompanying drawings.

Example 11

5 Construction of Streptomyces ambofaciens/pEL113 and S. ambofaciens/pEL114

Using 20 µg. of the DNA from Example 10 and 1X10⁸ protoplasts of <u>Streptomyces</u> <u>ambofaciens</u> (NRRL No. 10 2420), the desired constructions are made in substantial accordance with the teaching of International Publication (of International Patent Application No. PCT/GB79/00095) No. W079/01169, Example 2. The desired transformants are selected first for thiostrepton resistance and then 15 for neomycin resistance by the methods described in Examples 7 and 9 above. The resultant Streptomyces ambofaciens/pEL113 and S. ambofaciens/pEL114 thiostrepton and neomycin resistant colonies are isolated according to known procedures, cultured, and then 20 identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids. The identity of the constitutive plasmids and thus the transformants is determined in substantial accordance with the teaching of Example 7 except that neomycin (1 µg./ml.) and 25 thiostrepton (50 µg./ml.) are both added to the trypti-

case soy broth.

Example 12

Construction of Plasmids pEL115 and pEL116

The desired plasmids are constructed in substantial accordance with the teaching of Example 10 with the exception that plasmid pEL105, rather than plasmid pEL107, is used in the partial BamHI digestion. The insertional isomers of plasmids pEL115 and pEL116 are also produced since plasmid pEL105 has more than a single BamHI restriction site for the insertion of 10 the neomycin resistance fragment. Recombinant plasmids of two orientations result because the ~3.4 kb BamHI neomycin resistance conferring fragment can be oriented in either direction. A restriction site and functional map of each of plasmids pELl15 and pELl16 is presented in Figure 11 of the accompanying drawings.

Example 13

Construction of Streptomyces ambofaciens/pEL115 and

S. ambofaciens/pEL116

20

25

15

Using 20 µg, of the DNA from Example 12, the desired constructions are made in substantial accordance with the teaching of Example 11. The resultant Streptomyces ambofaciens/pEL115 and S. ambofaciens/ pEL116 thiostrepton and neomycin resistant colonies are isolated according to known procedures, cultured, and then identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids in substantial accordance with the teaching of Example 11.

Example 14

Construction of Plasmids pEL121 and pEL122

The desired plasmids are obtained by ligating a partial BamHI digest of plasmid pEL107 onto BamHI 5 digested plasmid pBR322 in substantial accordance with the ligation procedure of Example 6C. Plasmid pEL107 is isolated from Streptomyces ambofaciens/pEL107 (prepared in Example 7) in substantial accordance with the teaching of Example 1 and then partially BamHI 10 digested according to the procedure of Example 6B. The BamHI digested plasmid pBR322 is prepared in substantial accordance with the procedure of Example 2B with the exception that BamHI, rather than HindIII, restriction enzyme is used. The desired plasmid DNA is col-15 lected by centrifugation, washed with 70% ethanol, dried in vacuo, and then suspended in 50 pl. of TE buffer. In addition, the insertional isomers of plasmids pEL121 and pEL122 are also produced since plasmid pEL107 has more than a single BamHI restriction site 20 for the insertion of the restricted plasmid pBR322. Recombinant plasmids of two orientations result because the restricted plasmid pBR322 can be oriented in either direction. A restriction site and functional map of each of plasmids pEL121 and pEL122 is presented in Figure 12 of the accompanying drawings.

Example 15

Construction of E. coli K12 HB101/pEL121 and E. coli K12 HB101/pEL122

stantial accordance with the teaching of Example 3 with the exception that plasmids pEL121 and pEL122, rather than plasmid pLR2, are used for the transformation.

Surviving colonies are first selected, tested for the expected phenotype (Amp^R, Tet^S), and then conventionally identified as the desired E. coli K12 HB101/pEL121 and E. coli K12 HB101/pEL122 transformants by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids.

Example 16

Isolation of Plasmid pHI-16

A. Culture of <u>Bacillus</u> <u>subtilis</u> MIl12/pHI-16

A vegetative culture of <u>Bacillus subtilis</u>

MI112/pHI-16 (NRRL B-12597) was conventionally prepared
by plating on PAB agar (PAB* [Penassay broth] containing agar at 15 g./l. and chloramphenicol at 10 μg./ml.).

After the inoculated plate was incubated at 37°C. for about 18 hours, a single colony was selected and used for inoculating 500 ml. of sterilized PAB medium with 10 μg./ml. chloramphenicol. The resultant inoculated broth was incubated at 37°C. for about 18 hours afterwhich the resultant <u>Bacillus subtilis MI112/pHI-16</u> cells were ready for harvest and subsequent isolation of plasmid DNA.

^{*}PAB can be obtained from Difco Laboratories, Detroit Michigan.

B. Plasmid Isolation

About 10 g. (wet wgt) of Bacillus subtilis MI112/pHI-16 cells were first harvested by centrifugation (10 minutes, 4°C., 10,000 rpm), then washed in about 50 ml. TES, and finally collected again by centrifugation. About 20 ml. TE buffer with 25% sucrose were added to the pellet followed by about 10 mg. of lysozyme in 250 µl. water. The mixture was then incubated at 37°C. for about 30 minutes afterwhich about 10 100 units of RNase were added. The resultant mixture was incubated at 37°C. for 30 minutes and then, upon being made 1% and 1M with respect to SDS (sodium dodecyl sulfate) and sodium chloride respectively, the mixture was cooled in an ice bath for about 3 hours. After the lysate was centrifuged (30 minutes, 4°C., 19,000 rpm), the supernatent was adjusted to 31.8 ml. with TE, followed by addition of 28.7 g. of cesium chloride and .4 ml. (10 mg./ml.) of ethidium bromide. A cesium chloride gradient was established by centrifuging at 49,500 rpm for 16 hours. The plasmid band 20 was collected and centrifuged at 55,000 rpm for 16 hours, then collected again, extracted thrice with equal volumes of isoamyl alcohol, dialyzed against dilute TE, ethanol precipitated, and resuspended in 400 μl. of TE. The resultant plasmid pHI-16 DNA was 25 stored at 4°C. for future use.

The kanamycin resistance gene is contained within the ∿.74 kb HpaII fragment of plasmid pHI-16. Therefore, treatment with HpaII restriction enzyme followed by ligation results in a ∿3.9 kb plasmid,

designated herein as pHI-18, which lacks the kanamycin resistance gene. A detailed procedure for constructing plasmid pHI-18 is described below.

Example 17

- 5 Construction of Plasmid pHI-18
 - A. Partial HpaII Digestion of Plasmid pHI-16

About 5 μl. (2.5 μg.) of plasmid pHI-16 DNA, l μl. (2 mg./ml.) BSA, 37 μl. water, 2 μl. of HpaII

10 (containing 2 New England Bio Labs units) restriction enzyme, and 5 μl. reaction mix* were incubated at 37°C. for l hour. After the reaction was terminated by heating at 65°C. for 10 minutes, the DNA was precipitated by adding 2 volumes of 95% ethanol. The resultant DNA precipitate was washed in 70% ethanol, dried in vacuo, suspended in 5 μl. of TE buffer, and stored at 4°C. for future use.

30

About 5 μ l. of plasmid pHI-16 <u>Hpa</u>II digest (prepared in Example 17A), 2 μ l. T4 DNA ligase, and 43 μ l. ligation mix* were incubated at about 16°C. for about 18 hours. The reaction was terminated by the

Reaction mix for <u>Hpa</u>II restriction enzyme was prepared with the following composition.

⁶⁰mM KCl

¹⁰⁰mM Tris-HCl, pH 7.4

¹⁰⁰mM MgCl₂

¹⁰mM Dithiothreitol

²⁵ B. Ligation of Plasmid pHI-16 HpaII Digest

addition of about 5 μ l. of 3M sodium acetate and 150 μ l. of 95% ethanol. The desired DNA precipitate was washed in 70% ethanol, dried in vacuo, suspended in 10 μ l. of TE buffer, and stored at 4°C. for future use.

5

30

10 6.6 mM MgCl₂

4 mM ATP

Example 18

Construction of Bacillus subtilis MI112/pHI-18

Bacillus subtilis MIll2 can be obtained by conventionally culturing B. subtilis MIll2/pHI-16

(NRRL B-12597) in the absence of chloramphenicol. The B. subtilis MIll2/pHI-16 cells spontaneously lose the pHI-16 plasmid under the aforementioned culture conditions thus generating the desired chloramphenicol sensitive B. subtilis MIll2 strain. Those skilled in the art will recognize and understand that sensitivity to chloramphenicol can be employed for testing and insuring that only B. subtilis MIll2 cells that lack the plasmid are selected and used in the Bacillus transformation procedures herein disclosed.

About 50 ml. of sterile PAB was inoculated with Bacillus subtilis MIll2 and incubated at 37° C. until a cell density of 2 x 10^{8} cells/ml. was reached. The cells were then protoplasted, using sterile technique, by pelleting and then resuspending the cells in

^{*}Ligation mix was prepared with the following composition.

⁶⁶ mM Tris-HCl, pH 7.8

¹⁰ mM Dithiothreitol

about 5 ml. of SMMP (equal volumes of each of 4x PAB and a solution comprising 1.0M sucrose, .04M maleic acid, and .04M MgCl2, pH adjusted to 6.5 with NaOH). Next, about 250 µl. of lysozyme (20 mg./ml. in SMM [0.5M sucrose, .02M maleic acid, and .02M MgCl, pH 5 adjusted to 6.5 with NaOH]) were added using filter sterilization. The cells were incubated with gentle shaking at 37°C. for about 2 hours. The resultant protoplasts were pelleted, washed with 5 ml. SMMP, and then resuspended in 5 ml. SMMP. Following centrifu-10 gation (25°C., 12 minutes, 2,600 rpm), about .1 ml. of the protoplasts were transformed by adding about 20 ul. of a 1:1 mixture comprising plasmid pHI-18 DNA (prepared in Example 17) and 2X SMM. About 1.5 ml. of PEG solution (40 g. PEG 6000 [polyethyleneglycol], 50 ml. 15 2X SMM, and water to 100 ml.) were then immediately added and, after about 2 minutes, 5 ml. of SMMP were also added. Next, the protoplasts were pelleted, suspended in 1 ml. of SMMP, and incubated at 30°C. with gentle shaking for about 2 hours. Aliquots of the thus 20 prepared suspension were plated on chloramphenicol containing DM3 regeneration medium which per liter had the following composition.

91 g. D-mannitol in 555 ml. deionized water containing 12 g. agar

10% Casamino acids 50 ml.

10% Yeast extract 50 ml.

20% Glucose 25 ml.

5% Dipotassium phosphate 100 ml.

1M MgCl, 20 ml.

30 10% Gelatin 200 ml.

10 mg Chloramphenicol

The D-mannitol, casamino acids and yeast extract were autoclaved together. The gelatin was added immediately after autoclaving and the remaining ingredients were added after the mixture had cooled. The medium had a final chloramphenicol concentration of 10 µg./ml.

The resultant chloramphenicol resistant colonies were tested for kanamycin sensitivity. A chloramphenicol resistant and kanamycin sensitive colony was selected as the desired <u>Bacillus subtilis</u> MIll2/pHI-18 strain. The strain was cultured and the identity further confirmed by conventional restriction enzyme and gel electrophoretic analysis of the constitutive plasmid.

Example 19

15 Construction of Plasmids pBS1 and pBS3

5

10

30

A. Partial BamHI Digestion of Plasmid pEL105

About 10 μl. (5 μg.) of plasmid pEL105 (conventionally isolated from Streptomyces ambofaciens/

pEL105 [prepared in Example 7] in substantial accordance with the teaching of Example 1), 2 μl. BSA (1 mg./ml.), 29 μl. water, 1 μl. of BamHI (diluted 1:4 with water) restriction enzyme, and 5 μl. reaction mix* were incubated at 25°C. for 15 minutes. The reaction was terminated by the addition of about 50 μl. of 4M ammonium acetate and 300 μl. of 95% ethanol. After cooling at -20°C. for about 2 hours, the resultant DNA precipitate was collected by centrifugation, washed twice in 70% ethanol, dried in vacuo, and then suspended

in about 10 μ l. of TE buffer. Because plasmid pEL105 has two BamHI restriction sites, a mixture of different fragments results.

*Reaction mix for BamHI restriction enzyme was prepared with the following composition.

1.5M NaCl

60mM Tris-HCl, pH 7.9

60mM MgCl₂

B. BamHI Digestion of Plasmid pHI-18

10

About 5 μl. (5 μg.) of plasmid pHI-18, 2 μl.

BSA (1 mg./ml.), 9 μl. water, 1 μl. of BamHI (4 units/μl.)

restriction enzyme, and 1.5 μl. reaction mix were

incubated at 37°C. for about 2 hours. After adding an

equal volume of 4M ammonium acetate and 2.5 volumes of

95% ethanol, the mixture was cooled at -20°C. for about

18 hours to precipitate the DNA. The DNA precipitate

was collected by centrifugation, washed in 70% ethanol,

and then suspended in about 10 μl. of TE buffer.

20 C. Ligation

About 5 µl. of BamHI digested plasmid pHI-18 (prepared in Example 18B), 8 µl. of plasmid pEL105

BamHI partial digest (prepared in Example 18A), 27 µl.

water, 5 µl. (4mM) ATP, 5 µl. ligation mix, and 2 µl.

T4 DNA ligase were incubated at 16°C. for about 18 hours. The reaction was terminated by the addition of 50 µl. 4M ammonium acetate and 200 µl. of 95% ethanol. After incubation at -20°C. for about 2 hours, the desired plasmid pBS1 and pBS3 DNA precipitate was

collected by centrifugation, washed in 70% ethanol, dried in vacuo, suspended in 10 µl. of TE buffer, and stored at 4°C. for future use.

Since plasmid pEL105 has two BamHI restriction sites, a partial BamHI digest results in two ~4.4 kb BamHI fragments. Therefore, the insertional isomers of plasmids pBS1 and pBS3 are also produced by the above procedure. Recombinant plasmids of two orientations result because the BamHI restricted DNA can be ligated in either direction. A restriction site and functional 10 map of each of plasmids pBSl and pBS3 is presented in Figure 6 of the accompanying drawings.

Example 20

Construction of Plasmids pBS2 and pBS4

15

The desired constructions are made in substantial accordance with the teaching of Example 19A-C except that BamHI digested plasmid pHI-16, rather than plasmid pHI-18, is used.

20

Since plasmid pEL105 has two BamHI restriction sites, a partial BamHI digest results in two ~4.4 kb BamHI fragments. Therefore, the insertional isomers of plasmids pBS2 and pBS4 are also produced by the above procedure. Recombinant plasmids of two orientations result because the BamHI restricted DNA can be ligated in either direction. A restriction site and functional map of each of plasmids pBS2 and pBS4 is presented in Figure 7 of the accompanying drawings.

20

25

Example 21

Construction of Plasmids pBS5 and pBS6

The desired constructions are made in substantial accordance with the teaching of Example 19A-C except that plasmids pEL110 and pHI-16, rather than plasmids pEL105 and pHI-18, are used. Plasmid pEL110 is conventionally isolated from Streptomyces ambofaciens/pEL110 (prepared in Example 9) in substantial accordance with the teaching of Example 1.

Since plasmid pEL110 has two BamHI restriction sites, a partial BamHI digest results in two v6.2 kb

BamHI fragments. Therefore, the insertional isomers of plasmids pBS5 and pBS6 are also produced by the above procedure. Recombinant plasmids of two orientations result because the BamHI restricted DNA can be ligated in either direction. A restriction site and functional map of each of plasmids pBS5 and pBS6 is presented in Figure 13 of the accompanying drawings.

Example 22

Construction of Plasmids pBS7 and pBS8

The desired constructions are made in substantial accordance with the teaching of Example 19A-C except that plasmids pEL113 and pHI-16, rather than plasmids pEL105 and pHI-18, are used. Plasmid pEL113 is conventionally isolated from Streptomyces ambofaciens/pEL113 (prepared in Example 11) in substantial accordance with the teaching of Example 1.

Since plasmid pEL113 has three <u>Bam</u>HI re-30 striction sites, a partial BamHI digest results in

20

25

30

three ~7.8 kb BamHI fragments. Therefore, the insertional isomers of plasmids pBS7 and pBS8 are also produced by the above procedure. Recombinant plasmids of two orientations result because the BamHI restricted DNA can be ligated in either direction. A restriction site and functional map of each of plasmids pBS7 and pBS8 is presented in Figure 14 of the accompanying drawings.

Example 23

10 Construction of Plasmids pBS9 and pBS10

The desired constructions are made in substantial accordance with the teaching of Example 19A-C except that plasmids pEL122 and pHI-16, rather than plasmids pEL105 and pHI-18, are used. Plasmid pEL122 is isolated from E. coli K12 HB101/pEL122 (prepared in Example 15) according to known procedures.

Since plasmid pEL122 has three BamHI restriction sites, a partial BamHI digest results in three v8.7 kb BamHI fragments. Therefore, the insertional isomers of plasmids pBS9 and pBS10 are also produced by the above procedure. Recombinant plasmids of two orientations result because the BamHI restricted DNA can be ligated in either direction. A restriction site and functional map of each of plasmids pBS9 and pBS10 is presented in Figure 15 of the accompanying drawings.

Example 24

Construction of Bacillus subtilis MI112/pBS1 and

Bacillus subtilis MIll2/pBS3

The desired constructions are made in substantial accordance with the teaching of Example 18

10

15

20

25

30

except that DNA comprising plasmids pBS1 and pBS3 (prepared in Example 19), rather than plasmid pHI-18, is used. The resultant <u>Bacillus subtilis MIll2/pBS1</u> and <u>Bacillus subtilis MIll2/pBS3</u> chloramphenicol resistant and kanamycin sensitive transformant colonies are isolated according to known procedures, cultured, and then conventionally identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids.

Example 25

Construction of <u>Bacillus</u> <u>subtilis</u> MI112/pBS2 and <u>Bacillus</u> <u>subtilis</u> MI112/pBS4

The desired constructions are made in substantial accordance with the teaching of Example 18 except that DNA comprising plasmids pBS2 and pBS4 (prepared in Example 20), rather than plasmid pHI-18, is used. The resultant chloramphenicol resistant colonies were selected and conventionally tested for kanamycin resistance. The chloramphenicol and kanamycin resistant Bacillus subtilis MIll2/pBS2 and B. subtilis MIll2/pBS4 transformants are isolated according to known procedures, cultured, and then conventionally identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids.

Example 26

Construction of Bacillus subtilis MIll2/pBS5 and Bacillus subtilis MIll2/pBS6

The desired constructions are made in substantial accordance with the teaching of Example 18

10

except that DNA comprising plasmids pBS5 and pBS6 (prepared in Example 21), rather than plasmid pHI-18, is used. The resultant chloramphenicol resistant colonies are selected and conventionally tested for kanamycin resistance. The chloramphenicol and kanamycin resistant Bacillus subtilis M112/pBS5 and B. subtilis MI112/pBS6 transformants are isolated according to known procedures, cultured, and then conventionally identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids.

Example 27

Construction of Bacillus subtilis MI112/pBS7 and Bacillus subtilis MI112/pBS8

- stantial accordance with the teaching of Example 18
 except that DNA comprising plasmids pBS7 and pBS8
 (prepared in Example 22), rather than plasmid pHI-18,
 is used. The resultant chloramphenical resistant
 colonies are selected and conventionally tested for
 kanamycin resistance. The chloramphenical and kanamycin
 resistant Bacillus subtilis MIll2/pBS7 and B. subtilis
 M1l2/pBS8 transformants are selected according to known
 procedures, cultured, and then conventionally identified by restriction enzyme and gel electrophoretic
 analysis of the constitutive plasmids.
- 30

Example 28

Construction of Bacillus subtilis MIll2/pBS9 and Bacillus subtilis MIll2/pBS10

5 The desired constructions are made in substantial accordance with the teaching of Example 18 except that DNA comprising plasmids pBS9 and pBS10 (prepared in Example 23), rather than plasmid pHI-18, is used. The resultant chloramphenical resistant colonies are selected and conventionally tested for kanamycin resistance. The putative chloramphenical and kanamycin resistant Bacillus subtilis Ml12/pBS9 and B. subtilis Ml12/pBS10 transformants are selected according to known procedures, cultured, and then conventionally identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids.

Example 29

Construction of Streptomyces ambofaciens/pBSl and

20 S. ambofaciens/pBS3

25

30

Using about 20 µg. of the DNA from Example 19 and 1X10⁸ protoplasts of Streptomyces ambofaciens (NRRL No. 2420), the desired constructions are made in substantial accordance with the teaching of International Publication (of International Patent Application No. PCT/GB79/00095) No. W079/01169, Example 2. The desired transformants are selected for thiostrepton resistance by overlaying the regenerating protoplasts with modified R2 medium top agar containing sufficient thiostrepton to bring the final plate concentration to 50 µg./ml.

10

The resultant <u>Streptomyces ambofaciens/pBS1</u> and <u>S. ambofaciens/pBS3</u> thiostepton resistant colonies are isolated according to known procedures, cultured, and then identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids in substantial accordance with the teaching of Example 7.

Example 30

Construction of Streptomyces ambofaciens/pBS2 and

S. ambofaciens/pBS4

Using about 20 μg. of the DNA from Example 20 and 1X10⁸ protoplasts of Streptomyces ambofaciens (NRRL No. 2420), the desired constructions are made in substantial accordance with the teaching of International Publication (of International Patent Application No. PCT/GB79/00095) No. W079/01169, Example 2. The desired transformants are selected for thiostrepton resistance by overlaying the regenerating protoplasts with modified R2 medium top agar containing sufficient thiostrepton to bring the final plate concentration to 50 μg./ml.

The resultant <u>Streptomyces ambofaciens/pBS2</u> resistant colonies are isolated according to known procedures, cultured, and then identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids in substantial accordance with the teaching of Example 7.

Example 31

Construction of Streptomyces ambofaciens/pBS5 and

S. ambofaciens/pBS6

Using about 20 μg. of the DNA from Example 21 and 1X10⁸ protoplasts of <u>Streptomyces ambofaciens</u> (NRRL No. 2420), the desired constructions are made in substantial accordance with the teaching of International Publication (of International Patent Application No. PCT/GB79/00095) No. W079/01169, Example 2. The desired transformants are selected for neomycin resistance by overlaying the regenerating protoplasts with modified R2 medium top agar containing sufficient neomycin to bring the final plate concentration to 1 μg./ml.

The resultant <u>Streptomyces ambofaciens/pBS5</u> and <u>S. ambofaciens/pBS6</u> neomycin resistant colonies are isolated according to known procedures, cultured, and then identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids in substantial accordance with Example 9.

Example 32

Construction of Streptomyces ambofaciens/pBS7 and

S. ambofaciens/pBS8

25

30

20

15

Using about 20 µg. of the DNA from Example 22 and 1X10⁸ protoplasts of <u>Streptomyces ambofaciens</u> (NRRL No. 2420), the desired constructions are made in substantial accordance with the teaching of International Publication (of International Patent Application No.

15

20

25

30

PCT/GB79/00095) No. W079/01169, Example 2. The desired transformants are selected first for thiostrepton resistance and then for neomycin resistance by the methods described in Examples 7 and 9 above.

The resultant Streptomyces ambofaciens/pBS7 and S. ambofaciens/pBS8 thiostrepton and neomycin resistant colonies are isolated according to known procedures, cultured, and then identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids in substantial accordance with the 10 teaching of Example 11.

Example 33

Construction of Streptomyces ambofaciens/pBS9 and

S. ambofaciens/pBS10

Using about 20 µg. of the DNA from Example 23 and 1x10⁸ protoplasts of Streptomyces ambofaciens (NRRL No. 2420), the desired constructions are made in substantial accordance with the teaching of International Publication (of International Patent Application No. PCT/GB79/00095) No. W079/01169, Example 2. The desired transformants are selected for thiostrepton resistance by overlaying the regenerating protoplasts with modified R2 medium top agar containing sufficient thiostrepton to bring the final plate concentration to 50 μg./ml.

The resultant Streptomyces ambofaciens/pBS9 and S. ambofaciens/pBS10 thiostrepton resistant colonies are isolated according to known procedures, cultured,

x-5863 -58- · 0085548

and then identified by restriction enzyme and gel electrophoretic analysis of the constitutive plasmids in substantial accordance with the teaching of Example 7.

Example 34

5 Construction of E. coli K12 HB101/pBS9 and E. coli K12 HB101/pBS10

stantial accordance with the teaching of Example 3 with
the exception that DNA prepared in Example 23, rather
than plasmid pLR2, is used for the transformation.
Surviving colonies are first selected, tested for the
expected phenotype (Amp^R, Tet^S), and then conventionally
identified as the desired <u>E. coli</u> K12 HB101/pBS9 and <u>E.
coli</u> K12 HB101/pBS10 transformants by restriction
enzyme and gel electrophoretic analysis of the constitutive plasmids.

Representative plasmids and transformants that can be constructed according to the foregoing 20 teaching are respectively shown in Tables I and II below. For purposes of the present invention, the pBS plasmids named in Table 1 also include any insertional isomers resulting from a particular construction.

Table 1

Representative Plasmids

	Example					struction
	No.	Plasmid 1	Name*	Ligation of		BamHI Fragments
5	35	pBSll and	pBS12	pHI-16	and	pEL107
	36	pBS13 and	pBS14	pHI-16	and	pEL109
	37 .	pBS15 and	pBS16	pHI-16	and	pEL114
10	38	pBS17 and	pBS18	pHI-16	and	pEL115
	39	pBS19 and	pBS20	pHI-16	and	pEL116
	40	pBS21 and	pBS22	pHI-16	and	pEL121
	41	pBS23 and	pBS24	pHI-18	and	pEL107
	42	pBS25 and	pBS26	PHI-18	and	pEL109
	43	pBS27 and	pBS28	pHI-18	and	pEL110
15	44	pBS29 and	pBS30	pHI-18	and	pEL113
	45	pBS31 and	pBS32	pHI-18	and	pEL114
	46	pBS33 and	pBS34	pHI-18	anđ	pEL115
	47	pBS35 and	pBS36	pHI-18	and	pEL116
20	48	pBS37 and	pBS38	PHI-18	and	pEL121
	49	pBS39 and	pBS40	pHI-18	and	pEL122
	50	pBS41 and	pBS42	pBR322	and	pBS13
	51	pBS43 and	pBS44	pBR322	and	pBS18
	52	pBS45 and	pBS46	pBR322	and	pBS7
	53	pBS47 and	pBS48	pBR322	and	pBS27

Table I continued

	Example		Construction
	No.	Plasmid Name*	Ligation of BamHI Fragments
5	54	pBS49 and pBS50	pBR322 and pBS2
	55 -	pBS51 and pBS52	pBR322 and pBS1
	56	pBS53 and pBS54	pBR328 and pBS2
	57	pBS55 and pBS56	pBR328 and pBS1
		-	Ligation of EcoRI Fragments
10	58	pBS57 and pBS58	pBR328 and pBS2
	59	pBS59 and pBS60	pBR328 and pBS1

The first named plasmid, in Examples 35-49 above, designates the orientation in which the pEL thiostrepton or neomycin resistance gene is opposite (rather than adjacent to) the pHI kanamycin or chloramphenicol resistance gene. The second plasmid designates the reverse orientation.

The first named plasmid, in Examples 50-57 above, designates the orientation in which the pHI PvuII site is adjacent to the pBR HindIII site. The second plasmid designates the reverse orientation.

The first named plasmid, in Examples 58-59 above, designates the orientation in which the pHI XbaI site is adjacent to the pBR PvuII site. The second plasmid designates the reverse orientation.

Table II

Representative Transformants

- 1. Bacillus R/pR¹ wherein R is <u>subtilis</u>, <u>subtilis</u>
 MI112, RUB331, <u>thuringiensis</u>, <u>megaterium</u>, <u>cereus</u>,

 <u>popillae</u>, <u>laterosporus</u>, or <u>amyloliquifaciens</u>

 and R¹ independently is any pBS plasmid herein

 named in Examples 35-59 of Table 1.
- 2. Streptomyces R²/pR¹ wherein R² is ambofaciens,

 fradiae, coelicolor, aureofaciens, granuloruber,

 or lividans and R¹ independently is as defined above.
- 3. E. coli R³/pR⁴ wherein R³ is Kl2, Kl2 HB101, Kl2
 RV308, C600R_k-M_k-, or Kl2 C600 and R⁴ independently
 is any pBS plasmid herein named in Examples 48-59
 cf Table 1.

20

25.

10

15

20

25

CLAIMS

- 1. A multifunctional recombinant DNA cloning vector comprising:
 - a) two or more functionally different origins of replication that are independently selected from the group consisting of any origin of replication that is functional in Streptomyces, any origin of replication that is functional in Bacillus, and any origin of replication that is functional in E. coli, and
 - b) one or more DNA segments that confer resistance to at least one antibiotic when transformed into a sensitive host cell in which an origin of replication comprising said vector is functional, said host cells being susceptible to transformation, cell division, and culture,

subject to the limitation that when said vector is limited to two functionally different origins of replication, neither of the origins of replication is functional in E. coli.

- 2. The vector of claim 1 wherein the origins of replication that are functional in Streptomyces,

 Bacillus, and E. coli are respectively a restriction fragment of plasmid pEL103, a restriction fragment of plasmid pHI-16, and a restriction fragment of an E. coli plasmid.
- 3. The vector of claim 1 or 2 wherein the origins of replication in the vector are a restriction fragment of plasmid pELl03 and a restriction fragment of plasmid pHI-16.

10

- 4. The vector of claim 2 or 3 wherein the origin of replication containing restriction fragment of plasmid pEL103 is the √2.8 kb BamHI fragment.
- 5. The vector of claim 2 in which the \underline{E} . coli plasmid is plasmid pBR322 or pBR328.
- 6. The vector of any of claims 1 to 4 wherein the ∿1.6 kb BamHI restriction fragment of plasmid pLR2 conveys resistance to thiostrepton.
- 7. The vector of any of claims 1 to 4 wherein the ~ 3.4 kb BamHI restriction fragment of plasmid pLR1 conveys resistance to neomycin.
 - 8. The vector of any of claims 1 to 4 wherein the ∿4.6 kb BamHI restriction fragment of plasmid pHI-16 conveys resistance to chloramphenicol.
- 9. The vector of any of claims 1 to 4

 15 wherein the ∿3.9 kb BamHI restriction fragment of plasmid pHI-18 conveys resistance to kanamycin.
 - 10. The vector of any of claims 1 to 9 which is plasmid pBS1, pBS2, pBS3, pBS4, pBS5, pBS6, pBS7, pBS8, pBS9, pBS10, pBS11, pBS12, pBS13, pBS14, pBS15, pBS16, pBS17, pBS18, pBS19, pBS20, pBS21, pBS22,
- pBS23, pBS24, pBS25, pBS26, pBS27, pBS28, pBS29, pBS30, pBS31, pBS32, pBS33, pBS34, pBS35, pBS36, pBS37, pBS38, pBS39, pBS40, pBS41, pBS42, pBS43, pBS44, pBS45, pBS46, pBS47, pBS48, pBS49, pBS50, pBS51, pBS52, pBS53, pBS54,
- pBS1, pBS2, pBS3, pBS4, pBS5, pBS6, pBS7 or pBS8.

pBS55, pBS56, pBS57, pBS58, pBS59, or pBS60.

12. The vector of claim 10 which is pBS9, pBS10, pBS49 or pBS60.

30

10

15

20

- comprising the recombinant DNA cloning vector of any of claims 1 to 11 subject to the limitation that said host cell, prior to transformation, is sensitive to an antibiotic for which resistance is conferred by a DNA segment comprising said vector, and further that at least one origin of replication comprising said vector is functional in said host cell.
- 14. The host cell of claim 13 which is a Streptomyces, preferably of species ambofaciens, coelicolor or fradiae.
- 15. The host cell of claim 13 which is a Bacillus, preferably of species subtilis.
- 16. The host cell of claim 13 which is an
 E. coli comprising plasmid pBS9, pBS49 or pBS60.
- 17. The host cell of claim 16 which is E. coli K12 HB101/pBS9.
- 18. A process for preparing a multifunctional recombinant cloning vector which comprises ligating at least two of
 - a restriction fragment comprising an origin of replication functional in <u>Streptomyces</u> and one or more DNA segments that confer resistance to at least one antibiotic when transformed into <u>Streptomyces</u>,
- 2) a restriction fragment comprising an origin of replication functional in <u>Bacillus</u> and one or more DNA segments that confer resistance to at least one antibiotic when transformed into <u>Bacillus</u>

a restriction fragment comprising an origin of replication functional in <u>E</u>.

<u>coli</u> and one or more DNA segments that confer resistance to at least one antibiotic when transformed into E. coli

subject to the limitation that when said vector is limited to two functionally different origins of replication, neither of the origins of replication is functional in E. coli.

- a cloning vector functional in <u>Streptomyces</u>, <u>Bacillus</u> and <u>E. coli</u> wherein the origins of replication in the vector are a restriction fragment of plasmid pEL103, a restriction fragment of plasmid pHI16, and a restriction fragment of plasmid pBR322.
- 20. A recombinant DNA cloning vector which is plasmid pHI16 or pHI18.
 - 21. A process for isolating plasmid pHI16 which comprises lysing the cells of a culture of <u>Bacillus subtilis MI112/pHI16</u> and separating plasmid from the lysate.
 - 22. The process of claim 21 in which the cells are treated with lysozyme and the plasmid is separated by centrifugation.
- 23. A process for preparing plasmid pHI18
 25 which comprises self ligating a partial <u>Hpa</u>II digest of plasmid pHI16.

FIG. |
Restriction Site and Functional Map
of Plasmid pEL103

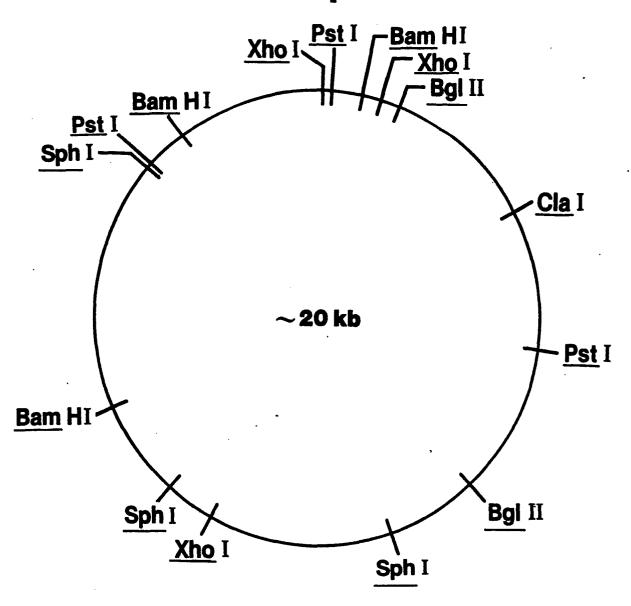


FIG. 2

Restriction Site and Functional Map
of Plasmid pLR1

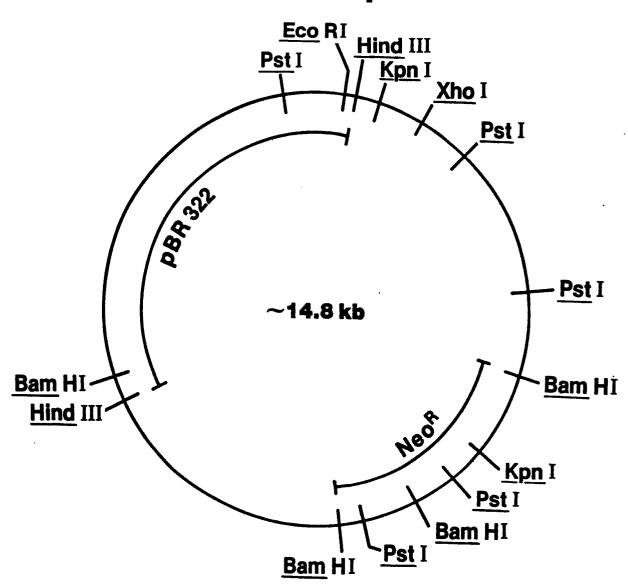


FIG. 3

Restriction Site and Functional Map
of Plasmid pLR2

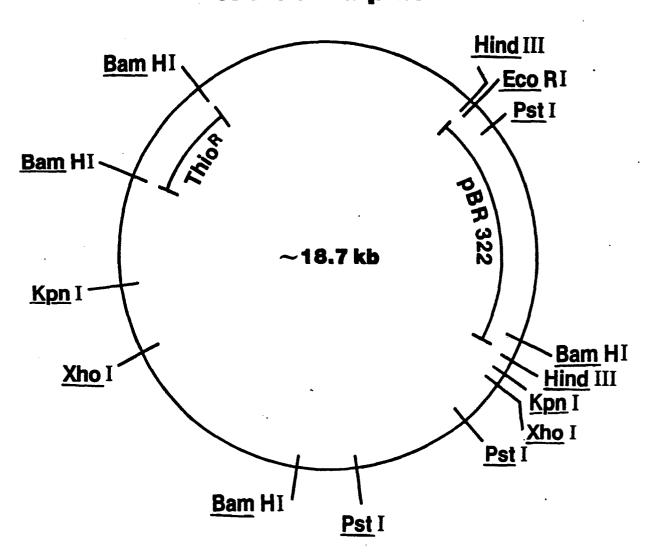


FIG. 4
Restriction Site and Functional Map
of Plasmid pHI-16

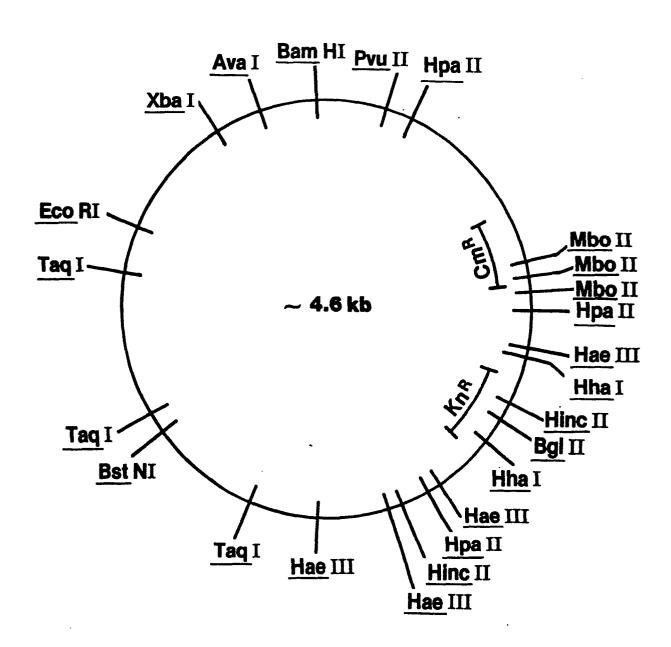
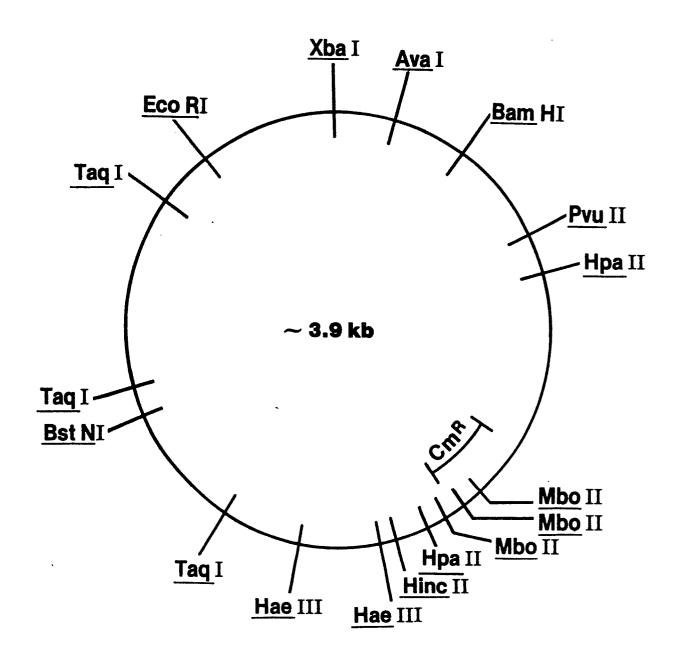
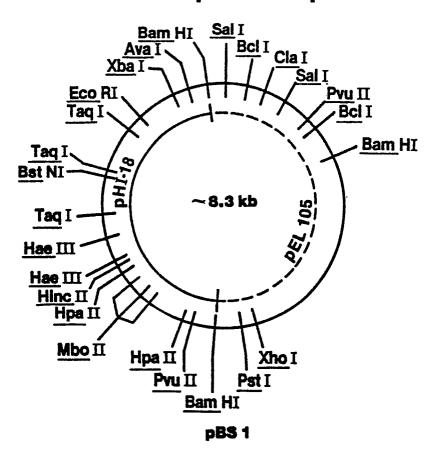




FIG. 5
Restriction Site and Functional Map
of Plasmid pHI-18

6 / 15 FIG. 6 Restriction Site and Functional Map of Plasmids pBS 1 and pBS 3

Bam HI Pst I Xho I Ava I Xba I-Eco RI-Taq I Taq I, Bst NI-~8.3 kb Taq I Hae III Bam HI Hae III Hinc II **Bci** I Pvu II Hpa II Sal \overline{I} Cla I Mbo II Hpa II | Sal I Bcl I Pvu II Bam HI

pBS 3

FIG. 7
Restriction Site and Functional Map of Plasmids pBS 2 and pBS 4

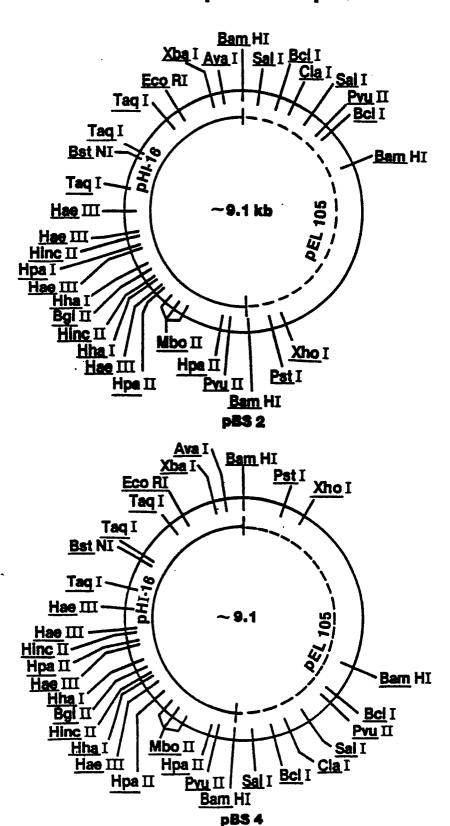
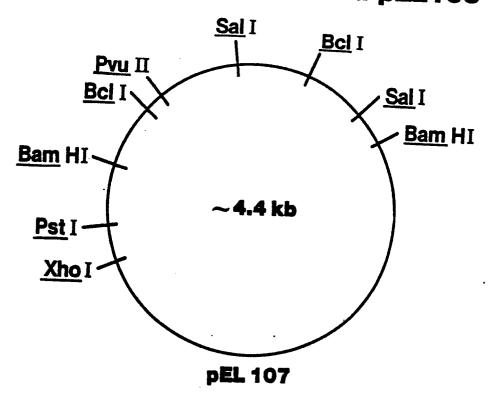



FIG. 8

Restriction Site and Functional Map
of Plasmids pEL107 and pEL105

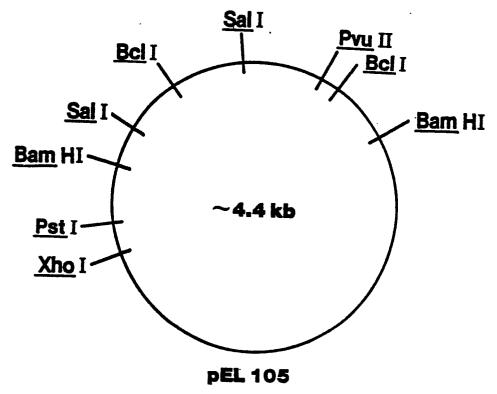
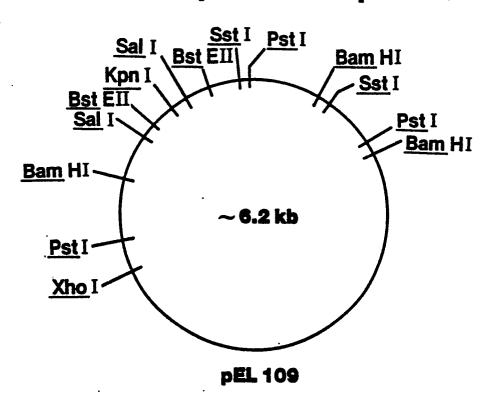



FIG. 9
Restriction Site and Functional Map of Plasmids pEL109 and pEL110

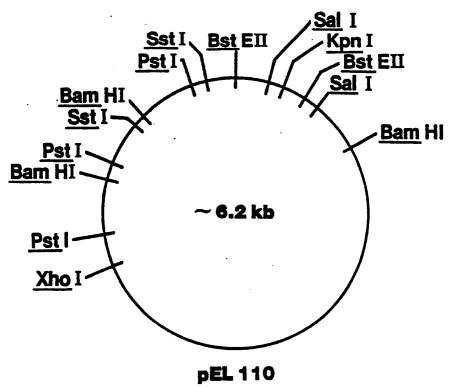
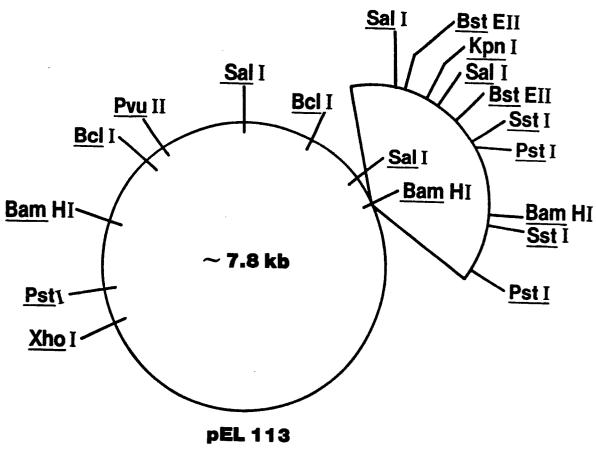



FIG. 10 10/150085548

Restriction Site and Functional Map of Plasmids pEL113 and pEL114

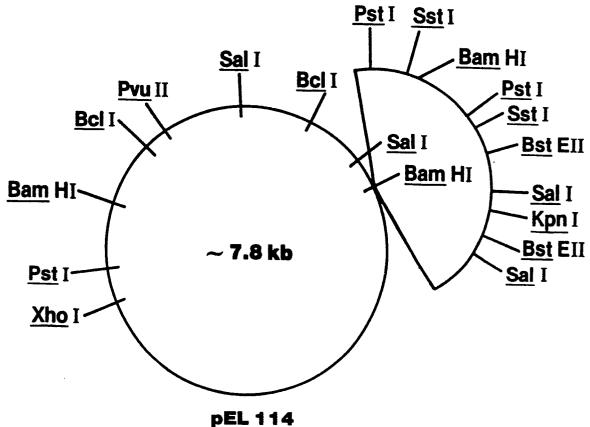
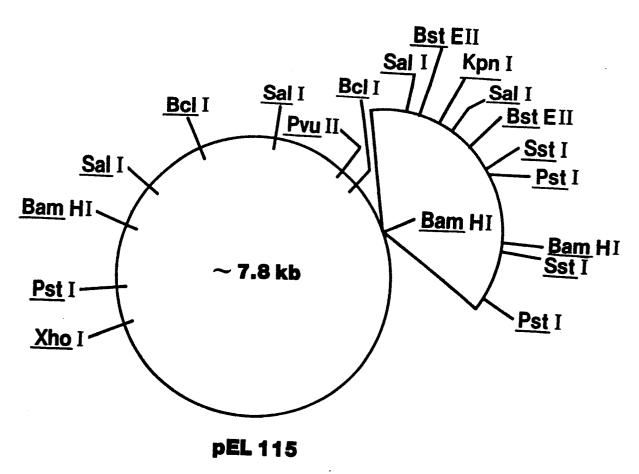



FIG. II 11/15

Restriction Site and Functional Map of Plasmids pEL115 and pEL116

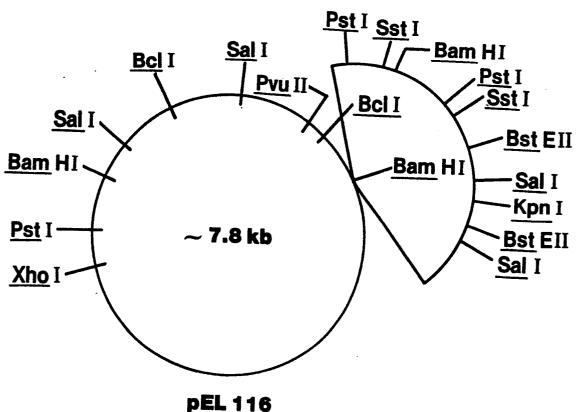
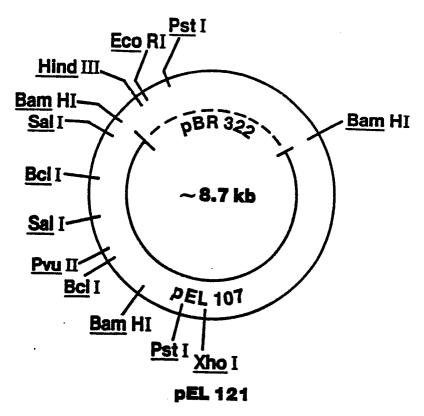



FIG. 12

Restriction Site and Functional Map of Plasmids pEL121 and pEL122

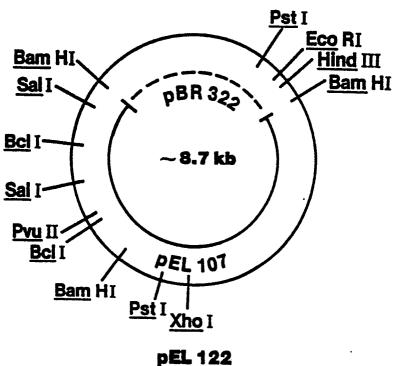
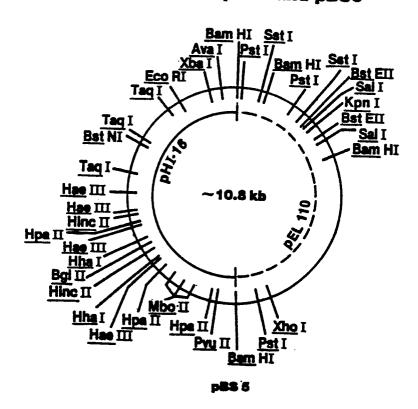



FIG. 13
Restriction Site and Functional Map
of Plasmids pBS5 and pBS6

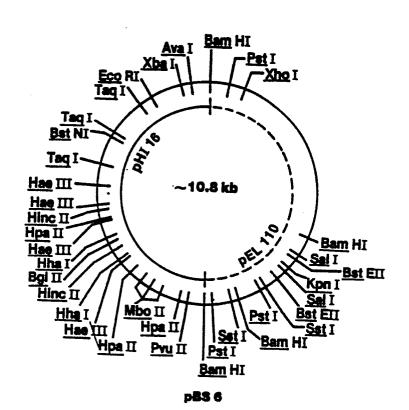


FIG. |4 Restriction Site and Functional Map of Plasmids pBS 7 and pBS 8

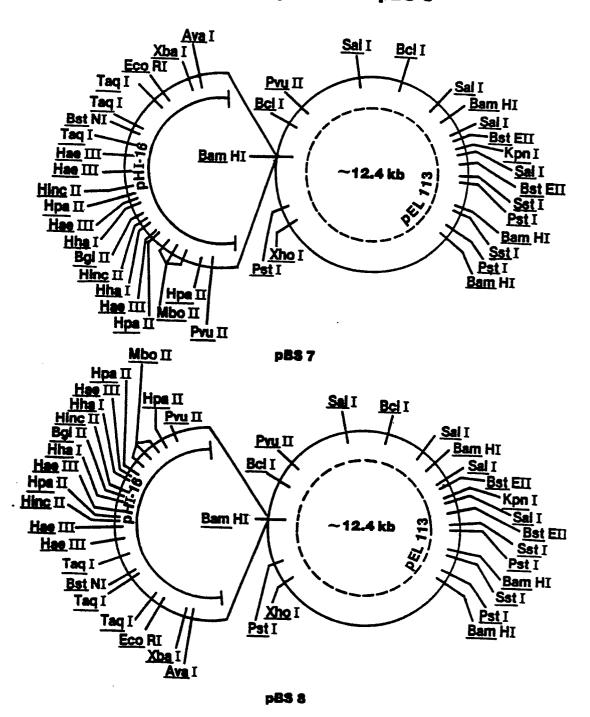
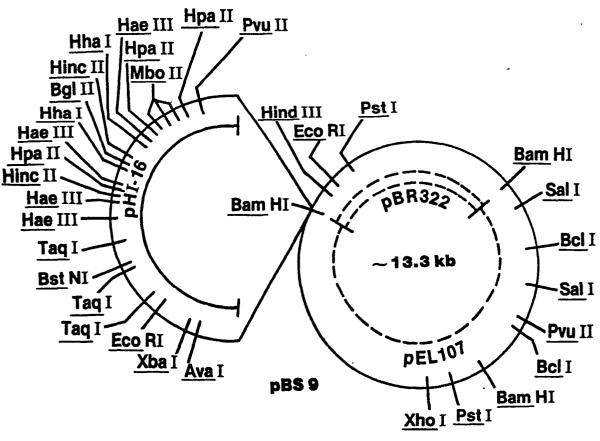
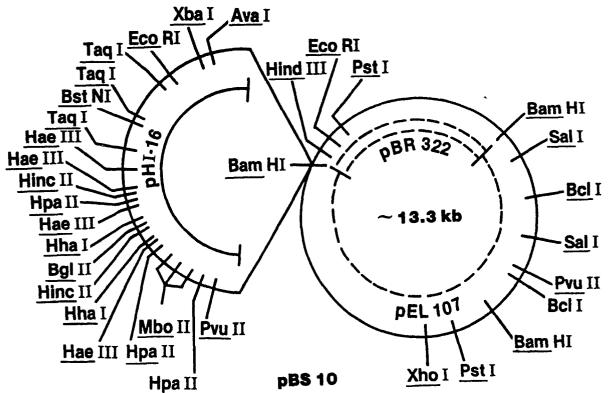




FIG. 15

Restriction Site and Functional Map of Plasmids pBS 9 and pBS 10

