(1) Publication number:

0 086 293 A1

12

EUROPEAN PATENT APPLICATION

Application number: 82300762.0
(a) Int. Cl.3: C 10 G 21/06, C 10 G 29/00

(2) Date of filing: 16.02.82

(3) Date of publication of application: 24.08.83
Bulletin 83/34

- 7) Applicant: Exxon Research and Engineering Company, P.O.Box 390 180 Park Avenue, Florham Park New Jersey 07932 (US)
- inventor: Habeeb, Jacob Joseph, 1257 Wlitshire Drive, Sarnia Ontario (CA)
- Representative: Somers, Harold Arnold et al, ESSO Engineering (Europe) Ltd. Patents & Licences Apex Tower High Street, New Malden Surrey KT3 4DJ (GB)
- Designated Contracting States: BE DE FR IT NL
- Method for selectively removing basic nitrogen compounds from lube oils using transition metal halides and transition metal
- (5) A method is disclosed for the selective removal of basic nitrogen compounds (BNC) from natural and synthetic hydrocarbon feedstocks, which method comprises mixing the feedstock oil with a nonaqueous solution of anhydrous nonpolymeric Group IVb*, Group Vb, Group VIb, Group VIIb, the non-noble (iron group) metals of Group VIII, copper, zinc, cadmium, and mercury halides (except TiCl₄ or FeCl₃) or tetrafluoroborates, complexed with non-aqueous polar solvents under conditions of agitation and mild heating whereby the basic nitrogen compounds exchange with the polar solvent to complex with the above-recited metal halides and metal tetrafluoroborates. The oil is then decanted to separate it from the metal halides: BNC complexes and the decantate washed with a polar solvent, which preferably Includes water, and dried. The basic nitrogen compoundmetal halide or metal tetrafluoroborate complex dissolves in the polar solvent, and that which is in the oil is removed by the polar solvent wash. The preferred polar solvent for the wash step is water.

The anhydrous nonpolymeric metal halide or metal tetrafluoroborate-nonaqueous polar solvent complex can be used as such, or they can be impregnated onto a support material.

* Periodic Table according to "The Handbook of Chemistry and Physics", published by the Chemical Rubber Publishing Company, Cleveland, Ohio, USA.

1

0086293

A method is disclosed for the selective removal 2 of basic nitrogen compounds (BNC) from natural and synthe-3 tic hydrocarbon feedstocks, preferably petroleum feed-5 stocks, most preferably lube and transformer oils, which method comprises mixing the feedstock oil with a nonaqueous solution of anhydrous nonpolymeric Group IVb, Group Vb, Group VIb, Group VIIb, the non-noble (iron group) metals 8 9 of Group VIII, copper, zinc, cadmium and mercury halides 10 (except TiCl, or FeCl,) or tetrafluoroborates, complexed 11 with nonaqueous polar solvents under conditions of mild agitation and heating whereby the basic nitrogen compounds 12 13 exchange with the polar solvent to complex with the above-14 recited metal halides and metal tetrafluoroborates. 15 preferred halide is bromide, and the preferred polar sol-16 vent is methanol. The oil is then decanted to separate it 17 from the metal halides: BNC complexes and the decantate 18 washed with a polar solvent, which preferably includes 19 The basic nitrogen compound-metal halide water, and dried. 20 or metal tetrafluoroborate complex dissolves in the polar 21 solvent, and that which is in the oil is removed by the 22 polar solvent wash. The preferred polar solvent for the 23 wash step is water. By the practice of this method, the 24 basic nitrogen compound content of the oil is reduced by 25 at least 90%. 26 The anhydrous nonpolymeric metal halide or metal 27 tetrafluoroborate-nonaqueous polar solvent complex can be 28 used as such, or they can be impregnated onto a support 29 material such as silica, alumina, silica-alumina, fauja-30 site, kaolin, carbon, zeolite, coal, vermiculite, etc., 31 and used as supported basic nitrogen compound complexation 32 compositions. These supported materials can be regenerated 33 after use by washing with polar solvents. They recover 34 essentially all of their complexation ability. 35 The reaction can be described in terms of the 36 following formula: 37 $MX_nQ_z + BNC_\Delta \longrightarrow MX_n(BNC)_z + zQ$ (I)

^{*}The Periodic Table groups used in this patent specification are those of the Periodic Table according to "The Handbook of Chemistry and Physics", published by the Chemical Rubber Publishing Company, Cleveland, Ohio, USA.

```
wherein M is the metal component selected from the group
2 consisting of iron, cobalt, titanium, molybdenum, Group IVb,
  Group Vb, Group VIb, Group VIIb, the non-noble (iron group)
3
  of Group VIII, copper, zinc, cadmium, mercury; X is a
  halide selected from the group consisting of chloride, bro-
  mide, iodide, or is tetrafluoroborate except that when M is
  titanium or iron, X cannot be chlorine; n is the number of
   X atoms satisfying the valence requirements of the metal
8
   at the oxidation state employed; Q is the complexed non-
9
  aqueous polar solvent; z is the number of nonaqueous polar
10
   solvent molecules and BNC is basic nitrogen compounds.
11
12 wherein M is the metal component selected from the group
   consisting of iron, cobalt, titanium, molybdenum, Group IVb,
13
   Group Vb, Group VIb, Group VIIb, the non-noble (iron group)
14
   of Group VIII, copper, zinc, cadmium, mercury; X is a
15
   halide selected from the group consisting of chloride,
16
   bromide, iodide, or is tetrafluoroborate; n is the number
17
   of X atoms satisfying the valence requirements of the metal
18
19
   at the oxidation state employed; Q is the complexed non-
20
   aqueous polar solvent; z is the number of nonaqueous polar
   solvent molecules and BNC is basic nitrogen compounds.
21
22
             The metal M is preferably selected from the group
   consisting of nickel, chromium, vanadium, zinc, copper,
23
   manganese, iron, cobalt, titanium, molybdenum, cadmium,
24
25
   and mercury.
                 The preferred halide is bromide.
26
   preferred metal bromides are chromium tribromide, nickel
   dibromide, vanadium dibromide, zinc dibromide, and the
27
   copper, manganese, iron and cobalt bromides. These metal
28
29
   bromides are preferably complexed with a nonaqueous polar
30
   solvent selected from the group consisting of methanol,
31
   ethanol, acetone, acetonitrile, most preferably methanol.
32
             Any oil which can be benefited by the removal
   of basic nitrogen compounds can be treated by the method of
33
   the instant invention. Natural and synthetic hydrocarbon
34
   feedstocks, such as those derived from coal, tar sands or
35
   oil shale, etc., can thus be processed. Typical of feed-
36
37
    stocks which are processed are the petroleum oils destined
```

for use as lubricating or transformer oils wherein the 1 2 presence of basic nitrogen compounds is known to be a 3 major cause of reduced oxidative stability. need not be pretreated prior to this BNC removal process, 5 since the process functions effectively in the presence of 6 a broad spectrum of contaminants, including, for example, and not by way of limitation, N-methyl pyrrolidone, acids, ionic species, phenols, sulfates, etc. Polar compounds, 9 other than BNC, also contribute to the oxidative instabi-10 lity of the oils and these too can be removed by use of 11 the metal solution complexes wherein the polar compounds 12 complex to the metal halides or metal tetrafluoroborates. 13 There is no limit on the amount of basic nitro-14 gen compounds which can be efficiently removed by the in-15 stant process. Any quantity can be removed provided an 16 effective concentration of metal halide or metal tetra-17 fluoroborate material is employed. Determination of what 18 constitutes an effective concentration of material is 19 readily achieved by reference to Formula I above once the 20 metal and its oxidation state are substituted into the for-21 mula. Depending upon the metal selected and its oxidation 22 state as used, from 2 to 6 basic nitrogen compound mole-23 cules can be removed by complexation to one metal halide 24 or metal tetrafluoroborate molecule. Preferably, a stoi-25 chiometric amount of metal halide or metal tetrafluorobo-26 rate (as determined by the metal oxidation state) is em-27 ployed. 28 As previously stated, the metal halide or metal 29 tetrafluoroborate is employed in this process in the form 30 of a complex with a nonaqueous polar solvent. 31 centration of metal halide or metal tetrafluoroborate, 32 which may be effectively employed in the chosen solvent 33 depends upon the choice of metal and is limited solely by 34 the solubility of the metal halide or metal tetrafluoro-35 borate in the solvent. Typically, this ranges anywhere

from about 0.1 gram material or less per milliliter sol-

vent to 1.0 gram material or more per milliliter solvent.

36

Higher concentrations of metal materials or greater volumes of complex solution are employed for oils more highly contaminated with basic nitrogen compounds.

The oils and metal solution complexes are mixed so as to obtain high surface contact between the oils and the metal solution complexes. This is typically achieved by mixing under conditions of agitation so as to insure complete mixing of the components and the resultant exchange of BNC with the polar solvent on the metal halide 9 or metal tetrafluoroborate. This agitation can be achieved 10 by any of a variety of standard methods including mechani-11 cal stirring and bubbling gases, preferably inert gases 12 such as N₂ through the oil-metal solution complex combina-13 tion. 14

These oil-metal solution complex combinations are subjected to mild heating on the order of a temperature between about 25 to 120°C, preferably 50 to 100°C, most preferably 50-80°C. This heating is employed so as to facilitate the exchange of the BNC for the polar solvent in the metal halide or metal tetrafluoroborate as shown in Formula I.

The oil and metal solution complex are mixed and 22 heated for a time sufficient to insure substantially com-23 plete exchange of the BNC and the polar solvent moiety. 24 The oil is then decanted. The decantate is washed with 25 polar solvent or water to remove any metal halide or metal 26 tetrafluoroborate-BNC complex remaining in the oil. 27 complexes are soluble in the polar solvent or water. 28 wash solvent may be employed at any convenient temperature, 29 preferably between 0-20°C. The volume of wash solvent is 30 also, any convenient volume, typically 1-5 volumes was 31 solvent per volume decantate. 32

The oil is dried under any convenient condition.
The oil is found to have had its basic nitrogen compound
content reduced by at least 90% by the practice of the instant process.

37 It must be noted that when the metal halide or

metal tetrafluoroborate materials complexed with the polar 7 solvents are described, they are identified as being an-2 hydrous, nonpolymeric materials; and the polar solvent is 3 identified as being any polar solvent except water. meric materials are to be avoided since their exchangeable sites are very limited and difficult to gain access to. Further, polymeric metal halides are relatively insoluble 7 in the solvents employed in the instant invention. R larly, the presence of water at the exchange site in place of other polar solvents is to be avoided since water is 10 11 exchanged only with extreme difficulty and only at tempera-12 tures high enough to adversely effect the quality of the oil and/or decompose the metal halide (see Table 7). 13 The anhydrous, nonpolymeric metal halides used 14 15 in the instant invention are prepared by the electrochemical technique explained in detail in "Electrochemical 16 Preparation of Anhydrous Halides of Transition Metals 17 (Mn-Zn)", by J. J. Habeeb, L. Neilson and D. G. Tuck, 18 19 <u>Inorganic Chemistry 17(2), 306 (1978).</u> 20 Essentially, the anhydrous, nonpolymeric metal 21 halides are prepared by preparing a solution of nonaqueous 22 polar solvent and halogen, immersing a cathode of a material such as platinum, and an anode made of the desired metal in 23 the solution and applying a current. The reaction is typi-24 cally carried out under an inert atmosphere such as nitro-26 gen. After the reaction is stopped, the excess halogen is 27 vented. Metal halide-polar solvent complexes are quite 28 stable if stored under inert atmospheres. The anhydrous, nonpolymeric metal halide and .29 metal tetrafluoroborate-polar solvent complexes can be 30 31 employed as such in the instant process, or they can be 32 deposited on a suitable inorganic refractory oxide or carbonaceous support and used as a regenerable supported BNC 33 34 complexation material. Typical support materials include 35 silica, alumina, natural and synthetic zeolites. carbon, faujasite, callcite, coal, etc.; preferably silica, alumina,

and zeolites; most preferably silica and alumina.

```
1 supported complexes are prepared by mixing the chosen
```

- 2 support with a volume of metal halide or metal tetrafluoro-
- 3 borate-nonaqueous polar solvent complex, heating the com-
- 4 bination at from 50 to 100°C under an inert atmosphere,
- 5 followed by drying at from 75 to 125°C. The heating and
- 6 drying steps can be accomplished as a single step. Care
- 7 is taken not to drive off the complex polar solvent mole-
- 8 cules. The dried combination is cooled, preferably in an
- 9 inert atmosphere or under vacuum. The combination metal
- 10 loading is not critical but will have a typical metal
- 11 loading range of from 0.5 to 10% metal. Again, the higher
- 12 the concentration, the more BNC can be removed employing
- 13 a given volume of supported complex.
- When these supported materials are used, the oil
- 15 is contacted with them as by pouring and the BNC are re-
- 16 moved by exchange with the nonaqueous polar solvent com-
- 17 plexed with the metal halide or metal tetrafluoroborate.
- 18 After the theoretical maximum volume of oil has
- 19 been passed through the supported complex, oil passage is
- 20 terminated; and the support complex regenerated by washing
- 21 with acetone or any polar solvent (except water) at tem-
- 22 peratures between about 25 to 75°C, preferably about 50°C.
- 23 Supported complexes which are thus regenerated recover
- 24 essentially all of their ability to remove BNC.
- The following Examples are presented so as to
- 26 help describe the invention and are not presented by way
- 27 of limitation.
- 28 EXAMPLES
- 29 Example 1 Removal of Compounds Containing Basic Nitrogen
- From Lube Oils by Chromium Tribromide.
- 31 150 g of a refined transformer oil containing
- 32 46 ppm basic nitrogen was mixed with 8 g of methanol con-
- 33 taining approximately 300 mg of chromium tribromide. The
- 34 solution mixture was heated at 75°C for 15 minutes with
- 35 nitrogen gas bubbling (or stirring) at a rate of 50 cc/
- 36 minute to ensure complete mixing. The oil sample was then
- 37 decanted. The decantate was washed with cold water and

dried by heating to 105°C with a nitrogen flow of 250 cc/ minute. The chromium complex had been extracted into the water layer.

4 The dried decanted oil had a basic nitrogen con-5 tent of less than 4 ppm, a reduction of more than 90%. The benefit of removing these basic nitrogen components 7 with CrBr, is shown by the fact that the Rotary Bomb Life (ASTM D2112) with 0.06 wt.% 2,6-ditertiarybutyl-para-cresol

9 increased from 179 minutes for the untreated oil to 282

10 minutes for the treated oil.

13

14

15

16

17

18

19

20

21

22

29

30

31

32

33

34

35

36

37

11 Example 2 - Removal of Compounds Containing Basic Nitrogen 12 From Lube Oils by Nickel Dibromide.

175 g of oil was mixed with 10 ml of methanol containing 300 mg of nickel dibromide. The solution mixture was heated to 80°C for 15 minutes with stirring and nitrogen gas bubbling at a rate of 100 cc/minute. sample was then decanted. The decantate was washed with cold water and dried by heating to 120°C with nitrogen flow of 300 cc/minute. The nickel complex, a yellow solid, was collected and washed for identification. The degree of basic nitrogen compound removal is presented in Table 1.

22	TABLE	1	
23	Oil	Basic Nitro	ogen in ppm
24		Before	After
25		Treatment	Treatment
26	60 Neutral	46	3
27	600 Neutral	81	9
28	Light Raw Distillate	111	6

Example 3 - Removal of Compounds Containing Basic Nitrogen From Lube Oils by Methanolated Vanadium Dibromide.

175 g of oil was mixed with 15 ml of methanol containing 300 mg of vanadium dibromide. The solution mixture was heated to 80°C for 15 minutes with stirring and nitrogen gas bubbling at a rate of 100 cc/minute. sample was then decanted. The decantate was washed with cold water and dried by heating to 170°C with nitrogen flow 1 of 400 cc/min. The vanadium complex, a thick dark brown 2 solid, was treated with water to obtain pure basic nitro-3 gen containing compounds for further investigations.

4 degree of basic nitrogen compound removal is presented in

5 Table 2.

13

16

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

. б	TABLE 2			
7	Oil	Basic Nitro	gen in ppm	
. 8	•	Before	Àfter	
9		Treatment	Treatment	
10	60 Neutral	46	3	
11	600 Neutral	81	7	
12	Light Raw Distillate	111	1	

The basic process essentially is the injection of 14 vanadium bromide - methanol solution into oil followed by 15 decantation of the oil and then water washing to remove the vanadium bromide complexes of basic nitrogen compounds.

17 The process could also be applied to upgrade heavy crudes.

18 Example 4 - Removal of Compounds Containing Basic Nitrogen 19 From Lube Oils by Zinc Dibromide and Copper .20 Bromides.

Zinc dibromide in methanol and copper bromides (a mixture of Cu(I) and Cu(II) bromides) in methanol are powerful agents for the removal of these basic nitrogen compounds from a wide variety of lube oils--namely, 60 neutrals, 600 neutrals and raw distillates -- by forming water soluble complexes of zinc bromide and copper bromides.

In a typical experiment, 175 g of oil was mixed with 5-fold excess of metal bromides in methanol to basic nitrogen compounds. The solution mixture was heated to 80°C for 10 minutes with stirring and nitrogen gas bubbling at a rate of 200 cc/minute. The oil sample was then decan-The decantate was washed with warm water (60°C) and dried by heating to 120°C with nitrogen flow of 700 cc/ The metal complexes, either as thick dark brown oil stuck to the walls of the reaction vessel or as brown In both cases, metal complexes were collected for identification. The degree of basic nitrogen compound removal is presented in Table 3.

TABLE 3

011	Basic NI	Basic Nitrogen Content of Oils in ppm	of Oils in ppm
	Before Treatment	Treated With ZnBr2	Treated With Copper Bromides
60 Neutral	94	1	7
600 Neutral	. 81	က	9
Light Raw Distillate	111	1	6

The benefit of removing basic nitrogen compo-1 nents with ZnBr, is shown by the fact that the Rotary Bomb 2 Life (ASTM D2112) with 0.06 wt.% 2,6-ditertiarybutyl-para-3 cresol increased from 179 minutes for the untreated 60 neutral oil to 263 minutes for the treated oil and with 0.3 wt.% 2,6-ditertiarybutyl-para-cresol increased from 49 minutes for the untreated light Raw Distillates to 173 minutes for the treated oil. The basic process for ZnBr, and copper bromide 9 treating is envisaged to be injection of the metal bromide-10 methanol solution into the oil followed by water washing 11 to remove metal bromide basic nitrogen complexes. 12 Example 5 - Removal of Compounds Containing Basic Nitrogen 13 From Lube Oils by Manganese, Iron, and Cobalt 14 Bromides. 15 In a typical experiment, 200 g of oil was mixed 16 with a 5-fold excess of a metal bromide in methanol rela-17 tive to basic nitrogen compound content. The mixture was 18 heated to 80°C for 10 minutes with stirring and nitrogen 19 gas bubbling at a rate of 200 cc/minute. The oil was then 20 decanted. The decantate was washed with warm water (60°C) 21 and dried by heating to 120°C with nitrogen flow of 700 22 The metal complexes, thick, dark brown (green cc/minute. 23 in the case of cobalt bromide) oils stuck to the walls of the reaction vessel, were collected for identification. 25 The degree of basic nitrogen compound removal is presented 26

in Table 4.

4	ļ
딘	
'ABL	
٠-	3

~1	011	B	Basic Nitrogen Co	Content of Oils	fn ppm	
		Before Treatment	Treated With MnBr ₂	Treated With FeBr ₂	Treated With CoBr ₂	
	60 Neutral	94	m	ŋ		
	600 Neutral	81	9	E C	2	
	Light Raw Distillate	111	2	7	ന	

Example 6 - Methanolated Transition Metal Tetrafluoroborates are Basic Nitrogen Scavengers. In a typical experiment, 200 g of oil is mixed with 5-fold excess of metal tetrafluoroborate in methanol relative to basic nitrogen compounds. The solution mixture was heated to 80°C for 10 minutes with stirring and nitrogen gas bubbling at a rate of 250 cc/minute. The oil sample was decanted and then filtered. The metal complexes, a thick, dark brown oil, were stuck to the walls of the reaction vessel. The degree to basic nitrogen compound

removal is presented in Table 5.

Ω	
দ্য	
BI	
K	

t Oils in ppm	After Treatment	-	7
Basic Nitrogen Content of Oils in ppm	Before Treatment	25	110
011		100 Neutral	Light Raw Distillate

Example 7 - Removal of Compounds Containing Basic Nitrogen 1 From Lube Oils by Silica Gel Impregnated with 2 Ti(III), V(II), Cr(III), Mo(II), Mn(II), 3 Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) 4 Bromides. 5 Preparation of the impregnated silica gel was 6 performed as follows. Methanolated complexes of the men-7 tioned transition metal bromides were prepared by electro-8 lysis. Samples of these complexes containing 1 to 3 g of metal were mixed with silica gel (different grades) and 10 heated to 70°C under nitrogen followed by drying at 100°C. 11 The new absorbent was cooled in vacuum. 12 In a typical experiment, a 20 cm long and 2.5 cm 13 diameter column was packed with 75 g impregnated silica 14 gel. An unimpregnated silica gel column of the same dimen-15 sions was also used for comparison. Oil was poured through 16 each of the columns which were kept at 80-90°C. 17 18 umns need not be maintained at these high temperatures, effective operation being achieved at lower temperatures. Higher temperatures were used to facilitate the rate of 20 flow of high viscosity oils through the column. 21 Silica gel impregnated with the above-mentioned 22 transition metal bromides are regenerated by washing with 23 acetone at 50°C after oil has been recovered. The degree 24 of basic nitrogen compound removal is presented in Table 6. 25

		TABLE 6	اع			•	-	
2	Column (I)		•					•
က	Silica Gel (Blank)							
4	No. of ml of oil	20	100	150	200	300	400	Ŋ
65	Basic nitrogen (ppm) in Reocvered Oil	<2	2	5.	14	16	21	
7	Column (II)							
8	Impregnated Silica Gel with CrBr3	rBr3						
6	No. of ml of oil	250	200	1000	2000	3000	4000	
10 11	Basic nitrogen (ppm) in Recovered Oil	\ 1	<1	<1	< 2 >	< 2	~ 2	
12	Column (III): Column (II) - Regenerated	Regenei	rated					
13.	No. of ml of oil	100	400	009	.800	1200	1500	
14 15	Basic nitrogen (ppm) in Recovered 011	< 2 >	<2	< 2	< 2	2	2	

- 1 Similar results may be obtained using the other metal
- 2 bromide complexes. The benefit of removing basic nitrogen
- 3 components by this method is shown by the fact that Rotary
- 4 Bomb Life (ASTM D2112) with 0.3 wt.% 2,6-ditertiarybutyl-
- 5 para-cresol increased from 49 minutes for the untreated
- 6 light Raw Distillates (110 ppm BNC) to 238 minutes after
- 7 treatment (2 ppm BNC).
- 8 This method has an excellent potential in lube
- 9 oil processing due to the fact that impregnated silica gel
- 10 beds can be efficiently regenerated and reused for an
- 11 indefinite number of cycles.
- 12 Example 8
- In a typical experiment, 200 g of oil (60 neutral)
- 14 containing 46 ppm BNC) was mixed with 400 mg TiCl, in
- 15 methanol. The mixture was heated to 80°C for 10 minutes
- 16 with stirring and nitrogen gas bubbling at a rate of
- 17 200 cc/minute. The oil was decanted. The decantate was
- 18 washed with warm water (60°C) and dried by heating to 120°C
- 19 with nitrogen gas flow of 700 cc/minute. BNC concentration
- 20 before treatment was 46 ppm while after treatment BNC con-
- 21 centration was 7 ppm. However, the Rotary Bomb Life
- 22 (ASTM D2112) with 0.06 wt.% 2,6-ditertiarybutyl-para- cresol
- 23 decreased from 200 minutes before treatment to 86 minutes
- 24 after treatment indicating that TiCl, although removing
- 25 BNC from oils, has deleterious effect on the treated oil.
- 26 This may be due to the easy reduction of TiCl, to TiCl,
- 27 and the production of the highly reactive chlorine atom
- 28 which acts as strong oxidizing agent in addition to Ti(iv)
- 29 which is an oxidizing agent when it reduces to Ti(iii).
- 30 Elemental sulphur concentration was decreased
- 31 from 0.24 wt.% before treatment to 0.1 wt.% after treat-
- 32 ment. This indicates that TiCl, is non-selective coordina-
- 33 ting compound. Removal of naturally occurring antioxidant
- 34 sulphur compounds will also have a detrimental effect on
- 35 oil.
- On treating the oil with FeCl, using exactly the
- 37 same quantities of materials and procedure, similar results

1	were observed.
2	After Treatment
3	Before Treatment (FeCl3)
4	BNC S% RBOT min BNC S% RBOT min
5	46 0.24 200 5 0.12 132
6	Example 9
7	In a typical experiment, 175 g of oil was mixed
8	with 5-fold excess of metal bromides in water relative to
9	basic nitrogen compounds content. The mixture was heated
10	to (75-80°C) for 10 minutes with stirring and nitrogen gas
11	bubbling at a rate of 200 cc/minute. The oil was decanted.
12	The decantate was washed with warm water (60°C) and dried
13	by heating to 120°C with nitrogen flow of 700 cc/minutes.
14	Results are summarized in Table 7 which show that whereas
15	BNC content dramatically decreases when using a nonaqueous
16	solvent, only minimal reduction in BNC content is achieved
17	when using water as the solvent.

	Temperature	D°27	3°08	75-80°C	. D.08	3°08	c) 80°C	l) 75-80°C	75-80°C	75-80°C	75-80°C	75-80°C	140-145°C
	Metal Complex (Solvent)	CrBr3 (Methanol)	NiBr ₃ (Methanol)	CrBr3 (Methanol)	MnBr ₂ (Methanol)	ZnBr2 (Methanol)	$Zn(BF_4)_2$ (Methanol)	Zn(BF4)2 (Methanol)	CrBr3 (Methanol)	CrBr_3 (H ₂ 0)	FeBr ₂ (H ₂ 0)	CrBr ₃ (H ₂ 0)	CrBr, (H20)
7 3	After Treatment BN(ppm) S%	0	0.24	0.21	9.0	9.0	0.33	0.29	<u> </u>	i i	1	1	1 2
TABLE 7	After Tr BN(ppm)		က	1.0	0.9	က	\sim 2	~ 2	<u>ز</u> ھ	34	29	81	21
	e Treatment	0.24	0.24	0.21	9.0	9.0	0.33	0.29	0.29	0.24	0.24	0.29	0.24
	Before Tr	46	94	17.5	81	81	21	103	103	94	94	103	46
	011	90N	N09	N09	N009	0009	100N	Hydrofined Light Raw Distillate	Hydrofined Light Raw Distillate	009	09	Hydrofined LRD	W09
	Example	1	2	٦	z,	7	9	9	H	6	6	σ,	0
	3 2	7	5	9	7	. &	6	10 11 12	13 14 15	16	17	18 19	20

CLAIMS

- 1. A method for removing basic nitrogen compounds (BNC) from a natural or synthetic hydrocarbon feedstock comprising mixing the feedstock under conditions of agitation and mild heating with a nonaqueous solution of (A) an anhydrous nonpolymeric halides of a metal selected from the metals of Group IVb, Group Vb, Group VIb, Group VIIb, the non-noble Group VIII metals, copper, zinc, cadmium, and mercury except that when the metal is titanium or iron the halide may not be chlorine, or (B) an anhydrous nonpolymeric tetrafluoroborate of a metal selected from the metals of Group IVb, Group Vb, Group VIb, Group VIIb, the non-noble Group VIII metals, copper, zinc, cadmium and mercury, which metal halides or metal tetrafluoroborates are complexed with nonaqueous polar solvents whereby the BNC exchange with the complexed nonaqueous polar solvents and themselves become complexed with the metal tetrafluroborates.
- 2. The method of claim 1 comprising the step of separating the feedstock from which basic nitrogen compounds have been removed from the metal halide or metal tetrafluoroborate-nonaquous polar solvent complex with which the basic nitrogen compounds are now compexed by their exchange with the polar solvent, washing the separate feedstock with polar solvent and drying.
- 3. The method of claim 1 or claim 2 wherein the nonaqueuous polar solvent is methanol, ethanol, acetone, acetonitrile, preferably methanol.
- 4. The method of any one of claims 1 to 3 wherein the metal halide or metal tetrafluoroborate-nonageous polar solvent complex is impregnated onto a support material.
- 5. The method of claim 4 wherein the supported metal halide or metal tetrafluoroborate-nonaqueous polar solvent complex is regenerated after use by washing with nonaqueous polar solvent at a temperature of from 25 to 75°C.
- 6. The method of any one of claims 1 to 5 wherein the metal is selected from nickel, chromium, vanadium, zinc, copper, manganese, iron, cobalt, titanium, molybdenum, cadmium and mercury.

- 7. The method of any one of claims 1 to 6 wherein the metal halide is a metal bromide.
- 8. The method of claim 7 wherein the metal bromide is selected from chromium tribomide, nickel dibromide, vanadium dibromide, zinc dibromide and the copper, manganese, iron and cobalt bromides.
- 9. The method of any one of claims 1 to 8 wherein the mild heating is conducted at a temperature in the range of from 25 to 120°C.
- 10. The method of any one of claims 1 to 9 wherein the polar solvent wash employs water as the polar solvent.

EUROPEAN SEARCH REPORT

0086293° EP 82300762.0

	DOCUMENTS CONSID	ERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int. Cl. 3)
ategory	Citation of document with indice passages	ation, where appropriate, of relevant	Relevant to claim	
A		lumn 1, lines 40- 3, line 45 -	1,2,6,9	C 10 G 21/06 C 10 G 29/00
A	column 2,	607 (MILLER) lumn 1, line 65 - line 15; column 4, column 5, line 8 *	1,2,6,9	
А		 261 (INSTITUT OGO SINTEZA IMENI AKADEMII NAUK SSR	1	TECHNICAL FIELDS SEARCHED (Int.Cl. 3)
	et al.) * Claims; pa 110 *	ge 2, lines 47-		C 10 G 21/00 B 01 D 11/00 B 01 F 3/00 C 10 G 29/C0
				CATEGORY OF CITED DOCUMENTS
		,		X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons
	The present search repo	ort has been drawn up for all claims	1	&: member of the same paten family, corresponding document
Place of se	v I E N N A	Date of completion of the search $06-10-1982$	Examiner	STÖCKLMAYER