(11) Publication number:

0 086 551

12

EUROPEAN PATENT APPLICATION

Application number: 83300122.5

(f) Int. Cl.3: **G 09 G 3/04**, G 09 G 3/18

Date of filing: 11.01.83

Priority: 01.02.82 GB 8202849

Applicant: NATIONAL RESEARCH DEVELOPMENT CORPORATION, 101 Newington Causeway, London SE1 6BU (GB)

Date of publication of application: 24.08.83 Bulletin 83/34

Inventor: Clark, Michael George, 27 Crown Lea Avenue, Malvern Worcestershire (GB)

Designated Contracting States: CH DE FR IT LI

Representative: Edwards, John Brian et al, Procurement Executive Ministry of Defence Patents 1 A (4), Room 2014 Empress State Building Lillie Road, London SW6 1TR (GB)

Character display panels and panel devices.

5 A multi-character multi-segment electrically addressable display panel. Character segments (a to h) are defined at each of a number of adjacent locations by the overlap of two sets of electrodes (Fig. 6; Fig. 7). The electrodes of one set (Fig. 7) are each associated with a location and a group of one or more segments [(a, b, g); (c, e); (d, f); (h)]. The electrodes of the other set (Fig. 6) extend across each location and are associated with no more than one segment in each segment group [(a); (b, e, f); (c, d, g)]. The panel is addressed using isogonal signals - eg pseudo-random binary sequence coded signals. The panel medium may be of dyed or undyed cholesteric-to-nematic phase change effect liquid crystal material, of low threshold or wide temperature range liquid crystal material.

-1-

CHARACTER DISPLAY PANELS AND PANEL DEVICES

TECHNICAL FIELD

05 This invention concerns electrically addressable display panels, and panel devices for the display of characters - for example numerals, symbols or alphabet characters. Such panels and panel devices have application to calculator and instrument panel display and typically such panels incorporate an electrically sensitive medium 10 - for example a medium of liquid crystal material - enclosed between sets of opposing electrodes defining several adjacent display areas. Each display area-or-unit comprises several display segments, various of which may be driven ON by the application of an appropriate electrical address to the electrodes defining those segments, to display 15 any particular one of a set of characters. The invention is concerned particularly, although not exclusively, with panels and panel devices incorporating a dyed phase change liquid crystal material as the electrically sensitive medium.

20 BACKGROUND ART

Display panels incorporating 7-segment (7-bar figure-of-eight) and 8-segment (7-bar figure-of-eight + decimal point) display units are well known, used both in calculators and digital instruments. Low-power consumption liquid crystal medium display panels are also well known, particularly those using the twisted nematic effect or the dynamic scattering effect.

Two forms of panel address are also well known, discrete address and time multiplexed address. For direct discrete address, the 7segment display requires seven discrete front plane electrodes for each display unit and a common back-plane electrode. Where more than 05 a few display units are required, the number of connections to the panel electrodes becomes prohibitively large. In general, the larger the number of connections, the lower is the production yield, and the higher is the production cost. This form of address therefore has very restricted application. On the other hand the number of connec-10 tions required for time multiplexed address can be considerably smaller. For this the display segments of each display unit are defined by seven shaped electrodes front and back, various of these shaped electrodes being interconnected (eg GB Patent Specification No 1596 705). However, in this technique selected segments are driven ON for only part of the address signal cycle, and the driving fields or voltages are changed between a maximum level and a minimum but finite level to drive the segments either ON or OFF. The ratio of maximum to minimum level is however limited and depends on the time multiplexed technique adopted. Furthermore the minimum level must be of suffi-20 ciently low level that segments are not inadvertently driven ON. Many liquid crystal media exhibit a low threshold above which the media changes to an ON state, a threshold often sensitive to temperature. Thus to optimise maximum level it is often necessary to incorporate electronic compensation for temperature change, accepting increase in unit costs. Certainly it is difficult, if not impossible, to achieve 25 the angle of view, brightness, and contrast performance achieved by direct discrete address.

15

30

35

Panels incorporating dyed phase change liquid crystal media can provide attractive displays with excellent angle of view, good contrast, and reasonable brightness. Also for different colour choice, a wide range of dyes can be used; there is a wide choice. However, these media usually have a rapid response, and exhibit substantial hysteresis - ie the voltages required to turn OFF segments ON, and ON segments OFF, can differ markedly, and the acceptable drive level minimum can be exceptionally low, making time multiplexed address techniques impractical.

-2-

Brief mention is made here of display panels, panels other than multi-segment display panels, that utilise isogonal signals for their address. GB Patent No. 1,526,266 discloses a matrix display panel using three isogonal address signals, in particular three sinusoidal signals of like frequency and amplitude but which differ from each other in phase by + 120°. This panel may be used to display characters - for example the letter "L", but to do this the signals must be applied to the electrodes in a defined time sequence. The displayed character "L" is depicted by selected matrix elements that are held "OFF" against a background of all other matrix elements that are held "ON". It is a disadvantage that representative elements are held "OFF" for only part of the time, thus though to the observer's eye all representative elements may appear to be OFF simultaneously, the contrast is less than optimum. Better contrast is obtainable using the address technique disclosed in GB Patent Application No 2,001,794A, a technique using pseudo-random binary sequence (p.r.b.s.) coded address signals. According to this technique a different p.r.b.s. signal is applied to each of the matrix row electrodes, and selected row signals are applied to the matrix column electrodes. Thus all matrix elements, except one selected in each column, are driven "ON". This technique is useful for displaying single valued waveforms, but since only one element per column may be used for display representation, this technique is not readily applicable to character display. P.r.b.s. coded address signals have also been used for index pointer displays - eg for clock and meter displays - cf GB Patent Application No 2,044,975A.

DISCLOSURE OF THE INVENTION

05

10

15

20

25

This invention is intended to provide a remedy. In the panel display devices, means are provided to drive ON display segments continuously, using a different address technique. Furthermore using this technique, a minimum level of zero is attained and the maximum level is limited only by choice, allowing choice of level to optimise panel angle of view, brightness and contrast.

According to the invention there is provided a multi-character multi-segment electrically addressable display device, capable of displaying each one of a plurality of different display characters, the members of a character set, each at a plurality of adjacent locations, the device comprising:-

a display panel having two sets of electrodes one each side of an electrically sensitive medium, each set mounted on a supporting substrate; and,

panel address means connected to the display panel electrodes to apply continuous isogonal address signals thereto;

one set of electrodes overlapping the other set to define a plurality of display character segments at each location; wherein at each location electrodes of the one set are each associated with a different group of one or more segments, at least one electrode being associated with a group of two or more segments, and, wherein each electrode of the other set extends between and across each location, and is associated with no more than one segment in each group of segments, at least one electrode being associated with a plurality of groups at each location; the panel address means being responsive to control so to apply different isogonal signals to electrodes associated with selected segments to hold all the selected segments at each location ON simultaneously, and to apply identical isogonal signals to electrodes associated with non-selected segments at each location OFF.

25

05

10

15

20

An isogonal set of signals has the property that the root mean square average difference of any two members of the set, is of constant value. This term is intended to include a set of orthogonal signals. Examples are Walsh function signals and pseudo-random binary sequence (p.r.b.s) coded waveform signals.

Using these signals, the medium is driven ON wherever different signals are applied to opposite electrodes. The amplitude of the signals is therefore chosen to give a difference level of sufficiently high magnitude. Thus for example, using as medium - dyed phase change liquid crystal material - this level is chosen to be above threshold maximum and is preferably chosen to have a value near or in excess of the saturation level to give optimum brightness. Like signals are applied to the opposite electrodes of all OFF segments, and result in a zero level difference.

10

15

05

The character display may be combined with a quasi-analogue display, for example a car dashboard display such as that described in copending GB Patent Application No 81.28733, or an analogue watch or meter display such as that described in GB Patent Application No 2,044, 975A, all electrodes being incorporated on common substrates, the character and analogue displays using a common signal generator.

BRIEF INTRODUCTION OF THE DRAWINGS:

20 In the accompanying drawings:-

Figure 1 shows (a) the display segment arrangement of a 7-bar display unit.

and,

25

- (b) the display segment arrangement of an 8-bar display unit, a simple modification of the 7-bar display unit;
- Figure 2 shows (a) a character fount adopted for displaying the numerals 0 to 9 by the 7-bar display unit,

30 and,

(b) a modification of the numeral 1 display, adopted for the 8-bar display segment arrangement of figure 1(b) above;

	Figure 3 shows (a) a segment correlation graph corresponding to the conventional 7-bar segment arrangement and the character fount shown in figure 2(a) above,
05	and, (b) a sub-graph derived from this correlation graph;
	Figure 4	is a plan drawing of a 7-bar display unit showing an optimal electrode connection configuration for the front and back electrodes, a configuration suitable for isogonal signal address;
10		
	Figure 5 shows (a) a segment correlation graph corresponding to the 8-bar segment arrangement and the character fount including the modified numeral 1 display of figure 2b above,
15	and, (t) a sub-graph derived from this latter correlation graph;
	Figures 6 and 7	are plan drawings of the back and the front electrodes, respectively, for a display panel having
20	÷	several adjacent 8-bar segment display units;
	Figure 8	is a circuit diagram of the control electronics adopted for a display panel having eight adjacent 8-bar segment display units with electrodes connected
25		and arranged in the manner shown in the preceding figures 6 and 7; and
	Figure 9	is a cross-section drawing of a liquid crystal
30		medium display panel, a panel incorporating the electrodes shown in the preceding figures 6 and 7.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the invention will now be described, by way of sexample only, with reference to the accompanying drawings.

Using an address comprising several isogonal waveform drive signals, it is possible to reduce the number of external connections required for a character display unit, provided that the unit is required to display characters comprising a restricted character set - for example the set of numeric characters, the numerals "0" to "9".

05

10

15

20

25

30

There are many ways of connecting the front and the back electrode parts of a display unit, but only some of these configurations are in general suitable for displaying a particular character set. A systematic approach is therefore needed to define suitable connection configurations, and to select from these a configuration allowing a minimum number of external connections. In the following text, a general design approach is adopted and it is illustrated by two examples firstly the approach is applied to a 7-segment display unit, and, secondly, it is applied to a modified display unit, an 8-segment display unit.

Consider then the first of these examples, a 7-segment display unit required to display the numeric characters, the numerals "0" to "9". The arrangement of the seven display segments is of conventional figure-of-eight form comprising seven segments a to g arranged as shown in figure 1(a). The character fount for the numerals "0" to "9" that may be displayed by this arrangement of seven segments is shown in figure 2(a). The different display segments a to g are provided by the overlap of a set of front electrodes and a set of back electrodes disposed either side of an electrically sensitive medium, and depending on the address that is applied to opposed segments, each segment will be driven ON or OFF. Different segments are driven ON for each displayed character. The different segments that are driven to display each of the characters "0" to "9" are summarised in Table 1 appearing below. In this table the "ON" segments are represented by logic symbol "1" and "OFF" segments by logic symbol "0".

The exponent symbol "E" may also be represented by 7-segment dis-35 play. The different segments driven for this character are also shown at the foot of this table.

TABLE 1

SEGMENT USAGE MATRIX (SUM)

05	Format:		7-bar, figure-of-eight						
	Character	set:	Numeral	Ls 0 -	9;	(or,	0 →	9.	E).

					SEGM	ENTS DR	IVEN		
			а	Ъ	С	. d	е	f	g
10		11011	1	1	1	1	1	1	0
		"1"	0	1	1	0	0	0	0
	el	"2"	1	1	0	1	1	0	1
	DISPLAYED	"3"	1	1	1	1	0	0	1
	SPI	"4"	0	1	1	0	0	1	1
15	1	"5"	1	0	1	1	0	1	1
	TER	"6"	1	0	1	1	1	1	1
	CHARACTER	11711	1	1	1	0	0	1	0
	CHA	11811	1	1	1	1	1	1	1
		"9"	1	1	1	[!] 1	0	1	1
20	(("E"	1	. 0	0	1	1	1	1)

25

30

35

Thus all segments are driven "ON" to represent numeral "8"; segments a, b, c and f are driven "ON" to represent numeral "7"; and so forth. It is noted that numeral "1" display corresponds to ON segments b and c only.

The many ways in which seven front electrodes can be grouped and interconnected are summarised in Table 2 appearing below. In this table the number of electrodes connected to form a group is represented by a number and the number of groups of like dimension is represented by a superscript. For example, where the electrodes are partitioned to form two pairs of connected electrodes and a single group of three connected electrodes, this partition is represented by the label 2².3. The numbers of connections required for a display panel incorporating firstly a number N of adjacent units, and secondly eight display units, are shown in the right hand columns of the table:-

TABLE 2

CONNECTION COUNT

05 Format: 7-bar

	PARTITION	No. OF GROUPS	No OF CON	NECTIONS
	(Σ_n_i)	(m)	General N	N = 8
10	7	1	7 + N	15
10	1.6	2	6 + 2N	22
	2.5	11	5 + 2N	21
	3,4	11	4 + 2N	20
15	1 ² .5	3	5 + 3N	29
1.5	1.2.4	· н	4 + 3N	28
	1.32	tt	3 + 3N	27
	2 ² .3	i i	3 + 3N	27
	2	``		
20	13.4	4	4 + 4N	36
	12.2.3		3 + 4N	35
	1.23	11	2 + 4N	34
	14.3	5	3 + 5N	43
25	\rightarrow 1 ³ .2 ²	tt .	2 + 5N	42 ←
	15.2	6	2 + 6N	50
	17	7	1 + 7N	57

The design problem therefore is to determine which of these partitions will allow display of the character set, and which one of the suitable partitions will result in a minimum number of external connections.

The selection of suitable partitions can be much simplified, using as a starting point the SUM, the matrix shown in table 1. This matrix is inspected to determine which segment electrodes may be paired together-

those segments which are never required to be driven OFF together. This may be done by comparing columns of the matrix two at a time, associating only those segments which are represented by columns for which no rows contain logic "O" in both columns.

05

10

Alternatively, for computational purposes, the complement matrix formed by changing $0 \to 1$ and $1 \to 0$ may be used, treating each column as a multi-dimension vector and associating those segments corresponding to orthogonal vectors. This then results in a list of associated segments as follows:-

(a,b); (a,c); (b,c); (b,d); (b,f); (b,g); (c,d); (c,e); (c,g). [*Note: For the extended character set "0" to "9" and "E", the segments (b,c) are not associated and would not be included in the above list.]

These groupings for convenience are represented by a correlation graph - see figure 3(a), formed by treating each segment as a graph vertex and joining the vertices of associated segments. The allowed partitions can then be deduced by inspecting the correlation graph. This graph is decomposed, by cutting lines, to form complete sub-figures:

20 points, lines, triangles, etc, and each sub-figure having the property that every vertex is joined to every other vertex of the sub-figure.

One such decomposition is shown in sub-graph figure 3(b). The correlation graph (figure 3(a)) has been decomposed into three point sub-figures (d), (e) and (f) and two line sub-figures (a,b) and (e,g).

25 This is not a unique solution, for other decompositions lead to other different partition groupings, eg:-

(a,b); (c,e); (d); (f); (g); and (b,g); (c,e); (a); (d); (f); etc. This decomposition and the other decompositions given above are all examples of the partition 1³ 2². The sub-graph shown however, groups nearest neighbour segments a and b, c and g, and is thus convenient to implement as a configuration design for the front-plane electrodes. This design is implemented as shown in bold outline in figure 4.

35

The display is addressed by having a single data electrode for each electrode group - ie. each sub-figure, and separate strobe electrodes carrying different isogonal strobe waveforms for each vertex of the sub-figure. Since the strobe waveforms can be used over again for the different sub-figures, the minimum number required is only the largest sub-graph dimension occurring in the decomposition - in this case only two. Thus an N-digit display - ie a display having N adjacent display units - using the decomposition grouping shown in subgraph figure 3(b), requires only (3+2).N + 2 connections, a reduction of 2N-1 connections over direct drive. Just as the decomposition of the correlation graph is not in general unique, neither is the assignment of strobe functions to back place electrodes. One possible assignment of strobe signals (f₁,f₂) is given as follows:-

Thus, in the back-plane one common strobe electrode, the f_1 -strobe electrode, is associated with display segments a, e, f and g; whilst a second common strobe electrode, the \mathbf{f}_2 -strobe electrode, is associated with display segments b, c and d. See figure 4, where the f_1 -, and f_2 back plane electrodes are shown in broken outline.

25 Although in this particular case the design of artwork to implement the arrangement of figure 4 is feasible, in general solutions may be generated which are difficult or impossible to implement without unacceptable cross-overs in the electrodes. It is in general desirable therefore to enumerate the possible solutions both to minimise the connection count and to choose electrode interconnections that are topologically possible and geometrically convenient. In general, the most favourable solutions will be those that decompose the correlation graph into sub-figures of approximately equal dimensions.

30

05

10

Alternative optimal electrode interconnections for the "front" electrode segments, suitable for isogonal signal address, other 1^3 2^2 partitions, are listed as follows:-

Each of these arrangements of the "front" electrodes may be combined with any arrangement of "back" electrodes in which each member of each of the pairs of "front" electrodes overlaps a different "back" electrode. For example, in the first arrangement of interconnections listed above the allowed overlaps are of the form:-

where, preferably, either $f_3 = f_1$ and $f_4 = f_2$ or $f_3 = f_2$ and $f_4 = f_1$ and the "front" electrodes for segments (e), (f) and (g) may overlap with any "back" electrode.

In the particular case described thus far, the connection count for an 8-digit 7-bar segment display is 42, fifteen less connections than are required for direct address.

30

35

Notwithstanding this reduction in the number of external connections required, the connection count is still relatively high. It can be shown that this is due to the low segment usage associated with the display of the character "1". Further improvements may be achieved by increasing the character "1" segment usage, introducing an extra segment and modifying the character fount.

Thus, in this the second example, an 8-segment unit instead is used to display the numerals "O" to "9". This unit includes seven segments a to g arranged in figure-of-eight form as in the previous example figure 1(a), but it also includes an eighth segment h to the right and at the foot of the unit, adjacent segment d - see figure 1(b). The character fount now used is similar to the fount shown in figure 2(a) except that the form for display of numeral "1" has been modified as shown in figure 2(b). Thus the numeral "1" is displayed by driving ON display segment a, b, c, d and h and not merely segments b and c as before. The modified usage matrix for this display is shown in table 3 appearing below:-

TABLE 3

SEGMENT USAGE MATRIX (SUM)

Format:

8-bar

Character set: Numerals $0 \rightarrow 9$; (or, $0 \rightarrow 9$, E).

SEGMENTS DRIVEN f g h "0" 117 11 CHARACTER DISPLAYED "2" "5" "6" "8" 11g11 ("E" 0)

The correlation graph for this 8-bar display, derived as before by comparing columns, is shown in figure 5(a). Comparing the two correlation graphs - figs 3(a) and 5(a), it can be seen that the connectivity of this new graph is higher. More convenient solutions can now be found. One possible decomposition is shown in figure 5(b). This shows the display segments partitioned as follows:-

The front-plate data electrodes defining the display segments a to h are shown in figure 7. A single shaped electrode is associated with segments a, b and g, another electrode with segments c and e, another with segments d and f, and a fourth electrode with segment h. Each display unit therefore requires only 4-data address electrodes. To simplify illustration, only two adjacent units are shown in the figure.

The group of largest dimension, the group (a,b,g) includes three segments, thus a minimum of three electrodes are required on the backplane to apply the required strobe address. One suitable choice of electrode layout is shown in figure 6, the strobe-function assignment chosen being as follows:-

Thus the back-plane electrodes are associated one with segment a, another with segments b, f and e, and a third with segments g, c, d and h. This particular arrangement is convenient because the electrodes of adjacent display units may be joined in a continuous series, using the arrangement of figure 6 as a repeat pattern. The different partitions of an 8-segment unit are tabulated below -

30

05

table 4 - and for the chosen partition $-1.2^2.3$ - the number of external connections required for 8-digit display is 35, a further elimination of some seven external connections.

O5 TABLE 4
CONNECTION COUNT

Format: 8-bar; No of Units (N = 8)

	PARTITION	No of GROUPS	No of CONN	ECTIONS
10			General N	N = 8
	8	1	8 + N	16
	1.7	2	7 + 2N	23
	2.6	11	6 + 2N	22
	3.5	11	5 + 2N	21
1.5	4 ²	11	4 + 2N	20
	1 ² .6	3	6 + 3N	30
	1.2.5	Ħ	5 + 3N	29
	1.3.4	11	4 + 3N	28
20	2 ² .4	. 11	4 + 3N	28
	2.32	: 11	3 + 3N	27
	1 ³ .5	4	. 5 + 4N	37
	12.2.4	17	4 + 4N	36
0.5	1 ² .3 ²	11	3 + 4N	35
25	+ 1.2 ² .3	n	3 + 4N	35 ←
	24	11	2 + 4N	34
	14.4	5	4 + 5N	44
	1 ³ 2.3	n	3 + 5N	43
30	$1^{2}.2^{3}$	11	2 + 5N	42
-	1 ⁵ 3	6	3 + 6N	51
	1422	11	2 + 6N	50
35	162	7	2 + 7N	58
	18	8	1 + 8N	65
		-15-		

The character display may be used as part of a more comprehensive display - for example, as the digital display part - the odometer or odometer/tripmeter display part - of a car dashboard display. An analogue car dashboard display driven by isogonal waveform signals is described in co-pending GB Patent Application No 81. 28733. The digital display described may be incorporated as a useful addition to this display, and since strobe connections are already provided for analogue display, only 32 additional connections are required for 8-digit display - eg 3-digit tripmeter and 5-digit odometer.

10

15

25

30

05

A control circuit for driving the 8-digit 8-bar segment display is shown in figure 8. In this circuit a 16-bit static shift register 101 is used to generate the isogonal waveform signals - in fact pseudo-random binary sequence (prbs) signals - required to strobe the three back-plane electrodes. The pseudorandom sequencing is introduced by feedback; the third register output line Q_2 , and the fifth output line Q_4 , ie two of the sixteen output lines Q_0 to Q_{15} , are connected to the register input D via an exclusive OR gate 103. To introduce self-starting capability, the first four output lines of the register 101, lines \mathbf{Q}_{0} to \mathbf{Q}_{3} , are coupled to this same input D via a NOR gate 105 and both OR and NOR gate outputs connected to this input D by an additional OR gate 107. Sixteen orthogonal prbs waveform signals are generated, one on each line Q_0 to Q_{15} , when clock pulses derived and divided down from a master clock CP are applied to the clock input C of the register 101. This shift register 101 is somewhat larger than would be required to produce three strobe signals. However, the larger register 101 described here generates as many signals as may be required for analogue display - here sixteen as required for the analogue display described in co-pending patent application GB 81.28733.

The output lines Q_0 to Q_2 of the register 101 are connected to the three back-plane electrode connections, the connections for the $f_1f_2f_3$ -electrodes (cf figure 6) via drive amplifiers (not shown). The prbs waveforms are repeated after every thirty-one bits.

plane electrodes are synthesised bit by bit using a 512 x 4-bit preprogrammed read-only memory ROM 109 which serves four 8-bit shift-andstore bus registers 111 to 114, the data input D of each of these
registers 111 to 114 being connected to the four read outputs Q_0 to Q_3 of the ROM 109. The eight bus line outputs Q_0 to Q_7 of each of these
registers are connected via drive amplifiers (not shown) to a different one of the eight display units; each register is dedicated to
serve a different one of the four front-plane electrodes of each display unit. Thus the first bus line output Q_0 of each register 111 to
114 is connected to the most significant digit display unit;;
the last bus line output Q_7 of each register 111 to 114 is connected
to the least significant digit display unit. The first register 111
serves the front-plane electrodes corresponding to the segments a,b
and g;.....; the fourth register 114 serves the front-plane electrodes corresponding to segment h.

05

10

15

20

25

30

35

The ROM 109 memory is pre-programmed in sixteen blocks of 32 x 4 bits - each block is dedicated to the display of a particular character. For display of the ten numerals "0" to "9" only ten of these blocks therefore are utilised. In each block, each row of 32 bits in fact only 31 bits in each case are utilised - replicates a 31 bit prbs waveform, one of the waveforms produced by the shift register 101 output lines Q_0 to Q_2 or one other waveform orthogonal to these - eg the waveform on output line Q3, whichever is required by the particular one of the four front-plane electrodes served by that row for display of the character particular to that block. The ROM 109 has nine address inputs A_0 to A_8 . The address on four of these inputs A_5 to A_8 determines the memory block from which stored data is read. At any one time, the address on these inputs A_5 to A_8 is a 4-bit word coded for a particular character to be displayed. The particular 4 bits read from the four read outputs $\mathbf{Q}_{_{\scriptsize{O}}}$ to $\mathbf{Q}_{_{\scriptsize{3}}}$ of the ROM 109, chosen from the addressed block, one bit from each 31-bit row, are dependent on the phase of the generated strobe signals, this phase being indicated by a five-bit address on the remaining address inputs, inputs A_{α} to A_{α} . This five-bit address is provided from the outputs \mathbf{Q}_{o} to \mathbf{Q}_{4} of a 5-bit binary counter 115. This counter 115 is clocked at the same rate as

the shift register 101 at one eighth the master clock frequency. The clock signal for this counter 115, and for the shift register, are derived from the master clock CP via a divide-by-eight 3-bit counter 117 and an inverter 119. The reset input R of the 5-bit counter 115 is connected to the output of NOR-gate 105 via a reset OR-gate 120 to enable start reset. The five output lines Q_0 to Q_4 of the 5-bit counter 115 are connected to an AND-gate 121, the output of the AND-gate 121 to the reset input R of the 5-bit counter 115 via the reset OR-gate 120. This restricts the counter 115 to a 0 to 30 count. The counter is reset every 31 clock pulses.

05

10

The remaining components of this circuit are provided for the storage of input data, for addressing the ROM 109 and for co-ordinating events. The circuit has three input lines, one for data, one for 15 data clock signal, and one for data valid signal. Input data is presented as a serial coded signal 32-bit long, ie 8 x 4-bit words, each word coded for the particular display character that is to be displayed by a corresponding one of the eight display units. This data is clocked into the temporary store, a 4-bit series/parallel 20 shift register 122 under the control of the data clock CD. The data temporarily stored in this register is read out, one 4-bit word at a time and written into a data store, a random access memory RAM 123. The read/write mode of this RAM 123 is controlled by a monopulse signal derived from the data clock CD via a divide-by-four 2-bit 25 binary counter 125, an inverter 127, a monopulse delay 129 and a monostable 131. Each data word stored in the shift register 122 is written into a selected memory address of the RAM 123 following every fourth data clock pulse. The memory address, which is incremented following each write pulse, is selected by a 3 x 2:1 multiplexer 133. The 30 multiplexer 133 is clocked at one quarter of the data clock frequency, the clock signal being derived from the data clock CD via the 2-bit counter 125, the inverter 127 and a monostable 135. The output of multiplexer 133 is determined by a 3-bit counter 137 clocked at one quarter of the data clock frequency. The clock pulses for this counter 35 137 are provided from the inverting output \overline{Q} of the monostable 135.

Both the 2-bit counter 125 and the 3-bit counter 137 are reset at start of data, ie when the data valid line goes Hi, the reset inputs R of these counters being connected to the data valid line via a monostable 139.

05

The multiplexer 133 is also connected to the 3-bit counter 117, and when switched to relay the signals on the output of this counter 117, provides the read-out address for RAM 123.

10 Operation of this circuit will now be described:-

LOADING DATA

- 1. The DATA VALID line rises Hi at start of data and resets counters 15 125 and 137.
 - 2. The data clock CD clocks data bits into the S/P shift register 122 and clocks the 2-bit counter 125.
- 20 3. On the fourth data clock pulse, the delay monostable 129 and monostable 131 are activated and the multiplexer 133 is switched.
- 4. The RAM R/W delay monopulse 129 times out first and clocks pulse mono 131 to activate the R/W input of the RAM 123 to write the contents of the S/P shift register 121 into RAM address 000.
 - 5. The delay mono 135 to the 3-bit counter 137 then times out and changes the 3 x 2:1 multiplexer back to read address counters 117 and clocks the 3-bit binary counter 137 to output the write address 001.
 - 6. Steps 2 to 5 are repeated a further seven times to load successive words from the S/P shift register 122 into addresses 001 to 111 of the RAM 123.

35

7. The data is now loaded in the RAM 123, the DATA VALID line goes Lo and the data clock line remains Lo.

DISPLAYING DATA

05

10

- 1. The 16-bit static shift register 101 is self-starting and outputs sixteen 31-bit prbs waveform signals on its output lines Q_0 to Q_{15} , one bit every eight master clock pulses. On start, the 5-bit binary counter 115 is reset and counts 0 to 30 in synchronism with the prbs bit rate ie at one eighth of the master clock frequency.
- 2. The master clock CP clocks the 3-bit read address counter 117 to output sequentially the data values stored in the RAM 123.

15

3. These address the address inputs A₅ to A₈ of the ROM 109 and cause the appropriate bits of the desired prbs waveforms to be loaded into the four shift-and-store bus registers 111 to 114. These registers 111 to 114 are then strobed at one eighth of the master clock frequency by a monostable 141 connected to the inverter 119 following the read address counter 117. The 5-bit binary counter 115 is incremented so that the next bits of the desired prbs waveforms are output from the ROM 109 during the next eight master clock pulses.

25

Details of a preferred panel construction now follow. The display panel shown in figure 9 is in the form of a lecithin aligned dyed phase change cell 201 incorporating a layer 203 of liquid crystal material. This material is of D82.E61 blue dyed nematic liquid crystal to which has been added approximately 3.9% by weight of CB15 cholesteric liquid crystal material. The blue anthraquinone dichroic dye D82 is given by the structural formula:-

This dye - 4,5-diamino-2, 7-di-isobutyl-1, 8-dihydroxy anthraquinoneis described in UK Patent Application No GB. 2,081,736A,

The liquid crystal materials E61, CB15 and the dyed nematic material D82.E61 are listed in the trade catalogues of BDH Ltd, Poole, Dorset, England.

15

20

25

30

05

The liquid crystal layer 203 is enclosed between two glass support plates 205 and 207 and to approximately 9 microns thick to give an acceptable the shold voltage characteristic of about 5 volts. The plates 205 and 207 are each 4mm thick and have been coated with 30 Ω/\Box indium tin oxide, and etched to give the electrode configuration shown in figures 6 and 7 above, the electrodes front and back, 209 and 211, overlapping to define eight adjacent display units. The back plate 207 of the panel cell 201 is backed by a white card reflector 213. This reflector 213 has been tinted slightly yellow to give a neutral gray colour appearance in the display background.

For this panel the data clock rate chosen is approximately 32kbaud giving a load time of approximately 1 msec. The frame rate is around 30 Hz to give flicker free display, the master clock running therefore at 31 x 8 x 30 = 8 kHz. Whilst the loading and display sequences may overlap and as a consequence signal data may become corrupted, the load time is so small - approx 1 msec - that in practice the effect is imperceptible.

In general terms, for the 8-segment display of figure 1(b) above, the optimal electrode interconnections of "front" electrodes suitable for isogonal-signal address are listed below:-

The latter two of the above arrangements are less favourable than the first for it is difficult to design simple electrode patterns having the desired connectivity.

Each of these arrangements of the "front" electrodes may be combined with any arrangement of "back" electrodes in which each member of each set of connected "front" electrodes overlaps a different "back" electrode. For example, in the first arrangement of interconnections listed above the allowed overlaps are of the form:-

where preferably f_4 , f_5 are two different members of the set f_1 , f_2 , f_3 and likewise f_6 , f_7 and furthermore the electrode associated with segment 25 h may overlap any "back" electrode.

Examples of 7-segment and 8-segment display of the numeral characters "0" to "9" have been discussed above. The invention is however not so limited and is applicable to displays using other segment content and design, and for displaying other characters.

30

Decimal point indication can be included readily for either the 7-segment display, as shown in figure 4 (broken outline) or the 8-segment display, as shown in figures 6 and 7 (broken outline) by including an additional segment, segment i. This requires one additional electrode for each display location. For the 7-segment display, this electrode can be designed to overlap with either the f₁ common "back" electrode or the f₂ common "back" electrode (as shown in figure 4). This corresponds to the signal assignment:-

05

25

30

35

For the 8-segment display, this electrode can be designed to overlap with either the common electrode bearing f_2 (Q_1 of figure 6, as shown) or f_3 (Q_2 of figure 6). Based on this arrangement, the signal assignment is:-

[It is noted that the electrodes Q_o,Q_l (figure 6) are configured to avoid any overlap with the i-segment electrode (figure 7) at other parts of the display area.]

Although the invention disclosed here has particular advantages for driving displays based on the dyed or undyed cholesteric-to-nematic phase change effect, it may also be advantageous for devices using nematic or long pitched cholesteric materials. Thus for example the method described hereinbefore may be preferred to multiplexed drive for variable birefringence displays or single polariser guest-host displays. Furthermore, the invention may be used for applications using low voltage circuitry or requiring wide temperature operation. Low threshold materials such as E24LV or E31LV (supplied by BDH Chemicals Ltd) or wide temperature range materials such as biphenyl mixtures (see GB Patent No 1452826)

for example the materials E43, E44 (supplied by BDH Chemicals Ltd) may be used.

It is to be understood that the terms "front" and "back" as

applied to the electrodes hereinbefore have no special significance.

The terms however serve only to distinguish those electrodes that are associated with particular display locations (the "front" electrodes shown in figures 4 and 7) from those electrodes that are common to all adjacent locations (the "back" electrodes shown in figures 4 and 6).

CLAIMS

05

10

15

20

25

30

35

1. A multi-character multi-segment electrically addressable display device, capable of displaying each one of a plurality of different display characters, the members of a character set, each at a plurality of adjacent locations, the device comprising:-

a display panel (201) having two sets of electrodes (209, 211) one each side of an electrically sensitive medium (203), each set mounted on a supporting substrate (205, 207); and,

(205, 207); and,
panel address means (fig. 8) connected to the display
panel electrodes (209, 211) to apply, in response to
control, appropriate address drive signals thereto;
one set of electrodes (209) overlapping the other set (211)
to define a plurality of display character segments (fig. 1)
at each location; wherein at each location electrodes of
the one set (209) are each associated with a different
group of one or more of the segments (a to g), at least
one electrode (209) being associated with a group of two or
more of the segments (fig 4; fig 7), and, wherein each
electrode of the other set (211) extends between and
across each location, and is associated with no more than
one segment (a to g) in each group of segments, at least
one electrode (211) being associated with a plurality of
the groups at each location;

the device being characterised in that:-

the panel address means (fig. 8) includes a signals source (101 to 107) to provide as drive signals a set of continuous isogonal signals, the segment connectivity of the electrodes (209, 211) being identical at each location and such that for each display character the display segments corresponding thereto (fig. 2) can be held ON simultaneously upon application of different isogonal signals to the electrodes (209, 211) associated therewith, and the non-selected segments for each display

character can be held OFF simultaneously upon application of identical isogonal signals to the electrodes (209, 211) associated therewith.

- 2. A display device as claimed in claim 1 above, being a device capable of displaying each one of the plurality of different display characters, the members of one of the character sets: the numerals "0" to "9", or the numerals "0" to "9" and the exponent symbol "E", wherein the electrodes (209, 211) define by their overlap seven display segments (a) to (g) arranged in a figure-of-eight formation (fig. 1 (a)) at each location, and the electrodes of the one set (209) aforementioned are associated with two pairs of connected segments (eg a & b; c & g) and three isolated segments (eg d, e, f) at each location (fig. 4).
 - 3. A display device as claimed in claim 2 above wherein the electrodes of the one set (209) aforementioned are associated with two pairs of connected segments, paired segments (a) and (b), (g) and (c) and three isolated segments, the segments (d), (e) and (f) at each location (fig. 4).

15

20

4. A display device as claimed in claim 3 above wherein the electrodes of the other set aforementioned include one electrode (f1)associated with all segments (a), (e), (f) and
25 (g); with another electrode (f2) associated with all segments
(b), (c) and (d) - (fig. 4).

- 5. A display device as claimed in claim 1 above, being a device capable of displaying each one of the plurality of different display characters, the members of one of the character sets: the numerals "0" to "9", or the numerals "0" to "9" and the exponent symbol "E"; wherein, the electrodes (209, 211) define by their overlap eight display segments (a) to (h) at each location (Fig. 1(b)) the seven display segments (a) to (g) being arranged in a figure-of-eight formation, and the remaining segment (h) being disposed at the foot of this figure adjacent to segments (c) and (d), at each location.
 - 6. A display device as claimed in claim 5 above, wherein the electrodes of the one set (209; Fig 7) aforementioned are associated with groups of segments as follows:- (a, b & g); (c & e); (d & f); and, (h), respectively.

15

20

- 7. A display device as claimed in claim 6 above, wherein the electrodes of the other set (211; Fig. 6) aforementioned include one electrode (Q_0) associated with all segments (a); another electrode (Q_1) associated with all segments (b), (e) and (f); and, another electrode (Q_2) associated with all segments (c), (d), (g) and (h).
- 8. A display device as claimed in any one of the preceding claims
 1 to 7, wherein the one set (209; Fig 7) of electrodes aforementioned includes further electrodes, at least one at each
 location, these further electrodes overlapping an electrode of
 the other set (211; Fig 6) aforementioned to define at each
 location a segment (i) for the display of a decimal point.
 - 9. A display device as claimed in any one of the preceding claims 1 to 8, wherein the different isogonal signals are pseudorandom binary sequence code signals.

10. An analogue and character combination display comprising a character display device as claimed in any one of the preceding claims, the panel including additional electrodes each side of the medium, these defining by their overlap an analogue display area; wherein the electrodes of the other set (211) aforementioned extend across this area and in common with other of the additional electrodes on the same substrate (207) are connected to the panel address means (fig. 8) and share a common isogonal address signals source (101).

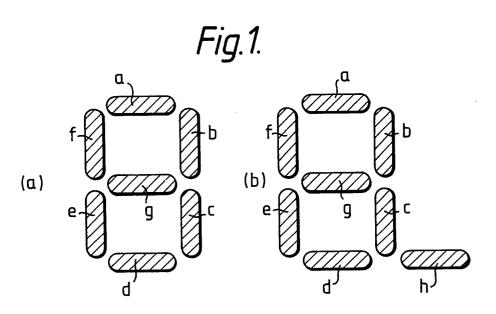
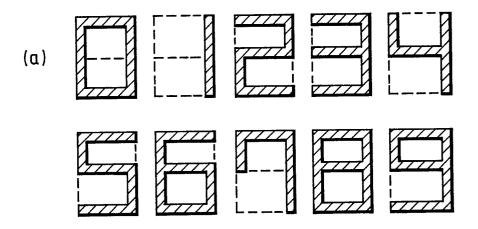
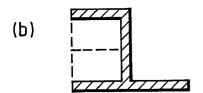




Fig.2.

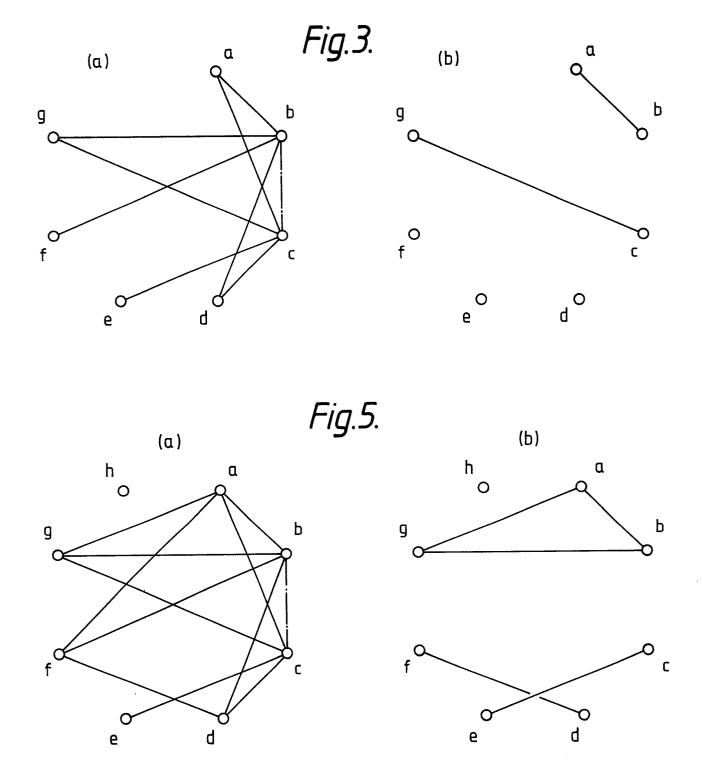


Fig.4.

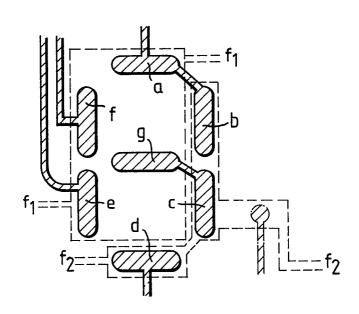


Fig.9.

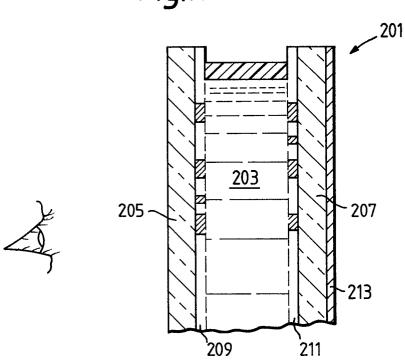
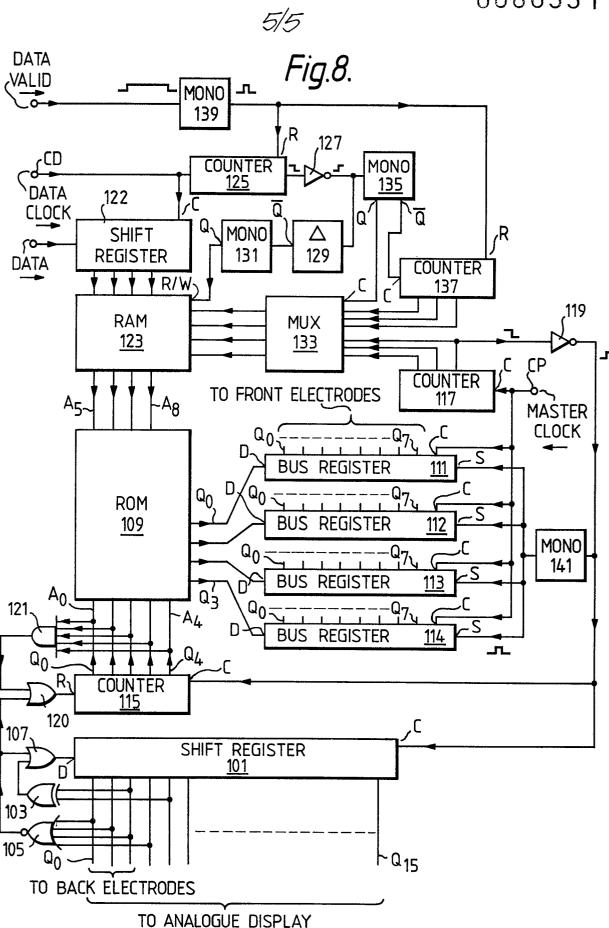



Fig.6.

