11) Publication number:

0 088 194 A2

12

EUROPEAN PATENT APPLICATION

2 Application number: 82307020.6

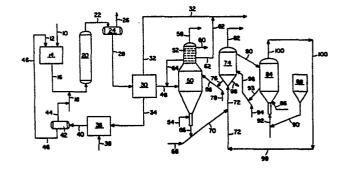
(51) Int. Cl.3: C 10 J 3/54

22 Date of filing: 31.12.82

30 Priority: 04.03.82 US 354680

Applicant: Exxon Research and Engineering Company, P.O.Box 390 180 Park Avenue, Florham Park New Jersey 07932 (US)

43 Date of publication of application: 14.09.83 Bulletin 83/37


(2) Inventor: Brown, Leo Dale, 3402 Newman Drive, Baytown Texas 77521 (US)

Designated Contracting States: BE DE FR GB NL

A Representative: Field, Roger Norton et al, ESSO Engineering (Europe) Ltd. Patents & Licences Apex Tower High Street, New Malden Surrey KT3 4DJ (GB)

An improved process for the gasification of coal and other mineral-containing carbonaceous solids.

Agglomerate formation due to sintering is avoided in the nonslagging fluidized bed gasification of carbonaceous solids containing ash-forming, inorganic constituents by carrying out the gasification in the presence of an added hydrated aluminosilicate or an added hydrated magnesium silicate. In a preferred embodiment of the invention, the gasification zone is part of an integrated coking and gasification process wherein coal liquefaction bottoms are coked and the resultant coke is gasified.

EP 0 088 194 A2

1

This invention relates to the processing of coal and other mineral-containing carbonaceous solids and is particularly concerned with an improved process for gasifying such materials, particularly the carbonaceous solids produced by coking liquefaction residues.

In most nonslagging, fluidized bed gasifica-7 tion processes, coal and other mineral-containing 8 carbonaceous solids are reacted with steam to produce 9 hydrogen, carbon monoxide and, in some cases, methane. 1.0 Normally, the heat for this reaction is supplied by 1.1 introducing air or oxygen into the gasifier to burn a 12 portion of the organic material in the solids. Although 13 these gasifiers are operated at temperatures below which 14 slagging occurs, it has recently been found that sinter-15 ing of the mineral matter in the feed solids may occur 16 thereby resulting in the formation of agglomerates. 17 is believed that this sintering occurs mainly in the 18 portion of the gasifier where heat is being generated 19 by the introduction of air or oxygen into the reactor. 20 It is further believed that localized combustion pro-21 duces hot spots wherein portions of the mineral matter 22 in the carbonaceous feed material are subjected to 23 relatively high temperatures. The resulting agglom-24 erates formed by sintering of the mineral matter con-25 stituents can plug distributors in the reactor and 26 eventually become so large that they will inhibit 27 fluidization of the solids during the gasification 28 process. 29

It has been found that sintering is a major problem in the integrated coking and gasification process utilized to upgrade the carbonaceous residues produced by liquefying coal and other mineral-containing carbonaceous solids. Normally, this integrated coking

and gasification process comprises subjecting the liquefaction residues to pyrolysis conditions to produce gases, hydrocarbon liquids and coke and then steam 4 gasifying the coke to produce hydrogen and carbon monoxide for use as fuel. It has been found that during the gasification portion of the integrated process, the inorganic constituents of the coke tend to sinter thereby forming agglomerates which interfere with the fluidized bed gasification.

10

The present invention provides an improved 11 process for the gasification of coal and other carbon-12 aceous solids which contain ash-forming, inorganic 13 In accordance with the invention it has constituents. 14 now been found that agglomerate formation due to sinter-15 ing in a nonslagging gasification zone can be substan-16 tially avoided by carrying out the gasification process 17 in the presence of certain added inorganic solids 18 hydrated aluminosilicate 19 which are compounds or hydrated magnesium silicate compounds. 20 The invention is based in part upon the discovery that 21 the addition of such compounds will raise the sintering 22 temperature of the mineral matter constituents in the 23 carbonaceous feed material and thereby prevent agglom-24 eration of the particles undergoing gasification. 25 Preferred hydrated aluminosilicate compounds which are 26 effective in the process of the invention include - 27 kaolinite, montmorillonite, pyrophyllite and 28 Preferred hydrated magnesium silicate compounds include 29 30 talc, serpentine and hectorite. Normally, these inorganic compounds are added to the gasifier feed in an 31 amount ranging from about 2 to about 20 percent by 32 33 weight.

The process of the invention is preferably 1 employed in an integrated coking and gasification system wherein carbonaceous solids containing inorganic consti-3 4 tuents are pyrolyzed in a coking zone to form gases, hydrocarbon liquids, and mineral-containing coke. 5 coke is then gasified with steam in a nonslagging gasification zone in the presence of an added hydrated 7 aluminosilicate or hydrated magnesium silicate compound 8 9 to produce a synthesis gas composed primarily of hydrogen and carbon monoxide. In the preferred embodiment 10 of this process, the feed to the coking zone is a heavy 11 bottoms produced by liquefying coal or a similar carbon-12 aceous feed material at an elevated temperature and 13 pressure by treating it with a hydrocarbon solvent and 14 gaseous hydrogen to produce coal liquids and a heavy 15 bottoms stream, which normally boils above 1000°F, 16 composed of carbonaceous material and inorganic consti-17 tuents. 18

19

The drawing is a schematic flow diagram illustrating a preferred embodiment of the invention.

22

The process depicted in the drawing is a pre-23 ferred embodiment of the invention in which bituminous 24 coal, subbituminous coal, lignitic coal, or similar 26 solid carbonaceous feed material is first liquefied by 27 contacting the solids with gaseous hydrogen in the 28 presence of a hydrogen-donor solvent. Gases are sepa-29 rated from the liquefaction product and the remaining 30 material is then fractionated to obtain liquids boiling normally up to about 1000°F and a heavy bottoms product 31 normally boiling in excess of about 1000°F. 32 33 of the liquid stream is hydrogenated and recycled for

use as solvent and the remaining liquids are withdrawn as product coal liquids. The heavy bottoms are then 2 pyrolyzed to produce gases, additional liquid products 3 and coke containing inorganic constituents. This coke is gasified with steam in the presence of an added 5 hydrated aluminosilicate or hydrated magnesium silicate It will be understood that the process of the invention is not restricted to the use of the added hydrated aluminosilicate or magnesium silicate compound 9 in the gasifier of the coal liquefaction and integrated 10 coking and gasification process illustrated in the 11 drawing. To the contrary, the invention may be employed 12 in any nonslagging gasification process in which 13 carbonaceous solids containing between about 5 weight 14 percent and about 40 weight percent inorganic consti-15 tuents or mineral matter are gasified with steam, and in 16 which oxygen or an oxygen-containing gas such as air is 17 normally used to provide heat input into the gasifier. 18 For example, the invention can be used in connection 19 with the fluidized bed gasification of coal, liquefac-20 tion residues, coal char, solid organic wastes, and the 21 like. 22

In the process depicted in the drawing, coal 23 24 or similar solid, carbonaceous feed material is intro-25 duced into the system through line 10 from a coal storage or feed preparation zone, not shown in the 26 drawing, and combined with a hydrogen-donor solvent 27 introduced through line 12 to form a slurry in slurry 28 preparation zone 14. The feed material employed will 29 30 normally consist of solid particles of bituminous coal, subbituminous coal, lignitic coal, brown coal, or a 31 mixture of two or more such materials. 32 In lieu of coal, other solid carbonaceous materials may be intro-33 duced into the slurry preparation zone. Such materials 34 include organic wastes, oil shale, coal char, coke, 35 liquefaction bottoms and the like. The particle size of 36

the feed material may be of the order of about one-1 2 quarter inch or smaller along the major dimension but it is generally preferred to use coal which has been crushed and screened to a particle size of about 8 mesh 4 or smaller on the U. S. Sieve Series Scale. It is also 5 generally preferred to dry the feed particles to remove 6 excess water, either by conventional techniques before 7 the feed solids are mixed with the solvent in the slurry 8 preparation zone or by mixing wet solids with hot 9 solvent at a temperature above the boiling point of 10 11 water, preferably between about 250°F and about 350°F, to vaporize the water in the preparation zone. 12 moisture in the feed slurry is preferably reduced to 13 less than about 2.0 weight percent. 14

15 The hydrogen donor solvent used in preparing 16 the slurry in preparation zone 14 will normally be a 17 coal-derived solvent, preferably a hydrogenated recycle solvent containing at least 20 weight percent of com-18 19 pounds that are recognized as hydrogen donors at the 20 elevated temperatures of about 700°F to about 1000°F generally employed in coal liquefaction reactors. 21 22 Solvents containing at least 50 weight percent of such 23 compounds are preferred. Representative compounds of this type include $C_{10}-C_{12}$ tetrahydronaphthalenes, 24 C₁₂ and C₁₃ acenaphthenes, di, tetra- and octahydro 25 anthracenes, tetrahydroacenaphthenes, and other deriva-26 tives of partially hydrogenated aromatic compounds. 27 Normally, the solvent will contain above about 0.8 28 weight percent donatable hydrogen, preferably between 29 about 1.2 and about 3.0 weight percent. Such solvents 30 have been described in the literature and will therefore 31 be familiar to those skilled in the art. The solvent 32 composition resulting from the hydrogenation of a 33 recycle solvent fraction will depend in part upon the 34 particular coal used as the feedstock to the process, 35 the process steps and operating conditions employed, 36

- 1 and the conditions used in hydrogenating the solvent
- 2 fractions selected for recycle following liquefaction.
- 3 In slurry preparation zone 14, the incoming feed coal is
- 4 normally mixed with solvent recycled through line 12 in
- 5 a solvent-to-coal weight ratio of from about 1:1 to
- 6 about 4:1, preferably from about 1.2:1 to about 1.8:1.
- 7 The coal-solvent slurry formed in slurry preparation zone 14 is withdrawn from the zone through line 16; mixed with a hydrogen-containing gas, preferably molecular hydrogen, introduced into line 16 via 10 line 18; preheated to a temperature above about 670°F; 11 and passed upward in plug flow through liquefaction 12 reactor 20. The mixture of slurry and hydrogen-contain-13 ing gas will contain from about 1 to about 8 weight 14 percent, preferably from about 2 to about 5 weight 15 percent, of hydrogen on a moisture-free coal basis. 16 The liquefaction reactor is maintained at a temperature 17 between about 700°F and about 900°F, preferably between 18 800°F and about 880°F, and at a pressure between about 19 300 psig and about 3000 psig, preferably between about 20 1500 psig and about 2500 psig. Although a single lique-21 faction reactor is shown in the drawing as comprising 22 the liquefaction zone, a plurality of reactors arranged 23 in parallel or series can also be used, provided that 24 the temperature and pressure in each reactor remain 25 approximately the same. Such will be the case if it is 26 desirable to approximate a plug flow situation. 27 slurry residence time within reactor 20 will normally 28 range between about 15 minutes and about 150 minutes, 29 preferably between about 40 minutes and about 90 minutes. 30
- 31 Within the liquefaction zone in reactor 20, 32 the coal solids undergo liquefaction or chemical conver-
- 33 sion into lower molecular weight constituents. The high
- 34 molecular weight constituents of the coal are broken
- 35 down and hydrogenated to form lower molecular weight

gases and liquids. The hydrogen-donor solvent molecules 1 react with organic radicals liberated from the coal to 2 stabilize them and thereby prevent their recombination. 3 The hydrogen in the gas introduced into line 16 via line 4 18 serves at least in part to stabilize organic radicals 5 generated by the cracking of coal molecules. 6 hydrogen also serves as replacement hydrogen for deplet-7 ed hydrogen-donor molecules in the solvent and its 8 presence results in the formation of additional hydrogendonor molecules by in situ hydrogenation to convert 10 aromatics into hydroaromatics. 11

The effluent from liquefaction reactor 20, 12 which contains gaseous liquefaction products such as 13 carbon dioxide, carbon monoxide, ammonia, hydrogen, 14 hydrogen sulfide, methane, ethane, ethlyene, propane, 15 16 propylene and the like; unreacted hydrogen from the 17 feed slurry, light liquids; and heavier liquefaction products including mineral matter, unconverted coal 18 solids and high molecular weight liquids is withdrawn 19 from the top of the reactor through line 22 and passed 20 to separator 24. Here, the reactor effluent is separat-21 ed, preferably at liquefaction pressure, into an over-22 head vapor stream which is withdrawn through line 26 and 23 a liquid stream removed through line 28. 24 The overhead vapor stream is passed to downstream units where the 25 ammonia, hydrogen and acid gases are separated from 26 the low molecular weight gaseous hydrocarbons, which are 27 recovered as valuable byproducts. Some of these lighter 28 hydrocarbons, such as methane and ethane, may be steam 29 reformed to produce hydrogen that can be recycled where 30 31 needed in the process.

The liquid stream removed from separator 24 33 through line 28 will normally contain low molecular 34 weight liquids, high molecular weight liquids, mineral 35 matter or ash, and unconverted coal. This stream is

passed through line 28 into fractionation zone 30 where the separation of low molecular weight liquids from the high molecular weight liquids boiling above about 1000°F and solids is carried out. Normally, the fractionation zone will be comprised of an atmospheric distillation column in which the feed is fractionated into an overhead fraction composed primarily of gases 7 and naphtha constituents boiling up to about 350°F and intermediate liquid fractions boiling within the range from about 350°F to about 700°F. The bottoms from the 10 atmospheric distillation column is then passed to a 11 vacuum distillation column in which it is further 12 distilled under reduced pressure to permit the recovery 13 14 of an overhead fraction of relatively light liquids and heavier intermediate fractions boiling below about 850°F 15 and about 1000°F. Several of the distillate streams 16 from both the atmospheric distillation column and the 17 vacuum distillation columns are combined and withdrawn 18 as product from the fractionation zone through line 32. 19

Another portion of the liquids produced in 20 the fractionation zone are withdrawn through line 34 21 for use as feed to the solvent hydrogenation zone 36. 22 This stream will normally include liquid hydrocarbons 23 24 composed primarily of constituents boiling in the 350°F to 700°F range recovered from the atmospheric 25 26 distillation column and heavier hydrocarbons in the 700°F to 850°F boiling range recovered from the vacuum 27 distillation column. These liquids are introduced into 28 29 solvent hydrogenation zone 36 where they contacted with molecular hydrogen introduced into the zone through 30 line 38 in the presence of a hydrogenation catalyst. 31 The solvent hydrogenation zone is operated at about the same pressure as that in liquefaction reactor 20 and at 33 a somewhat lower temperature. In general, temperatures within the range between about 550°F and about 850°F, 35 pressures between about 800 psig and about 3000 psig,

1 and space velocities between about 0.3 and about 3.0 pounds of feed/hour/pound of hydrogenation catalyst are employed in the hydrogenation zone. It is generally 4 preferred to maintain a mean hydrogenation temperature within the zone between about 620°F and about 750°F. 6 Any of a variety of conventional hydrotreating catalyst may be employed in the zone. Such catalysts typically comprise an inert support carrying one or more iron group metals and one or more metals from Group VI-A of the Periodic Table of Elements in the form of an oxide Combinations of one or more Group VI-A or sulfide. 11 metal oxide or sulfide with one or more Group VIII 13 metal oxide or sulfide are generally preferred. 14 sentative metal combinations which may be employed in such catalysts include oxides and sulfides of cobalt-15 16 molybdenum, nickel-molybdenum, and the like. hydrogen treat rate will normally range from about 1000 17 18 to about 10,000 scf/bbl, preferably from about 2000 to 19 about 5000 scf/bbl.

20 The hydrogenated effluent from solvent hydrogenation zone 36 is withdrawn through line 40 and passed 21 into separator 42 from which an overhead stream contain-22. 23 ing hydrogen gas is withdrawn through line 44. stream is at least partially recycled through lines 18 24 25 and 16 for reinjection with the feed slurry into lique-Hydrogenated liquid hydrocarbons 26 faction reactor 20. 27 are withdrawn from the separator through line 46 and recycled through line 12 for use as hydrogen-donor 28 29 solvent in slurry preparation zone 14.

The heavy bottoms produced in the vacuum distillation column which comprises a portion of fractionation zone 30 consists primarily of high molecular weight liquids boiling above about 1000°F, mineral matter or ash, and unconverted coal. This heavy bottoms contains a substantial amount of organic material and is normally

further converted in an integrated coking and gasification system to recover additional hydrocarbon liquids The heavy bottoms stream is withdrawn from 3 and dases. fractionation zone 30 through line 48, blended with heavy recycle material introduced into line 48 through line 64 and passed to fluidized bed coking unit 50. 6 This unit will normally be provided with an upper 7 scrubbing and fractionation section 52 from which liquid and gaseous products produced as a result of 9 the coking reaction can be withdrawn. The unit will 10 generally also include one or more internal cyclone 11 separators or similar devices not shown in the drawing 12 which serve to remove entrained particles from the 13 upflowing gases and vapors entering the scrubbing and 14 fractionation section and return them to the fluidized 15 bed below. 16

The fluidized bed coking unit shown in the 17 drawing contains a bed of coke particles which are 18 maintained in the fluidized state by means of steam or 19 other fluidizing gas introduced near the bottom of the 20 unit through line 54. This fluidized bed is normally 21 maintained at a temperature between about 850°F and 22 about 1600°F, preferably between above 900°F and 1200°F, 23 by means of hot char which is introduced into the upper 24 part of the reaction section of the coker through line 25 The pressure within the reaction zone will gen-26 erally range between about 10 and about 30 psig but 27 higher pressures can be employed if desired. 28 optimum conditions in the reaction zone will depend in 29 part upon the characteristics of the particular feed 30 material employed and can be readily determined. 31

The hot liquefaction bottoms is fed into the 33 reaction zone of the coking unit through line 48 and 34 sprayed onto the surfaces of the coke particles in the 35 fludized bed. Here it is rapidly heated to bed temper-

As the temperature of the bottoms increases, atures. lower boiling constituents are vaporized and the heavier 2 portions undergo thermal cracking and other reactions to form lighter products and additional coke on the surfaces of the bed particles. The mineral or ash 5 constituents present in the feed are retained by the 6 coke as it forms. Vaporized products, unreacted steam, and entrained solids move upwardly through the fluidized bed and enter cyclone separators or similar devices, not 9 shown in the drawing, where solids present in the fluids 10 are rejected. The fluids then move into the scrubbing 11 and fractionation section of the unit where refluxing 12 takes place. An overhead gas stream is withdrawn from 13 the coker through line 58 and may be employed as fuel 14 A naphtha sidestream is withdrawn 15 gas or the like. through line 60 and may be combined with naphtha pro-16 duced at other stages in the process. A heavier liquids 17 fraction having a nominal boiling range between about 18 400°F and about 1000°F is withdrawn as a sidestream 19 through line 62 and combined with coal liquids removed 20 . 21 from fractionation zone 30 through line 32 for withdrawal from the system. Heavy liquids boiling above 22 1000°F may be withdrawn through line 64 for recycle to 23 the incoming feed as described earlier. 24

The coke particles in the fluidized bed of the 25 reaction section tend to increase in size as additional 26 coke is deposited. The particles, which contain inor-27 ganic constituents introduced with the feed, thus 28 gradually move downward through the fluidized bed and 29 are eventually discharged from the reaction section 30 through line 66. This stream is entrained by steam 31 or other carrier gas introduced through line 68 and 32 transported upward through lines 70 and 72 into 33 . 34 fluidized bed heater 74. Here the coke particles in the fluidized bed are heated to a temperature of from 35 36 about 50°F to about 300°F above that in the reaction the bed of heater 74 through standpipe 76, entrained by steam or other carrier gas introduced through line 78, and returned to the reaction section of the coker through line 56. The circulation rate between the coker and the heater is maintained sufficiently high to provide the heat necessary to keep the coker at the required temperature. The solids within the heater are directly heated by the introduction of hot gases from the gasifier associated with the unit as described below.

Hot carbonaceous particles are continuously 11 12 circulated from the fluidized bed in heater 74 through line 80 to fluidized bed gasifier 84. These particles 13 14 will contain a significant concentration of inorganic constituent, normally between about 20 weight percent 15 and about 40 weight percent. In the gasifier, these 16 17 particles are contacted with steam in the presence of an added hydrated aluminosilicate compound or an added 18 19 hydrated magnesium silicate compound. The phrase "added hydrated aluminosilicate compound as used herein refers only to a hydrated aluminosilicate which is added to the 21 22 gasifier and is not a naturally occurring part of the solids fed to the gasifier. Similarly, the phrase 23 "added hydrated magnesium silicate compound" as used herein refers only to a hydrated magnesium silicate which is not a naturally occurring part of the solids 26 27 fed to the gasifier. The steam is introduced into the bottom of the gasifier through line 86. Particles of the hydrated aluminosilicate or hydrated magnesium silicate compound, which are stored in vessel 88, are passed through line 90 into line 92 where they are 31 entrained in air or an oxygen-containing gas and passed 32 into the bottom of gasifier 84. The amount of upward air or oxygen-containing gas utilized is adjusted so 35 that the temperature in the gasifier is maintained between about 1600°F and about 2000°F, preferably

between about 1600°F and about 1850°F. The pressure in the gasifier is normally maintained between about 10 and about 60 psig, preferably between about 25 psig and about 45 psig. Under these conditions, the carbonaceous particles in the gasifier react with steam and the oxygen-containing gas to produce hydrogen, carbon monoxide, carbon dioxide, and some methane. The reaction of carbon with oxygen provides the heat necessary to drive the endothermic gasification reactions and the excess heat is absorbed by the particles in the gasifier. 11 A stream of hot carbonaceous solids is continuously withdrawn from the gasifier through line 93, entrained 12 13 in steam, flue gas, or other carrier gas introduced through line 94, and returned to heater 74 through line 14 15 96.

It has been found that because of the rela-16 tively large amount of inorganic or ash constituents in 17 the material fed to the gasifier of the integrated 18 coking and gasification system that forms part of the 19 liquefaction process shown in the drawing, there may be 20 a tendency for the inorganic constituents to sinter and 21 form agglomerates that may interfere with fluidization 22 in the gasifier. Sintering is particularly a problem 23 in the lower portion of the gasifier where heat is 24 generated by the introduction of the air or oxygencontaining gas into the gasifier. It has been found 26 that the sintering in the gasifier and any associated operating problems can be substantially avoided by 28 introducing an effective amount of a hydrated alumino-29 30 silicate compound or a hydrated magnesium silicate 31 compound into the gasifier so that gasification of the mineral-containing carbonaceous solids fed to the 32 gasifier can take place in the presence of these added 33 materials. It is believed when such additives are 34 introduced into the gasifier and subjected to gasifica-35 tion conditions, they are broken up into fine particles. 36

1 It is further believed that the small size of the 2 resultant particles facilitates their interaction with 3 the inorganic constituents comprising the carbonaceous 4 feed materials thereby raising the sintering temperature 5 of the inorganic constituents during gasification by 6 increasing their fusion or melting temperature. Normal-1y, aluminosilicate and magnesium silicate compounds 8 that are not hydrated are not as effective in the 9 process of the invention, evidently because they do not tend to break up into fine particles under normal 11 gasification conditions.

Referring again to the drawing, the hydrated 12 aluminosilicate or magnesium silicate additive is 13 introduced through line 92 into the bottom of gasifier 14 84 with the oxygen-containing gas used to supply oxygen 15 for supporting the combustion reactions which take place 16 in the gasifier. These added solids are therefore 17 present in the lower portion of the gasifier where 18 sintering tends to take place because of the combustion 19 heat generated as the oxygen-containing gas enters the 20 reaction vessel. Although any hydrated aluminosilicate 21 will normally be effective in increasing the sintering 22 temperature of the inorganic constituents contained in 23 the solids fed to the gasifier, the following compounds 24 are preferred: kaolinite [Al₂Si₂O₅(OH)₄], montmorillo-25 nite $[Al_2Si_4O_{10}(OH)_2 \cdot xH_2O]$, pyrophyllite $[Al_2Si_4O_{10}(OH)_2]$ 26 and illite [KAl2(AlSi3010)(OH)2]. Of these compounds, 27 kaolinite tends to be most effective in preventing 28 sinter formation and is more readily available and cheaper than other clay minerals. Other members of the 30 kaolinite family of clays including halloysite, nacrite 31 and dickite should be equally effective. As is the case 32 with hydrated aluminosilicates, any hydrated magnesium 33 silicate will normally be effective in increasing the 34 sintering temperature. The preferred hydrated magnesium 35 compounds include talc [Mg3Si4O10(OH)2] serpentine 36

[Mg3Si2O5(OH)4], and hectorite $[Mg_3Si_4O_{10}(OH)_2 \cdot xH_2O]$. 1 Normally, the hydrated aluminosilicate or magnesium 2 silicate used is introduced into the gasifier at a rate 3 such that between about 2 and about 20 weight percent 4 of the material is present in the gasifier based upon 5 the weight of the carbonaceous solids present, prefer-6 ably between about 2 and about 10 weight percent. 7 general, it is desirable that the size of the particles 8 comprising the hydrated aluminosilicate or magnesium 9 silicate introduced in the gasifier be approximately 10 the size of the particles of carbonaceous solids that 11 are fed to the gasifier. Finely powdered materials may 12 be used if they are not quickly elutriated from the 13 fluidized bed in the gasifier. 14

The hot gases produced in gasifier 84 are 15 removed overhead through line 100 and passed through 16 lines 99 and 72 into heater 74. Here the hot gases 17 transfer heat to the solid particles within the heater 18 and maintain them at the required temperature level. 19 The gas taken overhead from the heater will thus 20 include the gasification products produced in gasifier 21 This gas stream, assuming that oxygen rather than 22 air is injected into the lower end of the gasifier with 23 the steam used for gasification purposes, will consist 24 primarily of hydrogen, carbon monoxide, carbon dioxide, 25 and some methane. The gases are taken overhead from 26 the heater through line 82 and passed to downstream gas 27 upgrading equipment not shown in the drawing. 28 the overhead gases are shifted, treated for the removal 29 of acid gases, and the residual carbon monoxide is 30 methanated by conventional procedures to produce a 31 high purity hydrogen stream. A purge stream of ash-32 33 containing carbonaceous solids is continuously withdrawn from the heater through line 98 to prevent the inorganic 34 constituents from building up within the integrated 35 coking and gasification system. 36

In the embodiment of the invention depicted in 1 the drawing and discussed above, the hydrated alumino-2 silicate or magnesium silicate compound is introduced 3 into the gasifier with the oxygen-containing gas. will be understood that the invention is not limited to 5 6 this method of adding these materials to the gasifier. For example, the hydrated aluminosilicate or magnesium 7 silicate compound can be mixed with the liquefaction 8 9 bottoms leaving fractionation zone 30 through line 48 and the resultant mixture fed to coker 50. 10 11 this molten mixture is then sprayed onto the coke in 12 the fluidized bed reaction zone, the hydrated alumino-13 silicate or magnesium silicate compound will be dis-14 tributed on the individual particles that eventually 15 pass through the heater into the gasifier where the compound interacts with the mineral matter constituents 16 17 originally in the coke particles to increase their 18 sintering temperature. The hydrated aluminosilicate or 19 magnesium silicate can be mixed with the liquefaction 20 bottoms in several ways. In one method, the additive is powdered and fed into a mixing tank located in line 48 21 22 where it is stirred with the bottoms stream to obtain uniform distribution of the additive throughout the 23 24 Alternatively, the recycle coker liquids bottoms. 25 in line 64 can first be mixed with particles of the 26 additive and the resultant slurry blended into the 27 bottoms in line 48. When the molten mixture of the 28 slurry and the bottoms is sprayed onto the coke in 29 the coker, the hydrated aluminosilicate or magnesium 30 silicate will then be distributed on the individual coke 31 Either of these two methods of introducing particles. 32 the hydrated aluminosilicate or magnesium silicate into 33 the gasifier is normally more effective in preventing 34 sintering than is the method of introducing the additive 35 directly into the gasifier with the oxygen-containing gas because better distribution of the additive on the 36 carbonaceous particles fed to the gasifier is obtained. 37

In the embodiment of the invention depicted in 1 the drawing and discussed above, the hydrated alumino-2 silicate or magnesium silicate is introduced into a gasifier that forms part of an integrated coking and gasification system that is in turn part of a coal 5 It will be understood that the liquefaction process. process of the invention can be used in connection with any fluidized bed gasification reactor regardless of whether it is integrated with a coker or other reactor, or operates independently. The hydrated aluminosilicate or magnesium silicate compound will normally be added to 11 an independently operated gasifier in the same amount 12 and manner that it is added to the gasifier shown in 13 the drawing. In general, the compounds are only added 14 to a gasifier if it is operating at a temperature where 15 sintering problems are encountered, temperatures normal-16 ly above about 1600°F. 17

The nature and objects of the invention are further illustrated by the results of laboratory tests which indicate that the sintering temperature of mineral-containing carbonaceous solids is significantly increased when the solids are gasified in the presence of an added hydrated aluminosilicate compound or an added hydrated magnesium silicate compound.

In the first series of tests, a predetermined 25 amount of ground liquefaction bottoms produced by 26 liquefying Illinois No. 6 coal in a pilot plant general-27 ly similar to the one depicted in the portion of the 28 drawing to the left of line 48 was mixed thoroughly with 29 a predetermined quantity of a powdered hydrated alumino-30 silicate or talc (a hydrated magnesium silicate) having 31 a particle size less than 200 mesh on the U.S. Sieve 32 Series Scale. The particle size of the ground liquefac-33 tion bottoms was normally less than about 70 mesh on the 34 U.S. Sieve Series Scale. The powdered mixture was then 35

coked at about 1000°F for about 15 minutes in a labor-1 atory bench scale coking unit. Normally, batches of 20 grams of the mixture were processed at a time. 3 resultant coke from each batch was recombined and uniformly ground to between 40 and 100 mesh on the U.S. 5 Sieve Series Scale. The ground coke was then heated in a tube furnace under a nitrogen atmosphere at about 1300°F for about 30 minutes to remove residual volatile 8 materials. In addition to the "additive" cokes prepared 9 by coking a mixture of liquefaction bottoms and a 10 hydrated aluminosilicate or talc, a coke was prepared in 11 the same general manner as set forth above except that 12 it was not mixed with an additive. A 20 gram sample of 13 this "nonadditive" coke and of each "additive" coke was 14 then placed in a laboratory scale fluidized bed unit 15 designed to measure the sintering temperature of the 16 mineral-containing coke particles. The unit consisted 17 of a one-inch diameter quartz tube mounted vertically in 18 a tube furnace. The 20 gram sample was fluidized with 19 air and steam above a fritted quartz cone. 20 ature in the unit was controlled and monitored by a 21 pair of thermocouples located near the bottom of the 22 fluidized bed. Sintering occurred when a temperature 23 delta was shown to exist across the thermocouples. 24 25 fluidizing gas contained 30 volume percent steam and 70 volume percent air and was passed through the fluid-26 ized bed at a rate of about 0.5 feet per second. 27 results of these tests are set forth below in Table 1. 28

TABLE	

EFFECT OF VARIOUS ADDITIVES ON SINTERING

Maximum Non-Sintering Temperature (OF)	1750	1820	1825	1850	1830	1820	1810	1845	1810
Amount of Additive (wt% prior to coking)	1	Ŋ	. 01	20	20	20	20	20	20*
Additive	None	Kaolinite (Al ₂ Si ₂ O ₅ (OH)4)	Kaolinite (Al ₂ Si ₂ O ₅ (OH)4)	Kaolinite (Al ₂ Si ₂ O ₅ (OH) 4)	Montmorillonite (A1 $_2$ Si $_4$ O $_1$ O(OH) $_2$ ·xH $_2$ O)	Pyrophyllite (Al ₂ Si ₄ O ₁₀ (OH) ₂)	Illite $(KAl_2(AlSi_30_{10})(OH)_2)$	Talc (Mg3Si4O ₁₀ (OH) ₂)	Kaolinite* (Al ₂ Si ₂ O ₅ (OH)4)
Run Number	7	7	т	4	ī.	9	7	ω	*
С 4	Ŋ	9	86	10	12 13	14	16	18	20 21

*Kaolinite added directly to coke instead of to liquefaction bottoms prior to coking as in runs l through 8. 22 23

It can be seen by comparing runs 2 to 1 2 with run 1 in Table 1 that the addition of talc and hydrated aluminosilicates including kaolinite, mont-3 morillonite, pyrophyllite, and illite to liquefaction bottoms prior to subjecting them to an integrated coking and gasification process will result in increasing the temperature at which sintering occurs in the gasifier 7 of the integrated process. The increases in the maximum 8 non-sintering temperature range between 60°F for 20 weight percent pyrophyllite to 100°F for 20 weight 10 The data for runs 2 percent kaolinite. 11 indicate that the maximum non-sintering temperature 12 increases as the concentration of the additive increases. 13 Runs 4 and 8 indicate that kaolinite and talc are the 14 most effective of the additives in increasing the 15 maximum non-sintering temperature. The data for runs 1 16 8 in Table 1 clearly show that the addition 17 of hydrated aluminosilicates or hydrated magnesium 18 silicates to liquefaction bottoms prior to subjecting 19 the bottoms to an integrated coking and gasification process will result in a significant increase in the 21 22 temperature at which the gasifier can be operated 23 without sintering of mineral matter consituents taking 24 place.

The second series of tests was carried out to 25 26 determine if the maximum non-sintering temperature of the mineral constituents in the coke could be increased by adding the hydrated aluminosilicate or talc to 28 the liquefaction bottoms after they had been coked 29 instead of prior to coking. In this series of tests, 30 coke was prepared in a manner similar to that des-31 cribed for the first series of tests except that no additives were mixed with the bottoms prior to the 34 coking procedure. A sample of this "nonadditive" coke 35 composed of particles between 40 mesh and 100 mesh on 36 the U.S. Sieve Series Scale was placed in the laboratory

bench scale fluidized bed unit used to determine the sintering in the first series of tests. Kaolinite particles ranging in size between 40 and 80 mesh on the 3 U.S. Sieve Series Scale were then added to the coke in the fluidized bed reactor in amounts sufficient to 5 yield 20 percent by weight. A mixture comprising 30 6 volume percent steam and 70 volume percent air was then 7 fed into the fluidized bed at a rate of about 0.5 feet 8 per second and the maximum non-sintering temperature 9 was determined. The results of this series of tests are 10 set forth as run 9 in Table 1. 11

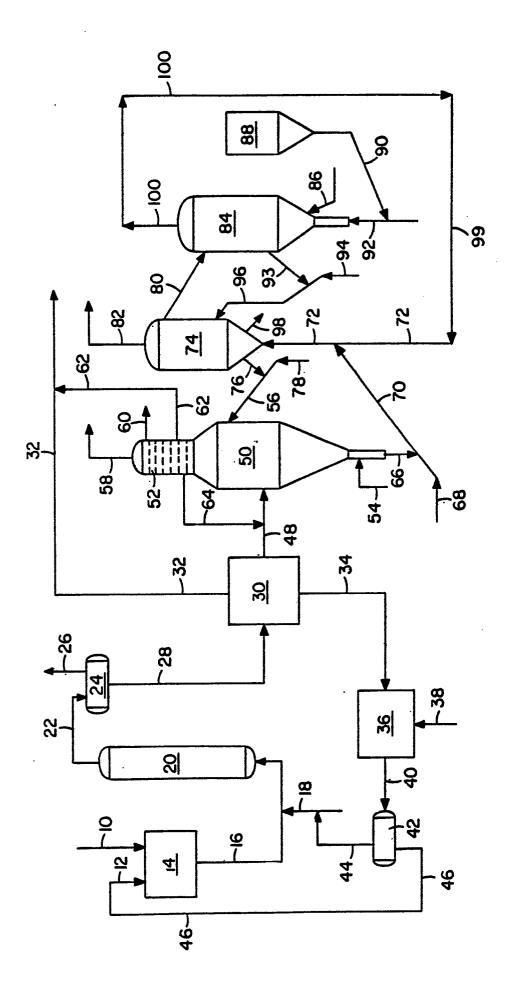
As can be seen by comparing run 9 in Table 1 12 with run 1, the addition of the kaolinite directly to 13 the coke increases the maximum non-sintering temperature 14 60°F over the case where no additive is utilized. 15 comparison of runs 2 to ~ 4 with run 9 indicates 16 that adding the kaolinite directly to the coke is not as 17 effective as adding it to the liquefaction bottoms prior 18 to coking and then subjecting the resultant coke to 19 qasification. It is believed that the reason for this 20 difference is the fact that when the kaolinite or other 21 hydrated aluminosilicate or hydrated magnesium silicate 22 is added to the liquefaction bottoms prior to coking, it 23 is more uniformly distributed on the coke particles 24 subsequently formed thereby making it easier for the 25 additive to interact with the mineral constituents of 26 the coke during gasification than would be the case if 27 the additive was introduced into the gasifier with the 28 fluidizing gas. 29

It will be apparent from the foregoing that the invention provides a process which is effective in preventing sintering and resultant agglomeration in a fluidized bed gasifier during the gasification of carbonaceous solids containing a substantial amount of inorganic constituents. Since the process results in an

- 1 increase in the maximum non-sintering temperature in the
- 2 gasifier, it ensures that gasification can take place
- 3 at relatively high temperatures without significantly
- 4 affecting the operation of the fluidized bed gasifier.

CLAIMS:

5


- 1. A process for gasifying carbonaceous solids containing ash-forming, inorganic constitutents in a nonslagging fluidized bed gasification zone without a significant amount of agglomerate formation due to sintering of said inorganic constituents which comprises gasifying said carbonaceous solids in said nonslagging fluidized bed gasification zone in the presence of an added hydrated aluminosilicate compound or an added hydrated magnesium silicate compound.
- 2. A process according to claim 1 wherein said carbonaceous solids containing ash-forming inorganic constituents are first converted into liquids, gases and coke by pyrolyzing said carbonaceous solids in a fluidized bed coking zone under coking conditions to form liquids, gases and coke containing inorganic constituents and at least a portion of said coke is passed from said fluidized bed coking zone to said fluidized bed gasification zone.
 - 3. A process according to claim 1 or claim 2 wherein said carbonaceous solids comprise the heavy bottoms produced by liquefying coal.
- 4. A process according to claim 1 or claim 2 wherein said carbonaceous solids comprise coal.
 - 5. A process according to any one of claims 1-4 wherein said carbonaceous solids are gasified with steam in the presence of an added oxygen-containing gas.

- 6. A process according to any one of claims 1-5 wherein the added hydrated aluminosilicate compound is kaolinite, montmorillonite, illite, pyrophyllite, halloysite, nacrite, dickite or a mixture thereof.
- 7. A process according to any one of claims 1-5 wherein the added hydrated magnesium silicate compound is talc, serpentine, hectorite or a mixture thereof.
 - 8. A process according to any one of claims 1-7 wherein the added hydrated aluminosilicate or the added hydrated magnesium silicate is introduced into said gasification zone in amounts sufficient to yield a concentration in said zone of between about 2 weight percent and about 20 weight percent based on the weight of the carbonaceous solids or coke present in said zone.

10

20

- 9. A process according to any one of claims 1-8 wherein
 the added hydrated aluminosilicate or the added hydrated magnesium
 silicate is introduced into said gasification zone with said
 oxygen-containing gas.
 - 10. A process according to any one of claims 1-8 wherein the added hydrated aluminosilicate or the added hydrated magnesium silicate is mixed with said carbonaceous solids and the resultant mixture is introduced into said gasification zone.

