EP O 092 895 A2

Europiaisches Patentamt

0> European Patent Office

Office européen des brevets

@

@) Application number: 83300516.8

() Date of filing: 02.02.83

0 092 895
A2

@ Publication number:

EUROPEAN PATENT APPLICATION

® n.cd: G 11 C 9/06

(30) Priority: 28.04.82 GB 8212262
@ Date of publication of application:
02.11.83 Bulletin 83/44

Designated Contracting States:
DE FR GB IT NL SE

(@) Applicant: INTERNATIONAL COMPUTERS LIMITED
ICL. House

Putney, London, SW15 1SW(GB)

@ Inventor: Vince, Nigel Llewelyn
12 Dareshury Close Holmes Chapel
Crewe Cheshire(GB)

Representative: Guyatt, Derek et al,
International Computers Limited Group Patent Services
Cavendish Road

Stevenage, Hertfordshire, SG1 2DY(GB)

@ Data processing system.

@ A data processing system comprising multiple proces-
sing nodes {10) each containing a processor (14) and a data
store {15). The store holds local data, and also holds copies
of shared data required by the node. This reduces conflict
between the nodes in accessing the shared data. When one
node updates the shared data, it sends an update message o
all the other nodes over a transmission link (11). The
processor is then free to continue processing. When the
message reaches the other nodes, it updates the other copies
of the shared data, so as to ensure consistency. Each node
receives messages from the link in the same order, and this
defines a unique chronological order for the updates, even
though the nodes are asynchronous. A node is temporarily
suspended if an update occurs out of this correct chronolo-
gical order.

Croydon Printing Company L1d.

1o

15

20

25

009:2:8 &5

DATA PROCESSING SYSTEM

Background to the invention

This invention relates to data processing systems
of the kind having a plurality of data processing units
(referred to herein as processing nodes) having access to
shared data, common to two or more nodes. The invention
is applicable both to multi-computer systems, in which
the nodes are substantially independent computers, and to
multi-processor systems in which the nodes interact
co-operatively to perform programs and share common resources
such as input/output devices.

In a conventional multi-processor system, the shared
data is held in a common store, accessible to all the nodes.
Each node may also have its own private store for holding
non~-shared data unigque to that node. A problem with such
a system is that the nodes must compete for access to the
shared store and hence there may be conflict between
different nodes attempting to access the shared store
simultaneously. Moreover, there may be significant
transmission delays between the nodes and the shared store.
As a result, access to the shared data may be very slow.

U.S. Patent No. 3 889,237 describes a dual processor
system in which each processor has its own store and each
store contains a duplicate copy of the shared data. To

ensure that both copies are kept consistent, each processor

10

15

20

25

0092895
- -

has direct access to the store of the other processor
80 that it can write a new value of the shared data into
both stores simultaneously. A problem with this priorx
proposal is that there may be conflict between the processors
if both attempt to access the same store unit at the same
time, and each processor must wait for all writes to the
shared data to be completed before it can continue
processing. This seriously reduces the efficiency of the
system. Moreover, in this prior proposal, the shared data
must be held in a fixed set of locations in each store, and
this can prevent the efficient allocation of storage space
in the processors. Both these problems make it very
difficult to extend this proposal to more than two
processors.

One object of the present invention is to alleviate
these problems.

Summary of the invention

According to the present invention a data processing
system comprises a plurality of processing nodes inter-
connected by at least one data transmission ling, each
node comprising:

(a) a data store holding local data items unigue to
the node and also holding shared data items copies
of which are also held in at least one other node,
and,

(b) a data processor capable of reading and updating

data items in the data store,

10

15

20

25

0092895

characterised in that;

(a) whenever the processor in one node updates a
shared data item, the node generates a message
containing the updated value of the item and its
address and transmits the message over the link to
the other nodes, the processor being capable of
continuing with its processing without waiting for
the message to reach the other nodes, and

(b) when the message is received by the other nodes,
it is used to update the copies of the shared data
item held in the stores of those nodes, thereby
ensuring that all copies of the shared data item
are kept consistent.

It can be seen that the invention provides rapid access
to the shared data, since a copy is held locally in each
node and each processor accesses only the store in the same
node. The problem of conflict between different processors
attempting to access the same store is avoided since, when
a node transmits a message to update an item of shared
data, it is free to continue processing and does not have
to wait for all the copies of the shared item in the other
nodes to be updated.

In a preferred system in accordance with the invention,
the address contained in each said message is the virtual
address of the data item, each node identifying the same

shared data item by the same virtual address.

10

15

20

25

0092895
-4

The fact that the message contains a virtual rather
than a real address means that different nodes can store the
shared data at different locations., This facilitates
storage allocation in the nodes.

One data processing system in accordance with the
invention will now be described, by way of example, with
reference to the accompanying drawings.

Brief description of the drawings

Figure 1 is an overall diagram of the data processing

system.,

Figure 2 is a diagram of one processing node.

Figure 3 is a diagram of control circuitry in one

node.

Description of an embodiment of the invention

Overall system

Referring to Figure 1, the data processing system
comprises a plurality of processing nodes 10 interconnected
by a communication link 1ll. The link comprises a plurality
of couplers 12, one for each node, connected together in a
ring by unidirectional transmission paths 13.

The link 11 is organised as a token ring, in which
a special bit pattern, referred to as the token, is passed
around the ring from one coupler to the next. Whenever
a coupler has a message to send, it waits until it receives
the token, removes it from the ring, and then transmits
its message. The message travels round the ring, being

copled by each coupler in turn as it passes through, until

10

15

20

25

0092895
-5=

it finally arrives back at the originating coupler where
it is removed from the ring. After sending its message,
the coupler generates a new token which is passed on to the
next coupler. There is only one token and hence only one
message can be on the ring at a time.

Token rings are well known in the art and so it is
not necessary to describe the link 11 in detail. Such
rings are described, for example, in "An introduction to
local area networks” by Clark, Pogran and Reed, Proceedings
of the IEEE, November 1978, pages 1497-1516.

It can be seen that the link has the property that
each node receives messages from the link in the same
sequence. The importance of this feature is that it
establishes a globally unique chronological order for the

messages, even though the individual nodes are operating
asynchronously.

Processing Node

Referring to Figure 2, each processing node 10 includes
a data processor 14, a local data store 15, an address
translation unit (ATU)} 16, and a data slave 17. -Each of
these units is well known as such and so will not be
described in detail herein.

The local store 15 is a random access memory which
holds local data unique to the node, and also shared data
common to at least one other node. The data unigque to the
node includes address translation tables for translating

virtual addresses into real addresses.

10

15

20

0092895
— -

The processor 14 is arranged to execute instructions
performing processing operations on the data. Some of
these instructions are READ or WRITE instructions specifying
that a data item should be read from or written to the
local store 15, Each such instructlon produces a virtual
address which specifies the identity of the reguired data
item. Each node identifies a given data item by the same
virtual address. However, the physical location of the
data may be different in different nodes.

Before a data item can be accessed, the virtual address
must be translated into the corresponding real address
by the ATU 16. This unit contains a small associative
memory (not shown}, referred to as the address translation
slave, which holds copies of the most recently used
translation table entries. This slave provides rapid
address translation in the majority of cases. 1In those cases
where the required address translation table entry is not -
in the address translation slave, an interrupt signal is
generated, causing the processor 14 to be interrupted.

This initiates a special routine which consults the address
translation tables in the local store 15 and loads the
required entry into the translation slave. This address
translation procedure is well known and so will not be

described in further detail.

10

15

20

25

0092895
...7..

In the present system, each address translation table
entry contains an extra flag bit SD (shared data) which is
set if the corresponding data item is shared between two
or more nodes. This flag is read out of the address
translation unit 16 whenever a virtual address is translated.

The data slave 17 contains a sméll assoclative memory
having a faster access time than the local store, for
holding copies of the most recently used data items, along
with their virtual addresses. This slave provides rapid
access to data items in the majority of cases.

The node also includes an output buffer 18 capable of
holding a gueue of update messages awaiting transmission over
the link. Each message contains:

(a) the updated value of a shared data item,

(b) the wvirtual address VA of that item, and

(c) an identity tag ID, obtained from an identity

register 19 which contains a hard-wired identity
number unique to the node.

The message may also include a SIZE field indiéating
the number of bytes in the data item, if the items are
of variable length.

The messages are held in the buffer 18 until the token
is received by the associated coupler 12, allowing
transmission to begin. The messages in the buffer 18 are
transmitted in chronological order (i.e. first into the

buffer is the first out).

10

15

20

25

0092895
-8

Each message recelved over the link 1l by the node
(including messages originating from itself) is copied
into an input buffer 20, This buffer need only be large
enough to hold one message. The identity tag ID of the
message in the buffer 20 ils compared in a comparator 21
with the contents of the identity register 19, to produce
a control signal TN (this node} which is true if the two
identities are equal. In other words, TN=l indicates that
the message in the buffer 20 originated in this node.

A multiplexer 22 selects one of the following inputs
for application to the data input of the data slave 17:

(0): data from the local store 15.

(1) : data from the processor 14.

(2): data from the buffer 20.

Another multiplexer 23 selects one of the following
inputs for application to the address inputs of the ATU
16 and data slave 17:

(0} and (1): the virtual address VA from the processor

14.

(2): the virtual address from the buffer 20.

Referring to Figure 3, the node also includes a
counter 24 having a control input CU (count up) which
increments it by one, and another input CD (count down)
which decrements it by one. As will be explained, the

counter 24 provides a record of the number of outstanding

10

15

20

0092895
.

messages in the node i.e. messages which have been
generated by the node and which have not yet been received
back into the buffer 20. The output of the counter 24 is
fed to a NOR gate 25 which detects the all-zero state of
the counter and produces a signal CZ (counter zero). Thus,
CZz = 1 indicates that there are no outstanding messages
in this node.
Operation

(1) READ Instruction

When the processor 14 executes a READ instruction, it
switches the multiplexers 22,23 to their inputs marked O.
The virtual address from the processor is therefore applied
to the data slave 17 and the ATU 1l6. If the required data
item is resident in the data slave, it is read out
immediately and returned to the processor. If, on the
other hand, the required data item is not resident in the
slave, the virtual address is tfanslated and the resulting
real address is applied to the local store 15. The required
data item is then read out of the local store and returned
to the processor. At the same time, the data item is
copied into the data slave 17 along with its virtual address.
The action of the READ instruction is conventional and so

the related control circuits will not be described.

10

15

20

25

0092895
-10=-

(2) WRITE Instruction

Whenever the processor 14 executes a WRITE instruction,
it switches the multiplexers 22,23 to their inputs marked 1.
The virtual address from the processor i1s therefore
applied to the data slave 17 and the ATU 16, and the data
item to be written is applied to the data slave. The data
item is then written into the slave. At the same time, the
virtual address 1ls translated, the local store 15 ls
addressed, and the data item is copled into the local stors
from the slave. This ensures that the local store is
consistent with the slave. The WRITE instruction, as
described so far, is conventional and so the related control
circuits will not be described herein.

Referring again to Figure 3, the WRITE instruction also
activates one input of an AND gate 26, the other input
of which receives the shared data flag SD from the ATU 16.
Hence, the AND gate 26 is enabled if the data item being

updated by the WRITE instruction is a shared data item.

The output of the gate 26 produces a control signal LB

(load buffer) which is applied to the output buffer 18
causing a message to be loaded into it. This message will
then, in due course, be broadcast to the other nodes so

as to update all the other copies of the shared data item.
The output of the gate 26 1s also applied to the count-up
input CU of the counter 24. This updates the record in

the counter 24 of the number of outstanding messages.

10

15

20

0092895
-11-

(3) Receive Message

Whenever a message is received into the input buffer
20, it switches the multiplexers 22,23 to select their inputs
marked 2, and also activates one input of each of four
AND gates 27, 28, 29 and 30.

The other input of gate 27 receives the signal TN.
Hence, gate 27 is enabled whenever a message is received
which originated at this node. The output of the gate 27
is applied to the count-down input CD of the counter 24
causing it to be decremented by one, indicating that one of
the outstanding messages has been received.

Gate 28 receives the inverse of the signal TN. EHence,

‘gate 28 is enabled if the message in the buffer 20

originated from another node. The output of gate 28 enables
an OR gate 31, producing a signal WD which causes the data
item in the buffer 20 to be written into the data slave 17
and then into the local store 15, as if this was a normal
WRITE instruction. It should be noted, however, that if a
copy of the data item is not held in this node (a shared
data item is not necessarily held in every node{, the ATU
will not recognise the virtual address in the buffer 20 and

so no write will take place.

10

15

20

25

0092895
~12-~

The action of writing the item to the data slave
elininates the need to purge the data slave before access,
as is normally required in conventional systems having a
shared main store.

It should be noted that update messages originating
from the node itself are not normally written into the
local store when received from the link, since the data item
in question has already been updated at the time the message
was created (as described above under the heading "WRITE
instruction").

If the node receives an update message from another
node while it (the first node) still has at least one
outstanding update message, the received message may over-
write the data item which has already been updated by the
first node at the time it created the outstanding message.
The data item would thus be Qverwritten by a chronologically
earlier value, and this is clearly incorrect. (It will be
recalled that the chronology of the updates is determined
by the order in which the update messages are received from
the link). This situation is detected by the AND gate 29,
which receives the inverses of the signals CZ and TN. The
output of the gate 29 sets a bistable 32 producing a signal
SUSP (suspend}] which causes the processor l4 to suspend its
operation. The processor then remains suspended until the
counter 24 returns to zero, indicating that all outstanding
messages have been received. The signal CZ then resets the

bistable 32, removing the suspension.

10

15

20

25

0092895
-13~-

While the processor is suspended, the local store can
still be updated by incoming messages, and in this case it
is updated by all incoming messages, not just those from
other nodes. The ensures that, by the time the suspension
is removed, all the data items will have been brought
completely up—~to-date. This is achieved by means of the
AND gate 30 which is enabled by the signal SUSP, the output

of gate 30 being applied to the OR gate 31 to produce the
signal WD,

Some possible modifications

In the system described above, the node is suspended
1f it receives an update message from another node while
there are one or more update messages still outstanding
from this node. This can sometimes lead to unnecessary
suspensions: it is strictly only necessary to suspend
processing if the update message from the other node
refers £o the same data item as one of the outstanding
updates.

In a modification of the system described above, these
unnecessary suspensions may be reduced by providing each
node with a hash-addressed or associatively addressed bit
map which effectively stores a record of the virtual
address of each data item updated by the node. This bit
map may conveniently be implemented by appending an extra
bit MO (message outstanding} to each entry in the data

slave 17. The control circuits in Figure 3 are modified

as follows:

10

15

20

0092895
-14-

(2] The output of the AND gate 26 provides a further
signal which sets the bit MO in the currently
addressed location of the data slave.
(b) The signal CZ is used to clear the bit map
by resetting all the bits MO, as well as resetting
the bistable 30.
(c) The input CZ to the gate 29 is replaced by the
bit MO from the currently addressed location of the
slave.
The result of this modification is that suspension

occurs only if an update message is received from another

node, referring to a virtual address which has been tagged

by the bit map.

It should be noted, however, that once a bit in the
kit map has been set, it is not cleared until Cz=1,
indicating that all outstanding messages have been received.
The reason for this is that the node may have updated
two or more data items whose virtual addresses map on to
the same bit of the bit map, and it would therefore not
be correct to clear the message outstanding bit MO on
receipt of the first of these messages. The result of this
is that, although the bit map reduces the number of

unnecessary suspensions, it does not eliminate them

entirely.

10

15

20

0092895
-15=

In a further modification of the system described,
the unnecessary suspensions may be eliminated entirely
by replacing the bit map and the counter 24 by a plurality
of counters, one for each location of the data slave.

The output of AND gates 26 and 27 are then used to increment
or decrement only the counter corresponding to the addressed
location of the slave. In this way, & record can be

kept of the number of outstanding messages relating to
each location of the slave. This can then be used to
ensure that suspension occurs only when it is strictly
necessary.

In another possible modification of +the invention,
instead of a single transmission link 11, the nodes may
have a plurality of links interconnecting them. Traffic
1s allocated to the links in such a manner that messages
relating to a given area of virtual store are all sent
over the same link; independent areas of virtual store
may be allocated to separate links provided that no process
or chain of processes telies on exact chronology being
maintained between these area. The use of a plurality of
links increases the traffic capacity between the nodes.

It also helps to make the system tolerant to failure in
one of the links, since traffic on that link could be

re-allocated to another link.

10

15

20

0092895
~16~

It should be noted that the invention is not
restricted to a communications link in the form of a
token ring. Any convenient form of link may be used
provided it satisfies the criterion mentioned above, that
all nodes are guaranteed to receive the messages from the
link in the same sequence. For example, the link may be
a store—-and-forward packet-switched network, in which
case the criterion can be satisfied by ensuring that all
messages pass through a single process whose responsibility
it is to forward the messages to each recipient on the link
in the same order.

In the above description, it was stated that each
ncde refers to each shared data item by the same virtual
address. This requirement could be removed by introducing
another level of address translation. Each node would
then refer to a shared data item by a unique virtual
address, and this would be translated into a common virtual
address for insertion into an update message.

The invention has been described in terms of a multi-
processor system. However, another possible application
of the invention is in a distributed data base system.

In this case, each node would be a database processor and

would include a number of file~storage devices correspondilng

o the local store.

10

15

0092895
-17~-

Semaphores

The shared data in the nodes may include semaphore
data, A semaphore is a data item associated with a
particular area of store (e.g. a data file } which is used
to control access to that area by independent processes,

80 as to ensure that only one process at a time can access
the data., In the described system, semaphore operations
are performed by broadcasting a semaphore message over the
link. Receipt of this message by a node other than the
originator causes the value of the semaphore location to be
updated. The originator awaits the return of the message
from the link before performing the semaphore operation on
the semaphore location in its own local store. This ensures
that semaphore locations are maintained in absolute

synchronism across all the nodes.

0092895
~18-

CLAIMS

1. A data processing system comprising a plurality of

processing nodes (10) interconnected by at least one data

transmission link (11), each node comprising:
(a) a data store (15) holding local data items unique
to that node and also holding shared data items copies
of which are also held in at least one other node, and
(b) a data processor (14) capable of reading and
updating data items in the data store,

characterised in that:
(a) whenever the processor (14) in one node updates a
shared data item, the node (10) generates a message
containing the updated value of the item and its
address and transmits the message over the link (11)
to the other nodes (10), the processor being capable
of continuing with its processing without waiting for
the message to reach the other nodes, and
(b) when the message is received by the other nodes
it is used to update the copies of the shared data
item held in the stores (15) of those nodes,zthereby
ensuring that all copies of the shared data item are

kept consistent.

2. A system according to Claim 1 wherein each node
includes a first-in first-out buffer for holding a gueue of

messages awaiting transmission over the link.

0092895
-19-

3. A system according to Claim 2 wherein each node
includes means for counting the number of messages it has
generated which have not yet been transmitted, and means
for temporarily suspending operation of the node whenever a
message is received from another node while said number of

messages is greater than zero.

4. A system according to Claim 3 wherein the data
transmission link comprises a ring network, and wherein the
means for counting comprises a counter which is incremented
by one whenever a message is placed in the buffer, and
decremented by one whenever a message is received which

originated at the same node, having travelled completely

round the ring.

5. A system according to any preceding claim wherein the
transmission link is such that all the nodes receive the

messages from the link in the same seguence.

6. A system according to Claim 5 wherein the transmission
link comprises a ring network in which only one message at

a time is present on the link.

0092895
-20-

7. A system according to any preceding claim wherein the
address contained in each said message is the virtual
address of the data item, each node identifying the same

shared data item by the same virtual address.

8. A system according to Claim 7 wherein each node
includes an address translation unit for translating said
virtual address into a real address identifying the

physical location of the data item in the data store.

9. A system according to Claim 8 wherein the address
translation unit, whenever it translates the virtual
address of a data item, also produces a signal indicating

whether that data item is a shared data item.

10. A system according to any preceding claim in which the
shared data consists of a plurality of independent areas

and wherein the nodes are interconnected by a plurality of

data transmission links, one for each said area.

0092895

/2

10— NODE NODE NODE
2~
= COUPLER [~ COUPLER |—= COUPLER
B
FiG. /.
SUSP LOCAL |, RA
4 15— STORE
.]
22
PROCESSOR : Y
L SLAVE
im < j \17
g
2)
23
| 5—| AU
20 >0 | 8
\ 1Y SO S T T &
DATA| VA | 1D = o1 1D | VA [DATA
t 1 1 <21 <
o e it
FROM COUPLER

T0 COUPLER

F16.2

0092895

2/ 2
WRITE
& ~/B
SD—
~26
RECEIVE cU
2 CD | COUNTER
TN—
pu 1 24
— 1
& AN
25
— - l
w 28 WL
37
&
susP—L]
CZ— &
TN— L 5u/sP
<. 7—
29 32

Fi16. 3

	bibliography
	description
	claims
	drawings

