1 Publication number:

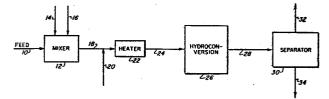
0 093 809

12

EUROPEAN PATENT APPLICATION

21) Application number: 82302317.1

(f) Int. Cl.³: **C 10 G 1/08**, C 10 G 49/12


② Date of filing: 06.05.82

(3) Date of publication of application: 16.11.83
Bulletin 83/46

- 7) Applicant: Exxon Research and Engineering Company, P.O.Box 390 180 Park Avenue, Florham Park New Jersey 07932 (US)
- Inventor: Bearden, Roby, Jr., 505 Stanford Avenue, Baton Rouge Louisiana (US) Inventor: Baird, William Chalmers, Jr., 5905 Bennington Avenue, Baton Rouge Louisiana (US) Inventor: Aldridge, Clyde Lee, 6022 South Pollard Parkway, Baton Rouge Louisiana (US)
- Representative: Somers, Harold Arnold et al, ESSO
 Engineering (Europe) Ltd. Patents & Licences Apex
 Tower High Street, New Malden Surrey KT3 4DJ (GB)

Designated Contracting States: DE FR GB

- Process for the hydroconversion of carbonaceous and/or hydrocarbonaceous feeds.
- © Carbonaceous feeds such as hydrocarbonaceous oils and coal are hydroconverted (26) in the presence of a combination of a hydrogen halide and a metal-containing catalyst produced in situ in the feed. The hydrogen halide is present in an amount to provide from about 0.1 to 20 moles of hydrogen halide per atom of the metal constituent of the catalyst to increase the activity of the catalyst.

BACKGROUND OF THE INVENTION

2

8

1. Field of the Invention

This invention relates to an improvement in the process for converting a carbonaceous feed such as hydrocarbonaceous oil, coal or mixtures thereof in the presence of hydrogen and a metal-containing catalyst prepared in situ in the feed.

2. Description of the Prior Art

9 Hydroconversion processes conducted in the 10 presence of hydrogen and a hydroconversion catalyst are 11 well known.

The term "hydroconversion" with reference to the oil feed is used herein to designate a process conducted in the presence of hydrogen in which at least a portion of the heavy constituents (as measured by Conradson carbon residue) of the oil feed is converted to lower boiling hydrocarbonaceous products.

The term "hydroconversion" with reference to the coal feed is used herein to designate conversion of coal to normally liquid hydrocarbon products in the presence of hydrogen.

U.S. Patent 3,123,550 discloses the addition of mineral acids to distillate chargestock of a hydrotreating process utilizing a conventional hydrogenation catalyst.

U.S. Patent 3,282,828 discloses hydrorefining of petroleum crude oils utilizing an unsupported vanadium halide.

U.S. Patent 2,057,629 discloses the refining of hydrocarbon oils with hydrochloric acid in the presence of a metal oxide which may be vanadium oxide.

31 U.S. Patent 3,700,583 discloses coal lique-32 faction in a hydrogen donor solvent in the presence of a 33 carbon radical scavenger which may be a hydrogen halide.

It has now been found that utilization of combination of hydrogen halide and a metal-containing catalyst produced in situ in the feed in specified ratio will increase the activity of the catalyst.

38 SUMMARY OF THE INVENTION

In accordance with the invention there is

provided, in a process for the hydroconversion of a carbonaceous feed which comprises (a) forming a mixture 2 of said carbonaceous feed and a thermally decomposable metal compound wherein said metal compound comprises at least one metal constituent selected from the group consisting of Groups II, III, IVB, VB, VIB, VIIB, VIII and 6 mixtures thereof of the Periodic Table of Elements; (b) 7 8 reacting the resulting mixture with a hydrogen-containing gas at hydroconversion conditions, in a hydroconversion 9 10 zone, said metal compound being converted to a metal-con-11 taining catalyst within said mixture at said conditions, and recovering a normally liquid hydrocarbon product, the 12 improvement which comprises said reaction being conducted 13 14 in the presence of a hydrogen halide in an amount such as to provide a ratio of about 0.1 to 20 moles hydrogen 15 halide per atom of said metal constituent. 16

17 BRIEF DESCRIPTION OF THE DRAWING

18 The Figure is a schematic flow plan of one 19 embodiment of the invention.

20 DESCRIPTION OF THE PREFERRED EMBODIMENT

The process of the invention is generally 21 applicable for the hydroconversion of carbonaceous feeds 22 such as hydrocarbonaceous oils, coal and mixtures thereof. 23 24 Suitable hydrocarbonaceous oil chargestocks include heavy mineral oils; whole or topped petroleum crude oils, 25 26 including heavy crude oils; asphaltenes, residual oils 27 such as atmospheric residua boiling above about 650°F at atmospheric pressure and petroleum vacuum residua boiling 28 above about 1050°F at atmospheric pressure; tars; bitumen; 29 tar sand oils; shale oils; hydrocarbonaceous oils derived 30 from coal liquefaction processes, including coal liquefac-31 tion bottoms. The term "coal" is used herein to designate 32 normally solid carbonaceous material including all ranks 33 of coal, such as anthracite coal, bituminous coal, semi-34 35 bituminous coal, subbituminous coal, lignite, peat and 36 mixtures thereof. The process is applicable for the 37 simultaneous conversion of mixtures of coal and a hydro-38 carbonaceous oil.

The hydroconversion catalysts suitable for use in combination with the hydrogen halides are, for example, catalysts produced in situ in the carbonaceous feed such as the catalysts and slurry processes described in U.S. Patents 4,134,825; 4,077,867.

Referring to the Figure, a carbonaceous feed is 6 introduced by line 10 into mixer 12. When coal is used 7 as carbonaceous feed, the coal would be present as coal 8 particles in a liquid medium which may be an organic 9 diluent such as a hydrocarbonaceous liquid, including 10 liquids derived from coal liquefaction processes, and coal 11 12 liquefaction bottoms. A thermally decomposable metal compound, or solution of thermally decomposable metal 13 compound, which is soluble or dispersible in the liquid 14 medium, or when a hydrocarbonaceous oil feed is used, in 15 the hydrocarbonaceous oil, is introduced into mixer 12 by 16 17 line 14 to the feed. The metal compound is the precursor of the metal-containing hydroconversion catalyst which 18 is formed in situ in the carbonaceous feed when the feed 19 20 containing the precursor is heated to an elevated temper-21 ature.

Suitable thermally decomposable (under process 22 23 conditions) metal compounds include inorganic poly acids such as isopoly and heteropoly acids; metal carbonyls; 24 metal salts of organic acids such as acyclic and alicyclic 25 26 aliphatic carboxylic acids (e.g. naphthenic acids), and 27 metal halides. The metal constituent of the thermally decomposable compound is selected from the group consist-28 29 ing of Groups II, III, IVB, VB, VIB, VIIB, VIII of the Periodic Table of Elements and mixtures thereof, 30 accordance with the table published by Sargent-Welch, 31 copyright 1968, Sargent-Welch Scientific Company, for 32 example, zinc, titanium, cerium, zirconium, vanadium, 33 34 niobium, tantalum, chromium, molybdenum, 35 manganese, rhenium, iron, cobalt, nickel and the noble 36 metals including platinum, iridium, palladium, osmium, 37 ruthenium and rhodium. The preferred metal constituent of the thermally decomposable metal compound is selected from 38

the group consisting of Groups VB and VIB of the Periodic Table of Elements and mixtures thereof. The preferred 2 thermally decomposable compounds are the metal salts of acyclic and alicyclic aliphatic carboxylic acids; isopoly 4 acids and heteropoly acids of metals selected from the 5 group consisting of Groups VB and VIB of the Periodic 6 Table of Elements, that is, vanadium, niobium, chromium, molybdenum, tungsten and mixtures thereof. The terms "heteropolyacid" and "isopoly acid" are used herein in 9 accordance with the definition given in Advanced Inorganic 10 Chemistry, 3rd Edition, by S. A. Cotton and Geoffrey 11 Wilkinson, Interscience Publishers, New York, pages 12 Suitable inorganic poly acids include phospho-13 950-957. molybdic acid, phosphotungstic acid, phosphovanadic acid, 14 silicomolybdic acid, silicotungstic acid, silicovanadic 15 acid and mixtures thereof. The preferred metal consti-16 tuent of the poly acid is selected from the group consist-17 ing of molybdenum, vanadium and chromium. The preferred 18 19 poly acid is phosphomolybdic acid. Suitable concentrations of the thermally decomposable metal compound range 20 from about 1 to about 2000 wppm, preferably from about 5 21 22 to about 950 wppm, more preferably from about 10 to 300 wppm, calculated as the elemental metal, based on the 23 carbonaceous feed, that is, when the feed is coal, it is 24 25 based on coal alone; when the feed is a hydrocarbonaceous 26 oil, it is based on the oil feed; and when the feed is a 27 mixture of coal and oil, it is based on both.

28 A hydrogen halide, preferably hydrogen chloride, or a hydrogen halide precursor such as, for example, the 29 halogens, alkyl halides or aryl halides, is introduced 30 into mixer 12 by line 16 in an amount such as to provide a 31 ratio from about 0.1 to about 20 moles hydrogen halide 32 per atom of the metal constituent of the thermally decom-33 34 posable metal compound, preferably a ratio from about 0.5 to about 10 moles hydrogen halide per atom of metal constituent of the thermally decomposable metal compound 36 more preferably a ratio from about 1 to about 5 moles 37 hydrogen halide per atom of said metal constituent.

•:

When the thermally decomposable metal compound comprises more than one metal constituent, the given ratio of moles of hydrogen halide would apply per atom of the mixture of metal constituents. It has to be understood that the 4 hydrogen halide or the hydrogen halide precursor could be added to the feed carried in line 10 or added to 6 the preheated feed in line 24 or added directly to the 8 thermally decomposable metal compound or to a solution of 9 the thermally decomposable metal compound instead of being introduced into the mixer. Alternatively, the hydrogen 10 halide or the hydrogen halide precursor could be intro-11 duced directly into hydroconversion zone 26. 12 The mixture 13 is removed from mixer 12 by line 18. A hydrogen-contain-14 ing gas is introduced into the mixture by line 20. 15 hydrogen-containing gas may comprise from about 1 to about 16 10 mole percent hydrogen sulfide. The carbonaceous feed 17 hydrogen halide-thermally decomposable metal 18 hydrogen mixture is then passed to heater 22 where the 19 mixture is preheated. The preheated mixture is removed 20 by line 24, passed to a hydroconversion zone in reactor 21 The thermally decomposable metal compound is con-22 verted to the corresponding metal-containing catalyst at 23 hydroconversion conditions. The hydroconversion reaction 24 zone in reactor 26 is maintained at a temperature ranging 25 from about 600 to about 850°F, preferably from about 26 700 to about 800°F, and at a hydrogen partial pressure ranging from about 500 to about 5000 psig, preferably 27 28 from about 1000 to about 3000 psig. The contact time may 29 vary widely depending on the desired conversion level. 30 Suitable contact times may range from about 0.1 to 10 31 hours, preferably from about 0.15 to 4 hours, more prefer-32 ably from about 0.5 to 2.0 hours. The mixed phase product 33 effluent of the hydroconversion zone is removed from 34 reactor 26 by line 28 and passed to separator 30 where it 35 is separated by conventional means into a predominantly 36 vaporous phase comprising light normally gaseous hydrocar-37 bons and hydrogen, removed by line 32 and a principally 38 liquid phase removed by line 34. The vaporous phase may

1 be further separated by conventional means to obtain a 2 hydrogen-rich gas, which if desired, may be recycled to 3 hydroconversion zone 26. The normally liquid hydrocarbon 4 phase may be separated into fractions, as is well known in 5 the art. For example, the normally liquid hydrocarbon 6 phase may be separated into a naphtha stream, a middle distillate stream and a residual fraction containing the If desired, at least a portion of the residual catalyst. fraction containing the catalyst may be recycled to the 10 hydroconversion process. Furthermore, it is also possible 11 to separate the catalyst from the reactor effluent or from 12 a concentrated product residual stream by conventional 13 means known in the art, such as by filtration, centrifuga-14 tion, settling and drawoff. If desired, at least a 15 portion of the separated catalyst may be recycled to 16 the process either directly into the hydroconversion zone 17 or into the feed line or into the mixer. After the 18 catalytic solids are recycled, the addition of thermally 19 decomposable metal compound to the feed may be decreased 20 or discontinued.

The following examples are presented to illus-22 trate the invention.

23 EXAMPLE 1

24 Comparative hydroconversion experiments were 25 made utilizing as feed a Cold Lake crude oil having a 26 nitrogen content of 0.44 weight percent, a sulfur content 27 of 4.3 weight percent, a Conradson carbon content of 28 12.9 weight percent, a nickel content of 74 parts per 29 million parts by weight (wppm) and a vanadium content of 30 The thermally decomposable compound used as 31 precursor for the in situ formed catalyst was molybdenum **32** , naphthenate, a naphthenic acid salt containing 6 weight 33 percent molybdenum. The precursor for in situ formed hydrogen chloride was tertiary-amyl chloride. . 34

The experiments were carried out in the following manner. In Experiment No. R-129, which is not in accordance with the present invention, a 300cc stirred autoclave was charged with 100g of Cold Lake crude and

0.5g of a solution comprising 36 weight percent molybdenum naphthenate in xylene, an amount sufficient to give a 2 molybdenum concentration on feed of 108 wppm. experiment designated R-131, which is an experiment in accordance with the process of this invention, there was 5 also charged 0.5g of a solution containing 10 weight percent t-amyl chloride in xylene, an amount sufficient 7 to furnish a ratio of 4.1 gram-moles of HCl per gram-atom The molybdenum naphthenate and t-amyl of molybdenum. chloride solutions were blended together prior to charging 10 to the autoclave. In both experiments, the autoclave was 11 subsequently charged with 200 psig H₂S and 1300 psig 12 13 H₂ after which it was heated with stirring for 30 minutes 14 at 725°F, cooled rapidly to room temperature and depressur-15 This completed the pretreatment step of the experi-Next, the autoclave was charged with 2000 psig 16 H₂ at room temperature and then heated with stirring at 17 830°F for 60 minutes to carry out the hydroconversion 18 Upon cooling to room temperature, the autoclave 19 reaction. was vented to recover gaseous products and the remaining 20 contents filtered to recover solid and liquid products. 21 22 As can be seen by comparing the experimental 23 results given in Table I, the addition of the HCl precursor, t-amyl chloride, markedly improved hydroconversion 24 25 performance. In the chloride-containing experiment, R-131, metals removal, Conradson carbon conversion and 26 27 coke suppression were substantially better than in the 28 chloride-free control experiment, R-129.

••

COLD LAKE CRUDE HYDROCONVERSION WITH CATALYST FORMED IN SITU FROM MOLYBDENUM NAPHTHENATE AND HCI PRECURSOR	YST FORMED	
EXPERIMENT NO.	R-129	R-131
g-Moles HCl/g-atom Mo	0	4.1
Autoclave Charge, g. Cold Lake Crude	100.0	100.0
Catalyst Solution Xylene Molybdenum Naphthenate t-amyl Chloride	0.32 0.18 0.00	0.72 0.18 0.05
Yields, Wt.% on Feed C1 - C4 Coke C5+ Liquid (by difference)	8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.2 1.2 95.6
Conversion Summay Nickel Removed, % Vanadium Removed, % Conradson Carbon Conversion, %	62 66 50	72 76 61

EXAMPLE 2

2 A second set of comparative hydroconversion 3 experiments was made in the 300cc batch autoclave using the Cold Lake crude feed and the molybdenum naphthenate 5 catalyst precursor of Example 1. However, in the HCl containing experiment of this set, anhydrous HCl gas was substituted for the HCl precursor, t-amyl chloride. Also, the pretreatment step used in the experiments of Example 1 9 was omitted. The quantities of reactants used, the 10 hydroconversion reaction conditions and the experimental 11 results are given in Table II.

COLD LAKE CRUDE HYDROCONVERSION WITH CATALYST FORMED IN SITU FROM MOLYBDENUM NAPHTHENATE AND ANHYDROUS HC	FORMED ROUS HC1	
EXPERIMENT NO.	49-R-26	R-386
g-Moles HCl/g-atom Mo	0	14.7/1
Autoclave Charge, g. Cold Lake Crude Molybdenum Naphthenate Anhydrous HCl	95.00 1.10 0.00	95.10 1.10 0.37
Hydroconversion Conditions Temperature, OF Contact Time, Minutes Pressure, Avg. psig	820 40 2500	820 40 2500
Ylelds, Wt.% on Oil Feed Cl - C4 gas Coke C5+ Liquid (by difference)	2.8 0.7 96.5	1.5 0.9 97.6
Conversion Summary Nickel Removed, % Vanadium Removed, % Conradson Carbon Conversion, % Sulfur Removed, %	80 88 51 47	93 70 52

As can be seen by comparing the experimental results given in Table II, the addition of anhydrous hydrogen chloride improved hydroconversion performance.

In the HCl-containing experiment, R-386, metals removal, sulfur removal, and Conradson carbon conversion were substantially better than in the HCl-free control experiment, 49-R-26.

8 EXAMPLE 3

A third set of comparative experiments was 9 made using as feed a topped Cold Lake crude oil having 10 an initial boiling point of 850°F, a sulfur content of 11 5.6 wt.%, a Conradson carbon content of 20.0 wt.%, a 12 nickel content of 110 wppm and a vanadium content of 260 13 The precursor for the in-situ formed catalyst was a 14 15 phosphomolybdic acid (PMA), 2 H₃PO₄.20 MoO₃.48 H₂O. 16 PMA was dissolved in deionized water prior to use. was added as a 38 wt.% solution of HCl in water. 17

The experiments were carried out in the follow-18 19 ing manner, using the autoclave reactor described in 20 In the experiment designated R-509, which is Example 1. 21 an experiment in accordance with this invention, the 22 autoclave was charged with 95.0g of topped Cold Lake crude 23 and 1.67g of a solution containing 16.67 wt.% PMA and 24 9.10 wt.% of the hydrochloric acid solution and 74.23% 25 deionized water. In experiment R-502, which is not in 26 accordance with this invention, the autoclave charge 27 consisted of 98.5g of topped crude and 1.67g of a solution 28 comprised of 16.5 wt.% PMA in deionized water. In both 29 experiments, the autoclave was subsequently charged with 30 50 psig H₂S and 2350 psig H₂, heated for 30 minutes at 31 725°F followed by 60 minutes at 800°F, then cooled to 32 room temperature and vented to recover gaseous products. 33 Liquid and solid products were recovered by filtering the 34 remaining autoclave contents. Experimental results are 35 given in Table III.

TOPPED COLD LAKE CRUDE HYDROCONVERSION WITH CATAIN IN SITU FROM MIXTURE OF AQUEOUS PHOSPHOMOLYBDIC	WITH CATALYST FORMED MOLYBDIC ACID AND HC1	្ន
EXPERIMENT NO.	R-502	R-509
g-Moles HCl/g-atom Mo	0	1.13
Autoclave Charge, g. Cold Lake Crude	98.50	95.00
Catalyst Solution Phosphomolybdic Acid Deionized Water Hydrochloric Acid (38 wt.%)	0.28 1.24 0.00	0.28 1.39 0.15
Yields, Wt. s on Oil Feed C1 - C4 Coke C5+ Liquid (by difference)	2.3 0.3 97.4	2.1 0.3 97.6
Conversion Summary Nickel Removed, & Vanadium Removed, & Conradson Carbon Conversion, & Sulfur Removed, &	7 8 8 6 5 5 5 6	77 88 63

As can be seen from the data of Table III, the addition of aqueous HCl improved hydroconversion performance. In the HCl-containing experiment, R-509, desulfurization and Conradson carbon conversion were appreciably better than in the HCl-free control experiment, R-502.

EXAMPLE 4

7

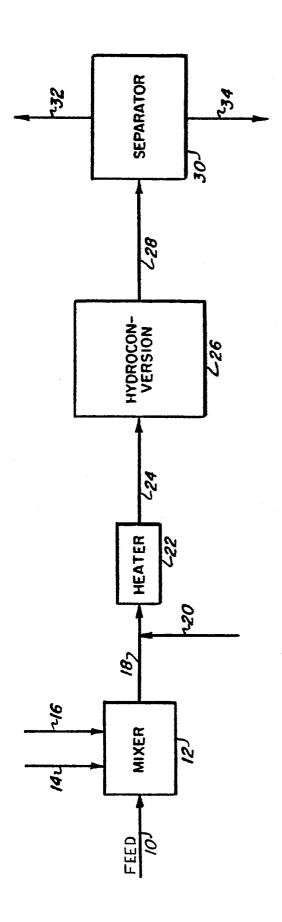
8 Comparative hydroconversion experiments (Table 9 IV) were made utilizing as feed a slurry of equal parts by weight of 1-methyl naphthalene and dry Wyodak coal powder 10 11 of particle size smaller than 100 mesh (Tyler). 12 thermally decomposable compound used as precursor for the 13 in situ formed catalyst was a phosphomolybdic acid (PMA), 14 2 H₃PO₄.24MoO₃.x H₂O, which assayed for 50 wt.% molybdenum. 15 The precursor for in situ formed hydrogen chloride was 16 tertiary-amyl chloride.

17 In Experiment Number 642, which is an experiment 18 in accordance with the present invention, the 300cc 19 autoclave reactor described in Example 1 was charged with 20 82g of coal slurry and 0.84g of a blend of PMA and t-amyl 21 chloride in m-cresol, which was prepared by mixing 0.88g 22 of t-amyl chloride dissolved in 19.12g of m-cresol to a 23 blend of 0.39g PMA in 19.61g of m-cresol. In Experiment 24 Number 643, which is not in accordance with the present invention, the autoclave charge consisted of 81.0g of coal 25 26 slurry and 0.84g of a blend comprised of 0.39g PMA and 27 39.61g of m-cresol. From this point on, the experiments 28 were carried out in an identical manner, which consisted 29 of the following steps. The autoclave containing the coal 30 slurry and catalyst blend was charged at room temperature 31 with 100 psig H_2S and 2,550 psig H_2 and then heated to 32 800°F for a 60 minute stirred contact. Upon cooling to 33 room temperature, the reactor was depressured to recover 34 gaseous products and the remaining contents were filtered 35 to recover liquid and solid products. The weight of 36 solids obtained after washing with toluene and vacuum oven drying was used to determine the conversion of the coal, 37 said conversion being expressed as conversion based on the 38

- weight of dry, ash containing coal charged. The liquid
- 2 product, recovered by filtration, was analyzed for sulfur,
- 3 nitrogen and Conradson carbon content.
- As can be seen by comparing the experimental
- 5 results given in Table IV, the addition of the HCl
- 6 precursor, t-amyl chloride, improved the coal liquefaction
- 7 performance. In the chloride-containing experiment,
- 8 No. 642, the coal conversion was higher (less toluene
- 9 insoluble solids recovered) and the liquid products
- 10 contained less sulfur and Conradson carbon than in the
- 11 chloride-free experiment, No. 643.

WYODAK COAL HYDROLIQUEFACTION WITH CATALYST FORMED IN SITU FROM PHOSPHOMOLYBDIC ACID AND HC1 PRECURSOR	C ACID AND HCI	ST FORMED PRECURSOR
EXPERIMENT NO.	643	642
g-Moles HCl/g-atom Mo	00.0	4.10
Autoclave Charge, g. Wyodak Coal (dry powder) I-Methyl Naphthalene	41	41
Catalyst Solution Phosphomolybdic Acid m-Cresol t-amyl Chloride	0.0082 0.8318 0.0000	0.0082 0.8133 0.0063
Coal Conversion, Wt.8	87.85	88.00
Liquid Product Analyses Sulfur, Wt.% Conradson Carbon, Wt.%	0.45 9.10	0.39 8.93

Conversion of Units


Temperatures expressed herein in °F are converted to °C by subtracting 32 and then dividing by 1.8.

Gauge Pressures expressed in pounds per square inch gauge (psig) are converted to gauge kiloPascals (kPa) by multiplying by 6.895.

CLAIMS

- 1. A process for the hydroconversion of a carbonaceous feed which comprises:
- (a) forming a mixture of said carbonaceous feed and a thermally decomposable metal compound wherein said metal compound comprises at least one metal constituent selected from the group consisting of Groups II, III, IVB, VB, VIB, VIIB, VIII and mixtures thereof of the Periodic Table of Elements;
- (b) reacting the resulting mixture with a hydrogen-containing gas at hydroconversion conditions, in a hydroconversion zone, said metal compound being converted to a metal-containing catalyst within said mixture at said conditions, and
- (c) recovering a normally liquid hydrocarbon product, characterized in that it comprises said reaction being conducted in the presence of a hydrogen halide in an amount such as to provide a ratio from about 0.1 to about 20 moles hydrogen halide per atom of said metal constituent.
- 2. The process of claim 1 wherein said thermally decomposable metal compound is selected from the group consisting of inorganic poly acids, metal carbonyls, metal halides and metal salts of organic acids.
- 3. The process of claim 1 or claim 2 wherein said thermally decomposable metal compound is a phosphomolybdic acid.
- 4. The process of claim 1 or claim 2 wherein said thermally decomposable metal compound is a metal naphthenate.

- 5. The process of any one of claims 1 to 4 wherein said metal compound is added in an amount such as to provide from about 1 to about 2000 wppm of said metal constituent, calculated as elemental metal, based on the weight of said carbonaceous feed.
- 6. The process of any one of claims 1 to 5 wherein said hydroconversion conditions include a temperature ranging from about (gauge) 315.6 to 454.4°C (600°F to about 850°F) and a hydrogen partial pressure ranging from about 3447.5 to 34475 kPa (500 to about 5,000 psig).
- 7. The process of any one of claims 1 to 6 wherein said carbonaceous feed comprises a hydrocarbonaceous oil.
- 8. The process of any one of claims 1 to 7 wherein said carbonaceous feed comprises coal.
- 9. The process of any one of claims 1 to 8 wherein said hydrogen-containing gas comprises from about 1 to about 10 mole percent hydrogen sulfide.
- 10. The process of any one of claims 1 to 9 wherein said hydrogen halide is present in an amount such as to provide a ratio from about 1 to about 5 moles hydrogen halide per atom of said metal constituent.

EUROPEAN SEARCH REPORT

009,3;8,0,9,

EP 82 30 2317

	DOCUMENTS CONS	IDERED TO BE RE	LEVANT		
Category		h indication, where appropria ant passages	te,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 3)
Y	EP-A-0 038 171	 (EXXON)		1,2,3, 4,5,6,	
	Claims 1,2,4,5 lines 15-20	,6,7,9,10; pag	ge 5,		
Y	FR-A-2 367 813	(EXXON)		1,2,3 4,5,6 7,8,9	,
	Claims 1,4,6,7,8,9,10,	11,13,16,23		7,0,9	
Y	US-A-3 249 530	 (GATSIS)		1,2,3	
	Claims 1,2,3; 22-41	column 4,	lines	0,7	
					TECHNICAL FIELDS SEARCHED (Int. Ci. 3)
					C 10 G
	The present search report has b	peen drawn up for all claims			
	Place of search THE HAGUE	Date of completion of 06-01-19	the search 983	DE HI	Examiner ERDT O.C.E.
Y: pa do	CATEGORY OF CITED DOCU rticularly relevant if taken alone rticularly relevant if combined w cument of the same category chnological background n-written disclosure	vith another D:	document ci	ig date ited in the ap ited for other	
O: no P: int	n-written disclosure ermediate document	&:	member of to document	he same pate	nt family, corresponding