
J
Europaisch.es Patentamt

European Patent Office

Office europeen des brevets

0 0 9 5 6 6 9

B 1
Publication number:

EUROPEAN PATENT SPECIFICATION

IntCI.4: G 06 F 1 1 / 0 0 (45) Date of publication of patent specification: 27.09.89

® Application number: 83104965.5

(22) Date of filing: 19.05.83

Automatically reconfigurable memory system and method therefor.

Proprietor: International Business Machines
Corporation
Old Orchard Road
Armonk, N.Y. 10504 (US)

Inventor: Singh, Shanker
Watch Hill Drive
Fishkill New York 12524 (US)
Inventor: Singh, Vijendra Pal
2 Barclay Street
Poughkeepsie New York 12601 (US)

Representative: Barth, Carl Otto et al
IBM Deutschland GmbH Patentabteilung
Schonaicher Strasse 220
D-7030 Boblingen (DE)

References cited:
IBM TECHNICAL DISCLOSURE BULLETIN, vol.
22, no. 10, March 1980, pages 4562-4563, New
York, US; F.J. AICHELMANN Jr: "Preventing
uncorrectable errors within a memory
hierarchy"
1981 INTERNATIONAL TEST CONFERENCE,
DIGEST OF PAPERS, Philadelphia, US, 27th-
29th October 1981, pages 49-55, paper 3.4,
IEEE, New York, US; R.C. EVANS: 'Testing
repairable RAMs and mostly good memories"

Priority: 01.06.82 US 383640

Date of publication of application:
07.12.83 Bulletin 83/49

Publication of the grant of the patent:
27.09.89 Bulletin 89/39

Designated Contracting States:
DEFRGB

(58) References cited:
FR-A-2322427
US-A-3 812336
US-A-3 814 922
US-A-3 906 200
US-A-4064558
IBM TECHNICAL DISCLOSURE BULLETIN, vol.
16, no. 4, September 1973, page 1245, New
York, US; D.C. BOSSEN et al.: "Address
reconfiguration for large-scale integrated
memory yield enhancement'

CQ

O>
(0
CO
i f)
o >
o
o

Q .
UJ

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may
give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall
be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European patent convention).

Courier Press, Leamington Spa, England.

EP 0 095 669 B1

Description

Background of the invention
The present invention relates to the automatic skewing of addresses in a memory to change memory

5 words with uncorrectable errors into memory words with errors that can be corrected by the error
correction code, or ECC, protecting the memory.

Error correction and detection schemes for encoding data are known to detect more errors than they
are capable of correcting. For instance, a 64 data bit word can be provided with a single error correction and
a double error detection capability by using eight check bits which are stored in the same word location in

w memory as the 64 data bits. A failure of any single one of the 72 cells which store the data and check bits
can be corrected by error correcting circuitry. This same circuitry can also be used to detect double errors
existing in the word but generally will not correct these double errors. That is, if a single bit fails the
particular defective bit can be identified and, therefore, corrected. However, if two bits fail the occurrence of
the failure can be detected but the failing bits generally cannot be pinpointed and, therefore, cannot be

15 corrected.
The term "generally" has been used in connection with double error correction because some of the

single error correction codes do correct specific types of double errors such as errors in adjacent bit
positions. However, not all double errors will occur in a correctable pattern. Therefore, to repeat what has
already been said, an error correction system generally speaking will detect a greater number of errors than

20 it has the capability of automatically correcting.
To take advantage of this capacity of an error correction code to detect more errors than it can correct,

Beausoleil U.S. Patent 3,644,902 suggests a means for changing errors that are detectable but
uncorrectable into errors that are both detectable and correctable. In the Beausoleil patent, a memory unit
is made up of a plurality of arrays each containing all the bits for one bit position in the memory unit. These

25 arrays are each addressed through a decoder so that the proper bit of any word is selected from each array
when the word is addressed. The Beausoleil patent suggests that, when multiple errors are to be avoided,
circuitry be employed that permanently modifies the address supplied to the decoders to swap bits
between words by physically swapping the arrays and thereby change words with uncorrectable errors
into words with correctable errors.

30 In Bossen et al U.S. Patent 3,812,336, and in an article entitled "Address Reconfiguration for
Large-Scaie Integrated Memory Yield Inducement", appearing on page 1245 of the September 1973 issue
of the IBM Technical Disclosure Bulletin, an address modification scheme was proposed to perform
electronic swapping of memory bits. In this scheme the address supplied to the decoder of any particular
bit array is modified by logic circuitry as a function of data stored in a shift register associated with the

35 particular bit position of the words in the memory unit. The logic circuitry controlled by each of the
registers includes an Exclusive OR gate for each of the inputs of the decoder of the particular bit position.
Each of the Exclusive OR gates accepts one digit of the word address and the output of one of the stages of
the linear feedback shift register and supplies its output to one of the inputs of the decoder. In the IBM
Technical Disclosure Bulletin article, the decoder input address of the bad bit is placed in the shift register

0̂ so that when the bad bit is requested bit location 0 is accessed instead. In the Bossen et al patent, a different
Galois field number is stored in each of the shift registers starting with zero in the shift register of the first
bit position and proceeding in the Galois field number sequence to the highest number needed in the shift
register of the last bit position. Each time a multiple error is detected, each of the shift registers, except the
shift register for the first bit position, is shifted one Galois number. This assures that the detected multiple

45 error will be eliminated by scattering the bits making up the failing word. Asa result of this scattering, each
of the failing bits ends up in a different word changing the uncorrectable multiple error condition into a
number of correctable single error conditions.

Test results pointing to the location of bad bits are used in Beausoleil U.S. patents 3,781,826 and
3,897,626 to divide chips into groups in accordance with the location of the failing bits. In said patent

50 3,897,626, these chips are mounted on memory cards with all chips having a defective cell in a given chip
section being mounted on a corresponding section of a card. The address wiring is then used to skew the
errors so that no memory word contains more than one bad bit. If a failure is detected by an ECC system, an
Exclusive ORing of two sections of the address of the failing word will locate the bad or suspicious bit.

In European patent application 83102354.4, published as EP — A — 090219 on 05.10.83, entiled "Memory
55 System Restructed by Deterministic Permutation Algorithm", the swapping of bits between different words

of a memory is accomplished by using data on bad bits in the memory. The selection of a permutation of
the bit addresses is done by an exclusionary process which identifies address combinations which result in
alignment of bit failures that are uncorrectable by the error correction system of the memory and then
limiting the selection process to other combinations. In the preferred embodiment, failures are categorized

60 by type, such as chip, line or bit failure to determine uncorrectable combinations of failures. The bit
addresses are then permuted for successive bit position arrays in order of decreasing number of failures.

Brief description of the invention
In accordance with the present invention as claimed, the swapping of bad bits between different words

65 of a memory is accomplished by a new process using data on bad bits in the memory. In the mentioned

EP 0 095 669 B1

European patent application EP— A— 090219 the exclusionary process that selects address locations for
bad bits of any bit position takes into account only the bit positions that have already had their addresses
permuted. In the present arrangement, consideration is also given to data on bit failures in bit positions yet
to be permuted. This is done by maintaining a list of "preferred word address locations" for the insertion of

5 bad bits. A preferred word location is one which at that moment contains a less than a threshold level of
faulty bit positions. As each faulty bit is permuted into one of these preferred word address locations, the
list is changed to take into account the placement of the bad bit. Up until permutation, the unpermuted or
actual physical address of a bad bit is used in calculating the list. After being permuted the logical memory
address is used in changing the list.

10 Therefore, it is an object of the present invention to provide an improved scheme for swapping bits in
memory words to change uncorrectable error conditions into correctable error conditions.

It is another object of the present invention to swap bits in memory words using fault data on bad cells
in the memory.

An additional object of the invention is to swap bits in memory words based on known error conditions
15 existing in the memory categorized by the type of error.

The drawings
These and other objects, features and advantages of the present invention can be best understood by

reference to the figures of the drawings of which:
20 Figure 1 is a schematic of a memory employing the present invention.

Figures 2 to 6 are diagrammatic representations of a set of faults in the memory of Figure 1 prior to,
during and after completion of the rearrangement process of the present invention.

Figure 7 is a flow diagram for rearranging uncorrectable errors in accordance with the present
invention.

25 Figures 8 to 15 are diagrammatic and tabular representations of a second set of faults prior to and after
the rearrangement of faults in accordance with the present invention.

Figure 16 is a block diagram of an error correcting system employing the present invention.

Detailed description of the invention
30 As shown in Figure 1, the storage cells 10 of each bit position B, to B72 of a plurality of 72-bit memory

words are each arranged in separate identical cards 12, in a plurality of arrays or bit islands 14 on each said
card. The arrays 14 are 16-bit arrays with each bit 10 located at a different intersection of one of four word
lines 18 with one of four bit lines 20. The arrays 14 are each accessed through a different word decoder 22
and bit decoder 24 which receiver identical 2-bit address signals Wo, W, and Bo, B, respectively.

35 in addition to a word and bit decoder associated with each array each card 12 also contains a chip
decoder 26 which receives a 4-bit address C'o, C'1f C'2, C3. The chip decoder selects the output of one of the
sixteen arrays 14 on each card 12.

The chip address bits C'o, C':, C2 and C3 are each the output of an Exclusive OR circuit 30 that receives
one address input Co, Cu C2 or C3 from the address register 32 and another input Zo, Zu Z2 or Z3 from a

40 different stage of a shift register 34. Therefore, if Zo to Z3 are all zero, the chip decoder 26 will access the
memory bit island requested by the address register 32. With any other binary combination Zo to Z3 in the
shift resgister 34, the chip decoder 26 will access one of the other fifteen arrays 14.

To summarize then, the memory address register transmits the same eight address bits Co, C1r C2, C3,
Wo, W1f and Bo, B, to all cards 12a to 12n. In each card 12, address bits Wo, W-, and Bo, B, access the same

45 cell 10 in sixteen different arrays 14. The address bits C'o, C'1f C'2, C'3, select the output of one of those chips
on each card to be read out as one of the bits B, to B72of the accessed word. If Zo, Z1# Z2and Z3 are all zero,
this will be the same bit position in the same array on all cards. If the register 34 on any card contains data
other than zeros, the bit output B, of that card will be a bit in the same position on another array 14 of the
card.

so In accordance with the present invention, the data placed in the registers 34 are selected by a new
procedure on the basis of stored information on defects or faults of the chips. Rather than describing the
process in general abstract terms, we will illustrate it with the help of an example in a step by step fashion.
Consider the fault map of Figure 2 showing faults existing in the first ten bit positions of the memory of
Figure 1. For purposes of the following explanation, it will be assumed that the remaining bit positions in

55 the memory are error free. The faulty arrays or islands 14 are labelled X; their 4-bit binary addresses are
denoted in hexadecimal symbols at the left hand side, under the heading W/L Address. We find that out of
sixteen island words W/L, there are 2, 4, 2 and 8 words having 3, 2, 1 and 0 bit errors respectively. Let us
assume that this memory is equipped with SEC/DED capability. Since there are any 8 words W/L without
errors, it is possible that an excess of 8 bit errors, which are associated with 3 and 2 bit error words, can be

60 dispersed into those errorless array words.

Step 1
Identify all the bit sections according to their dispersion capacity, that is their maximum error

dispersion possibility (PT); i.e., if we are successful in finding a suitable permutation vector, this is the
65 maximum number of errors which can be dispersed (distributed). For example, if we can permute section 3

EP 0 095 669 B1

for bit B3 successfully, there is a potential that words 2 and 3 will have only single errors and word 9 will
have been left with 2 bit errors instead of 3. Therefore, section 3 has a dispersion capacity or maximum
error dispersion possibility value equal to 3. Similarly, in section 6, although there are 4 faults, with a
suitable permutation vector one can disperse, at the most, 3 multiple errors. In this example, we find that

s sections 3, 6, 2, 5, 1, 4, 7 and 8 can potentially remove 3, 3, 2, 2, 1, 1, 1 and 1 errors respectively.

Step 2
Identify all the word addresses with zero error; i.e., word addresses 1, 4, 5, 7, 8, B, D and F.

10 Step 3
Also identify all word addresses corresponding to any sections which have single error/section; i.e.,

word addresses 3, 6 and 9; since sections 4, 7 and 8 have only a single error, located in word address 3, 6
and 9 respectively. These are'defined as "Don't care word addresses" which can be gainfully used during
any following iteration steps in the algorithm for finding mutually compatible permutation vectors.

15
Step 4

Choose a section with maximum error dispersion possibility. In our example, these are sections 3 and
6. Choose any one of these two sections. Let it be section 6. Identify faulty word addresses in section 6 i.e.,
word addresses 6, 9, C and E.

20
Step 5

EXOR each error address in section 6 with word addresses having zero error identified in step 2 and
"dont care" addresses identified in step 3. Choose a mutually compatible permutation vector from the
vectors obtained by EXORing. If a completely compatible vector is not found, try to also make use of some

25 "dont care" permutation vector set.

"Don't care"
Error free words f f l 1 4 5 7 8 B D F 3 6 9

6 6 6 6 6 6 6 6 6 6 6
"

C S T " } - 7 2 3 d E D B S , 0 F

® 9 9 9 9 9 9 9 9 9 9 9
as Permutation 1

Vectors H 8 D C E ® 2 4 6 A F O

©
"0 C C C C C C C C C C C

Permutation)
Vectors /"" D 8 9 B 4 7 ® 3 F A 5

45 ® E E E E E E E E E E E
Permutation)
Vectors J~* F A B 9 6 5 3 ® D 8 7

Suppose even "don't care" sets do not help, then choose any permutation vector which removes
maximum errors. For example, suppose completely compatible permutation vector 1 was not available,
then we would have taken permutation vector D with help of a "don't care", or otherwise we could have
chosen any of the permutation vectors among 3, 9, B because these will disperse 3 errors, but will bunch

55 one error with a net dispersion of two errors.
Here we found vector 1 which is able to disperse all 3 multiple errors. While accomplishing this, the

error free words 7, 8, D and F are used up. Since there was only a single error in address E, this single error
moves to address F leaving word E error free. The memory map after permuting addresses in section 6 is
shown in Figure 3 with updated PT and errors in words.

60
Step 6

Now we proceed with the next section with maximum error dispersion possibility (PT) and repeat the
procedure described in step 5 with the remaining error free word addresses. The reader should note that
step 5 may change the value of maximum error dispersion possibility; therefore, the next section must be

65 chosen on the basis of updated values of PT. We find it is section 3. Faulty words in section 3 are 2, 3 and 9.

EP 0 095 669 B1

"Don't care"
Error free words ffi 1 4 5 B E 3 6 9

2 2 2 2 2 2 2 2

Permutation vectors 3 6 ® 9 C 1 4 B 3 6 ® 9 C 1 4 B

3 3 3 3 3 3 3 3

2 ® 6 8 D 0 5 A

9 9 9 9 9 9 9 9

Permutation vectors 2 ® 6 8 D 0 5 A
10

® 9 9 9 9 9 9 9 9

Permutation vectors 8 D C 2 ® A F O
15

Here we find a mutually compatible permutation vector 7, which is able to disperse 3 errors. In the
process of doing so, we use error free words 4, 5 and E. The updated error map with PT is shown in Figure 4.

Step 7
20 Now we find that maximum error dispersion possibility PT of each of remaining sections 1, 2, 5 and 7 is

1. In this situation, it is preferable to work with sections with a minimum number of faults. Since sections 1
and 2 have 2 faults, one can choose any of these. Let us choose section 2. Faulty words in section 2 are 0
and 2. Repeating once again as in step 6 with remaining error free words 1 and B we have:

25 "Don't care"
Error free words 1 B 3 6 9

® 0 0
30

Permutation vectors 1 B

35
Permutation vectors 3 9 1 4 B

Here we take advantage of "Don't care" addresses to choose permutation vector 1. Although it
disperses one error (from word 0 to 1) and at the same time adds 1 error (from word 2 to 3), this new error

40 can be dispersed by choosing section 4 with single fault which can be displaced to whatever error free word
address is available. One can also choose permutation vector 3, 9 or B to provide an acceptable situation.
The result of step 7 is shown in Figure 5.

Step 8
45 Finally, since section 7 has only one fault and it combines with the fault in section 5 with 2 faults,

section 7 is the next suitable section to work with. The selection of a permutation vector is similar to that for
section 4 described in step 7.

Therefore, the complete set of permutation vectors which will disperse all the errors is as follows:

50 Section Permutation vectors

3 7
55

4 1

6 1

60 7 D

The reader should note that in step 7, if we had chosen section 1 instead of section 2, then permutation
vector 1 would have been found to be mutually compatible without the need for don't care addresses. The
permutation vector 1 for section 1 would have permuted errors in word 0 and A to 1 and B words, leaving

65 section 4 as it was. The final memory map is shown in Figure 6, where all multi-bit errors have been

EP 0 095 669 B1

dispersed. Figure 7 is a flow diagram of the algorithm that has just been described. It shows a further
modification wherein a small number of iterations is predetermined and the algorithm, if unsuccessful at
first, keeps trying unless the count of UEs did not decrease at all.

The algorithm has been described in connection with a memory equipped with single error correction,
5 double error detection (SEC/DED) capability. Figure 7 is a flow diagram for the algorithm. It can also be

used to disperse errors in a memory equipped with a double error correction, triple error detection
(DEC/TED) capability. For DEC/TED equipped memory, one must identify error words with three or more
error addresses. The address permutation is then used to disperse those errors into words with 0 or 1
errors Permutation is done in the order determined by the highest value of updated PT as explained earlier.

10 The above description of the present illustration was done without regard to the type of fault that has
occurred in the arrays 14. That is, the faults were not characterized as to whether they were bit failures, line
failures or array failures. In the description of the invention in connection with Figures 8 to 15 the type of
fault will be categorized and will be applied to a more complex memory. The memory consists of eighteen
cards, each card being populated with 128, 64K chips. These chips are placed as 32x4 array on each card.

15 Each card contributes four bits to each 72 bit wide memory word available to the system, thereby providing
2 million, 72-bit memory words (Base Storage Module BSM). However, from error dispersion logic
implementation view-point, the memory can be visualized as made up of 72 sections. Each section is
equipped with its own independent address translation logic of five EX-OR gates and five latches. This logic
is wired in such a fashion that the addressing bits which identify 32 chip rows can be translated according

20 to the values of permutation bits stored earlier in the latches.
Figure 8 represents the fault map for the memory. In general, the memory consist of a 32x72 chips

matrix. In the example of Figure 8, there are shown only the 52 sections with faulty arrays. The fault type in
each section can be a complete chip kill, one or more bit line kill, one or more word line kill or one or more
cell kill or the combination bit line, word line and cell kill type faults. Whenever the occurrence of such faults

25 in two or more sections results in a mutual address alignment, two or more bit errors per memory word can
occur. The objective of address translation is to avoid such alignments and to provide a configuration
where two or more bit faults can be avoided. Entries '0', T, '2', '3' and '4' in Figure 8 represent 'no fault',
'chip kill', 'bit line kill', 'word line kill' and 'cell kill' type faults respectively. Entries such as 5, 6, 7 and 9
represent multiple fault type situations. For example, 5 implies a chip containing a failed bit line and word

30 line, while 7 represents a chip containing a failed word line and a cell kill. The actual addresses of a faulty bit
line, word line and cell along with the information available in the fault map such as shown in Figure 8 is
called a complete fault map.

The error dispersion algorithm will now be described in a step by step fashion, by using a complete
fault map. The algorithm will then be applied to a partial fault map.

35 Let us assume the availability of a complete fault map, i.e., fault data such as shown in Figure 8 and
summarized in Figure 9. Although the address of every fault type in each chip in Figure 8 is available, only
addresses of faults which must be taken into account by the algorithm are tabulated in Figure 9. This is
because only these faults can potentially cause alignments due to their identical "addresses" or "address
components". Figure 10 lists the permutation vectors which must be excluded in case the algorithm

40 randomly selects them from various available choices. For example, if the algorithm chooses a vector p1
for section 14, then permutation vector (p1©4) should be excluded while selecting a vector for section 28.
Otherwise, the bit line kill in row address 13 will align with the cell kill in row address 9 after fault dispersion
and thereby will cause one two bit error word.

Figure 11 represents the Initial Error Summary Table which is basically extracted from Figure 8 and
45 Figure 9. It consists of 32 row addresses and seven columns. The second column represents the number of

faults in each row address. The 3rd, 4th, 5th and 6th columns represent the number of chip, bit line, word
line and cell kill faults for each row address. Column 7 indicates the number of memory words which have
two or more bit errors. The circled entries in Figure 8 represent the faults with identical address and thereby
causing fault alignment. For example in row address 3, sections 20 and 28 have two chips with faulty bit

so lines whose addresses are identical and therefore produce 256 memory words each having two bit errors.

Step 1
With the help of Figures 8, 9 and 10 first extract the "work matrix", i.e., only those sections which cause

fault alignments and thus produce two or more bit error memory words. For example, in row address 17, a
55 chip kill in section 42 aligns with chips in sections 6, 8, 41 and 71, which have a (word line+cell) fail, a word

. line fail, bit line fail and a cell fail respectively. These fault alignments cause 768 memory words with two or
more bit errors. Therefore, sections 6, 8, 41, 42 and 71 are included in the work matrix.

In the memory example, the work matrix is a 32x24 matrix of the following sections:

60 1, 3, 6, 8, 11, 14, 18, 19, 20, 25, 28, 29,
32, 36, 41, 42, 47, 48, 51, 54, 63, 65, 71.

Step 2
With the help of Figure 11, select a set of "target addresses" for each fault type, where a "target

address" is an address to which a particular fault type can be moved without causing an increase in the
65 number of multi-bit error words.

EP 0 095 669 B1

In the example, the following sets of addresses make the target address set for each fault type.

TARGET ADDRESS SET FOR CHIP KILL
1st Choice:

5 {Row addresses with no fault}={nil}
2nd Choice:
{Row addresses with only cell kill faults or row addresses with no faults}
{2, 7, 12, 19, 20, 21, 26, 27, 28}

10 TARGET ADDRESS SET FOR BIT LINE KILL
1st Choice:
{Row addresses with bit line kill or with bit line and cell kill}
{3, 4, 8, 11, 14, 15, 18, 30, 31}
2nd Choice:

15 {Row addresses with bit line or cell kill}
{2, 3, 4, 7, 8, 11, 12, 14, 15, 18, 19, 20, 21, 26, 27, 28, 30, 31}

TARGET ADDRESS SET FOR WORD LINE KILL
1st Choice:

20 {Row addresses with word line kill or with word line and cell kill}
{0, 1, 5, 10, 22, 24, 29}
2nd Choice:
{Row addresses with word line or cell kill}
{0, 1, 2, 5, 7, 10, 12, 19, 20, 21, 22, 24, 26, 27, 28, 29}

25
TARGET ADDRESS SET FOR CELL KILL
{2nd Choice target address set for bit line kill} or
{2nd Choice target address set for word line kill}
{0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 14, 15, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31}

30
In the initial situation of Figure 8, there are no row addresses with zero faults and thus ideally there are

no target addresses to which a chip kill can be moved. In such a situation the next best available target
addresses can be the row addresses which have cell kill faults only. In the same way one would like to
choose target addresses for bit line and word line kills such that they already have bit line and word line

35 fails respectively. This would enable to keep the target address set size approximately the same. This will be
independent of the number of faults dispersed, and therefore will help to disperse more faults.

Step 3
For each section in the "work matrix" find a maximum mutually compatible permutation vector, by

40 EXORing each fault-type address with the addresses in their respective "target set". For example, for
section 8 of the "work matrix" with cell fails in row addresses 5 and 10 and a word line fail in row address
17, the maximum mutually compatible permutation vector is determined as follows:

[Addresses in the target set for cell kill]©[Address of the cell kills in section 8],
45

[Addresses in the target set for word line kill]©[Address of word line kill in section 8].

0 , 1 , 2 , 3 , 4 , 5 , 7 , 8 , 1 0 , 1 1 , 1 2 , 1 4 , 1 5 , 1 8 , 1 9 , 2 0 , 2 1 , 2 2 , 2 4 , 2 6 , 2 7 , 2 8 , 2 9 , 3 0 , 3 1
50 © € $ ® & © $ $ © $ $ $ ® © © © © © $ © $ » * $ »

5

16) 19 29 31 30 25 24 27 26

0,1 2 3 4 5 7 8 10 11 12 14 15 18 19 20 21 22 24 26 27 28 29 30 31

® © © © @ © © @ © © © © $ © © © © © © © $ © & © $
60 101010101010101010 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

@Q> 8(gX415^3)(2)0 1 6 0 (|) 24 25 30 31 28 18 @ (0) @) 23 20 21

65

EP 0 095 669 B1

2nd Choice

.1st Choice — ̂ 1

< -

0, 1, 5, 10, 22, 24, 29, 2, 7, 12, 19, 20, 21, 26, 27, 28

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
10 12 19 29

Here one can easily pick a set of permutation vectors which are not only maximum mutually compatible but
even completely (3-way) compatible. These are shown by circled entries. Any one of these will reduce the

15 number of multiple bit error words. Therefore, the algorithm picks one in a random fashion. A maximum
mutually compatible permutation vector is not necessarily completely compatible, however a completely
compatible permutation vector is always maximum mutually compatible. For example, suppose a
completely compatible vector could not be found for section 8, the algorithm will search for a two-way
compatibility. In such a situation, if there is more than one choice available, the algorithm will pick that

20 permutation vector from the choice set which decreases the number of multi-bit error words to minimum.
As the algorithm continues to operate from section to section, the target address sets are continuously
updated. Once a fault pair is realigned, the algorithm automatically skips the 2nd section in the pair. These
characteristics of the algorithm make it highly convergent. When choosing a permutation vector the
algorithm will avoid a value which is to be excluded according to Figure 10.

25 Figure 12 and Figure 13 show the final memory fault map and its corresponding error summary table
after fault dispersion. The error column in Figure 13 indicates 0s in every row address, implying that all the
faults which caused two or more bit error memory words have been dispersed.

For the sake of completeness, it is worthwhile to describe a general approach for fault dispersion with
30 the availability of a partial fault map only. The nature of the fault map may vary with the amount of

information available about the fault types and their respective addresses within individual chips. For
example, a fault map may only identify chip kill, line kill and cell kill, i.e. it does not provide any information
if the line killed is a word line.or bit line. On the other hand, a second fault map may identify chip kill, bit line
kill, word line kill and cell kill type faults, but not the location of failed bit line, word line or cell within a chip.

35 It is obvious that it will be less tedious and less time consuming to work with the second map, however, the
general approach of using these maps must be the same.

The general approach has been to start with the available fault information and disperse all possible
faults, as if all the bit line, word line and cell faults have different addresses within the invididual chips. In
other words, any two bit line and cells can be bunched in any of the permutable row addresses. Similarly,

40 any two word lines and cells can be bunched in any of the permutable row addresses. This is followed by
reconfiguring the memory according to the values of permutation vectors and testing for two or more bit
error words. The addresses of the faulty words and the location of faulty bits within the words in the
reconfigured memory provide the information about some of the fault types and their addresses not
available earlier. With this new information, the fault map is updated and once again a new set of

45 permutation vectors are found. Once again the memory is reconfigured and tested. This procedure is
repeated until no multiple bit error words are found or the number of multi-bit error words cannot be
further reduced.

The algorithm assumes the availability of a fault map and its corresponding error summary table of
Figure 8 and Figure 11 respectively. The only difference is that the information provided in Figure 10 and

so hence the list of permutation vectors to be excluded from the selection is not available to the algorithm.
Based on this partial information and assuming that all bit line and word line and cell kill addresses are
unique, the algorithm calculates a list of permutation vectors which must disperse all the faults to a new
reconfigured memory map of Figure 14 and its associated summary table of Figure 15. These permutation
vectors with their respective sections are listed as follows:

20

25

30

55
Sections 1, 6, 8, 11, 13, 14, 17, 18, 21, 25, 28, 29, 32, 36, 42, 48, 51, 56

:}.
Permutation
Vectors 7, 20, 20, 7, 7, 9 16 10 23 17 7 29 20 3 11 27 12 27

60-
The reconfigured memory map of Figure 14 when tested is found to contain one, two bit error word

resulting from an alignment in row address 22 due to a cell kill in section 14 and a word line kill in section
48. The alignment resulted due to a common address component of a cell kill and word line kill (cf. the 3rd
line of entries in the table of Figure 9 and Figure 1 0). Therefore, permutation vectors 9 and 27 for sections 14
and 48 are not mutually acceptable. In this example, the algorithm finds another permutation vector 21 for 65

8

EP 0 095 669 B1

section 48 This permutation vector reconfigures the memory as shown in Figure 12, which is the same as
arrived at previously with a complete fault map. This memory reconfiguration does not have any two bit or

mUlAlthouqhlSienstepVby step description of the method may give the appearance that the algorithm must
5 proceed sequentially column by column in determining permutation vectors, this is not always necessary

Many sections can be simultaneously handled if they do not have chip kill faults and the 1st choice target
address" sets for bit line, word line, and cell fails can meet the maximum comptabihty criterion. The other

sections which either have a chip kill or need second choice "target address sets" and thus requ.re an

update on target address sets must be dealt with in a sequential operation. Such an approach can speed up
JO algorithm execution up to 40% over a completely sequential operation.

In Fiqure 16 a memory 40 such as that shown in Figure 1 is checked by conventional error correction

apparatus 42 The occurrence of an uncorrectable error (UE) signal from the apparatus initiates testing of
" the memory array by tester 44. The tester is a device for application of test patterns to the memory location

containing the UE. For instance, the tester could apply a pattern of all 1's followed by a pattern of all zeros
• 15 to the flawed memory location to determine bits stuck at 0 or 1 respectively. When the faulty bits have been

identified, their address is stored in memory in a fault map in the manner described in the present

application or an other mapping suitable for the purpose. Generation of a fault map is described in

European patent application EP-A-0096030 entitled "Apparatus for High Speed Fault Mapping of Large

20 enTheeUE condition also initiates operation of the permutation generation logic 48 to change data in the

reqisters 34 of the memory to eliminate the UE condition. In accordance with the present invention the

permutation generator is a microcoded processor 48 capable of executing the algorithm set forth above.

The output of the permutation generator is the CR values for the various bit positions of the memory so
these CR values are fed into the latches 34. The latches can be stages of an LSSD shift register. So the data

25 could be shifted along the LSSD chain into the proper stages.

Claims

T A method for automatically restructuring a memory system (40) made up of logical data words each
30 with bit positions (12) accessed by the same logical address bits (C0-C3) through separate permuting

means (30, 34) each of which converts a logical address to a separate actual address (CO — C3 > tor a data
bit on the basis of a separate permutatibn vector (Z0-Z3) that is being selected to distribute faulty data bits

among the logical data words,
characterized by the following steps of:
(a) scanning a fault data map data base (Figure 2) . * * , < .
(a1) identifying preferred logical address locations (1,4, 5, 7, 8, D, F; 3, 6, 9) having a number of faulty

bit positions less than a number causing uncorrectable errors and
_ , . * * , , •

(a2) identifying all the bit positions of the individual logical address locations according to their

„„ maximum error distribution possibility (PT);
(b) choosing one of several possible bit positions with maximum error distribution possibility and

identifying all the respective logical addresses of the faulty words (6, 9, C, E);
(c) comparing the word address for the locations determined in step (a1) with the logical addresses of

the faulty words determined in step (b), to thereby derive a number of potential permutation vectors;
(d) selecting for each bit position the permutation vector (1) which places the most faults in preferred

word locations; and
(e) if necessary repeating the comparison and selecting steps (c) and (d) until all uncorrectable errors

are P 9 ™ ^ ^ restructuring method of claim 1 wherein said comparison is an Exclusive ORing of the
word' address for the locations determined in step (a1) with the logical addresses of faulty words

50 determined in step (b) and the selection is a choice of the most common result as the permutation vector.

3 The method of claim 1 or 2 wherein the selecting of a permutation vector starts with bit positions
having the most faults still conflicting with faults in other bit positions and proceeds in order of decreasing
number of such c o n f l i c t s . . ,

55 4 The method of any preceding claim wherein the number of errors in a word is counted over the

permuted bits whose logical address includes said memory word and unpermuted bits whose real address

'S S5 T™e™ethod°of a preceding claim wherein the preferred logical address locations include those

address locations (1, 4, 5, 7, 8, B, D, F) that have no faulty bits therein.
60 6. The method of a preceding claim wherein the preferred logical address locations include separate

sets of target locations being preferred for placing different types of faults therein.
7. The method of claim 6 wherein separate sets of preferred logical address locations are identified for

placing chip kill, bit line kill, word line kill and/or cell kill faults therein.
8 The method of a preceding claim wherein a set of preferred locations is split between target

65 locations of first choice, (1,4, 5, 7, 8, B, D, F) and target locations of second choice (3, 6, 9) or "don't care"

55

60

EP 0 095 669 B1

locations, where the second category can contribute less efficiently or only indirectly to final fault
dispersion.

9. The method of a preceding claim wherein identifying preferred logical address locations includes
identifying for exclusion from the preference those combinations of bit addresses that would result in

5 combining the failures so that there are more errors in any memory word than would be correctable by the
error correction code monitoring the memory.

1 0. A memory system (40) for carrying out the method of a preceding claim including error correction
coding means (42) also detecting uncorrectable errors, testing means (44) identifying the addresses and
types of the faults causing said detected uncorrectable errors, memory means (46) storing fault map data

10 relating to said memory system (40), and permutation generation logic means (48) to select said
permutation bits for dispersion of said faults on the basis of said stored fault map data, characterized by:

said permutation generation logic means comprising means comparing the actual address of each
fault in each bit position with the logical address of a number of preferred word locations for placing a fault,
means selecting the permutation bits which place the most faults in preferred word locations, and

is means causing a repetition of the comparison and selecting steps until all uncorrectable errors are
permuted.

Patentanspriiche

20 1. Verfahren zum automatischen Restrukturieren eines Speichersystems (40) aus logischen
Datenwortern, auf deren Bitpositionen (12) von denselben logischen AdrelSbits (CO — C3) durch getrennte
Permutationsmittel (30, 34) Zugriff genommen wird, die jeweils eine logische Adresse in eine getrennte
aktuelle Adresse (CO' — C3') fur ein Datenbit auf der Basis eines getrennten Permutationsvektors (ZO — Z3)
umwandeln, der zum Verteilen fehlerhafter Datenbits unter den logischen Datenwortern aufgerufen wird,

25 gekennzeichnet durch die folgenden Schritte:
(a) Abtasten einer Fehlerdatenbank (Fig. 2)
(a1) Identifizieren bevorzugter logischer Adrefcpositionen (1, 4, 5, 7, 8, D, F; 3, 6, 9) mit einer Anzahl

fehlerhafter Bitpositionen, die niedriger ist als eine, unkorrigierbare Fehler verursachende Anzahl, und
(a2) Identifizieren aller Bitpositionen der einzelnen logischen AdrelSpositionen nach deren maximal

30 moglichen (PT) Fehlerverteilung;
(b) Auswahlen einer von mehreren moglichen Bitpositionen mit maximal mdglicher Fehlerverteilung,

und Identifizieren aller jeweiligen logischen Adressen der fehlerhaften Worter (6, 9, C, E);
(c) Vergleichen der fur die in Schritt (a1) bestimmten Positionen vorgesehene Wortadresse mit den

logischen Adressen der in Schritt (b) bestimmten fehlerhaften Worter, urn dadurch eine Anzahl von
35 potentiellen Permutationsvektoren abzuleiten;

(d) Auswahlen des Permutationsvektors (1) fur jede Bitposition, der die meisten Fehler in bevorzugte
Wortpositionen stellt; und,

(e) wenn erforderlich, Wiederholen des Vergleichs und Aufrufen der Schritte (c) und (d), bis alle nicht
korrigierbaren Fehler permutiert sind.

40
2. Speicherrestrukturierungsverfahren nach Anspruch 1, bei welchem es sich bei dem Vergleich um

eine EXKLUSIV ODER-Verkniipfung der Wortadresse fur die in Schritt (a1) bestimmten Positionen mit den
logischen Adressen von in Schritt (b) bestimmten fehlerhaften Worten handelt, und bei welchem das
Aufrufen eine Auswahl des haufigsten Resultats als Permutationsvektor ist.

45 3. Verfahren nach Anspruch 1 oder 2, bei welchem die Auswahl des Permutationsvektors damit
beginnt, dalS sich Bitpositionen mit der groBten Fehlerzahl noch mit Fehlern in anderen Bitpositionen im
Konflikt befinden, und daft es nach der abnehmenden Anzahl solcher Konflikte fortgesetzt wird.

4. Verfahren nach einem der vorhergehenden Anspriiche, bei welchem die Anzahl von Fehlern in
einem Wort uber die permutierten Bits gezahlt wird deren logische Adresse das Speicherwort enthalt, und

50 uber nicht permutierte Bits, deren wirkliche Adresse das Speicherwort ist.
5. Verfahren nach einem der vorhergehenden Anspruche, bei welchem die bevorzugten logischen

AdrelSpositionen diejenigen (1, 4, 5, 7, 8, B, D, F) einschlielSen, die keine fehlerhaften Bits enthalten.
6. Verfahren nach einem der vorhergehenden Anspruche, bei welchem die bevorzugten logischen

AdrefSpositionen getrennte Gruppen von Zielpositionen enthalten, in die bevorzugt unterschiedliche
55 Fehlerarten eingelesen werden.

7. Verfahren nach Anspruch 6, bei welchem getrennte Gruppen bevorzugter logischer AdrefJpositionen
zur Aufnahme von chipstorenden, bit- und wortleitungsstorenden und/oder zellstorenden Fehlern
identifiziert werden.

8. Verfahren nach einem der vorhergehenden Anspruche, bei welchem eine Gruppe von bevorzugten
60 Positionen zwischen Zielpositionen einer ersten Auswahl (1, 4, 5, 7, 8, B, D, F) und Zielpositionen einer

zweiten Auswahl (3, 6, 9) oder "don't care"-Positionen aufgespaltet wird, wobei die zweite Kategorie
weniger effizient oder nur indirekt zur endgultigen Fehlerbeseitigung beitragen kann.

9. Verfahren nach einem der vorhergehenden Anspruche, bei welchem das Identifizieren bevorzugter
logischer AdrelSpositionen die Indentifizierung zum AusschlulS aus der Praferenzsliste derjenigen

65 Kombinationen von Bitadressen umfalSt, in welchem die Fehler kombiniert werden wurden, so dalS mehr

10

EP 0 095 669 B1

Fehler in einem Speicherwort sind, als durch den den Speicher uberwachenden Fehlerkorrekturcode
moglich ware.

10. Speichersystem (40) zum Ausfiihren des Verfahrens nach einem der vorhergehenden Anspruche,
mit Fehlerkorrekturcodemitteln (42), die auch nicht korrigierbare Fehler erkennen, mitTestmitteln (44) zum

5 Identifizieren der die festgestellten nicht korrigierbaren Fehler verursachenden Adressen und Fehlerarten,
mit einem Speicher (46) zum Speichern einer sich auf das Speichersystem (40) beziehenden
Fehlerverteilungsliste, und mit logischen Permutationsmitteln (48) zum Aufrufen der Permutationsbits zum
Beseitigen der Fehler auf der Basis der gespeicherten Fehlerverteilung,

dadurch gekennzeichnet, daB
10 die logischen Permutationsmittel enthalten: Mittel zum Vergleichen der echten Adresse jedes Fehlers

in jeder Bitposition mit der logischen Adresse einer Anzahl von bevorzugten Wortpositionen zum
Auffinden eines Fehlers, Mittel zum Aufrufen der Permutationsbits, welche die meisten Fehler in
bevorzugten Wortpositionen auffinden, und

Mittel zum Wiederholen der Vergleichs- und Selektionsschritte, bis alle nicht korrigierbaren Fehler
15 permutiert sind.

Revendications

1. Procede pour restructurer automatiquement un systeme de memoire (40) constitue de mots de
20 donnees logiques ayant chacun des positions de bit (12) accedees par les memes bits a'adresse logique

(CO — C3) par I'intermediaire de moyens de permutation separes (30, 34) dont chacun convertit une adresse
logique en une adresse reelle separee (CO' — C3') pour un bit de donnees, sur la base d'un vecteur de
permutation distinct (Z0 — Z3) qui est choisi pour repartir les bits de donnees defectueux parmi les mots de
donnees logiques,

25 caracterise par les operations suivantes de:
(a) balayage d'une base de donnees d'implantation de donnees defectueuses (figure 2),
(a1) identification d'emplacements d'adresse logique preferes (1, 4, 5, 7, 8, D, F; 3, 6, 9) ayant un

nombre de positions de bit defectueux inferieur au nombre engendrant des erreurs non corrigibles, et
(a2) identification de toutes les positions de bit des emplacements d'adresse logique individuels en

30 fonction de leur possibility maximale de repartition d'erreur (PT);
(b) choix d'une de plusieurs positions de bit possibles avec une possibility maximale de repartition

d'erreur, et identification de toutes les adresses logiques respectives des mots defectueux (6, 9, C, E);
(c) comparaison de I'adresse de mot pour les emplacements determines dans I'operation (a1) avec les

adresses logiques des mots defectueux determinees dans I'operation (b), de maniere a obtenir un certain
35 nombre de vecteurs de permutation potentiels;

(d) selection, pour chaque position de bit, du vecteur de permutation (1) qui place le plus grand nombre
de defauts dans les emplacements de mots preferes; et

(e) si necessaire, repetition des operations de comparaison et de selection (c) et (d), jusqu'a ce que
toutes les erreurs non corrigibles soient permutees.

40 2. Procede de restructuration de memoire suivant la revendication 1, dans lequel ladite comparaison
est une operation OU Exclusif de I'adresse de mot, pour les emplacements determines dans I'operation
(a1), avec les adresses logiques des mots defectueux determinees dans I'operation (b), et

la selection est un choix du resultat le plus commun, comme vecteur de permutation.
3. Procede suivant la revendication 1 ou 2, dans lequel la selection d'un vecteur de permutation

45 commence aux positions de bit ayant le plus grand nombre de defauts encore en conflit avec des defauts
dans d'autres positions de bit, et elle se poursuit dans I'ordre du nombre decroissant de ces conflits.

4. Procede suivant I'une quelconque des revendications precedentes, dans lequel le nombre d'erreurs
dans un mot est compte par rapport aux bits permutes dont I'adresse logique comprend ledit mot de
memoire et aux bits non permutes dont I'adresse reelle est ledit mot de memoire.

so 5. Procede suivant I'une quelconque des revendications precedentes, dans lequel les emplacements
d'adresse logique preferes comprennent les emplacements d'adresse (1, 4, 5, 7, 8, B, D, F) qui ne
contiennent pas de bits defectueux.

6. Procede suivant I'une quelconque des revendications precedentes, dans lequel les emplacements
d'adresse logique preferes comprennent des groupes separes d'emplacements cibles qui sont preferes

55 pour y placer des types differents de defauts.
7. Procede suivant la revendication 6, dans lequel des groupes separes d'emplacements d'adresse

logique preferes sont identifies poury placer des defauts d'elimination de puce, d'elimination de ligne de
bit, d'elimination de ligne de mot et/ou d'elimination de cellule.

8. Procede suivant I'une quelconque des revendications precedentes, dans lequel un groupe
60 d'emplacements preferes est divise entre des emplacements cibles de premier choix (1, 5, 7, 8, B, D, F) et

des emplacements cibles de deuxieme choix (3, 6, 9) ou des emplacements "indifferents", dans lesquels la
deuxieme categorie peut contribuer moins efficacement ou seulement indirectement a la dispersion finale
des defauts.

9. Procede suivant I'une quelconque des revendications precedentes, dans lequel I'identification des
65 emplacements d'adresse logique preferes comprend I'identification, pour exclusion de la preference, des

11

EP 0 095 669 B1

combinaisons d'adresses de bit qui aboutiraient a la combinaison des defauts de sorte qu'il y aurait
davantage d'erreurs dans un mot de memoire quelconque que ce qui pourrait etre corrige par le code de
correction d'erreur controlant la memoire.

10. Systeme de memoire (40) pour la mise en oeuvre du procede suivant I'une quelconque des
5 revendications precedentes, comprenant des moyens (42) de code de correction d'erreur detectant

egalement les erreurs non corrigibles, des moyens d'essai (44) identifiant les adresses et types des defauts
provoquant lesdites erreurs non corrigibles detectees, des moyens de memoire (46) stockant des donnees
d'implantation de defaut relatives audit systeme de memoire (40), et des moyens logiques (48) de
generation de permutation pour choisir les dits bits de permutation pour la dispersion desdits defauts sur

10 |a base desdites donnees d'implantation de defaut stockees, caracterise en ce que:
lesdits moyens logiques de generation de permutation comprennent des moyens qui comparent

I'adresse effective de chaque defaut dans chaque position de bit avec I'adresse logique d'un certain
nombre d'emplacements de mot preferes pour placer un defaut.

des moyens sont prevus pour la selection des bits de permutation qui placent le plus grand nombre de
15 .defauts dans les emplacements de mots preferes, et

des moyens sont prevus pour provoquer une repetition des operations de comparaison et de selection
jusqu'a ce que toutes les erreurs non corrigibles soient permutees.

20

25

30

35

40

45

50

55

60

65

12

EP 0 095 669 B1

X r f f

j

CO

CD 1~O .
<_3 ; l g H — r— J \ .ro CVJ

ro
OJ r-J

o — ■=> — > ^ m cc o O> ro
1 U L J ro evi C3

l Z
r

3: "^

Cvl

J3

CO "
\

rr y\ \\ A 'I

en o >
evj-

z i r r r ^ J

EP 0 095 669 B1

W/L B/ F I 6 . 2
L

Address Bl B2

4 o f
E r r o r s L

Bl B2 B3 B4 B5 E6 B7 B8 B9 BlO

X X 2

X X 2

X X 2

X X X 3

X X X 3

x 1

X X 2

x 1

2

3

4

5

6

7

8

B

C

Dispersion

C a p a c i t y 1 2 3 1 2 3 1 1 0 " 0

EP 0 095 669 B1

E r r o r s
A f t e r

F I G . 3
W/L B/ .

Bl B2 B3 34 B5 B6 B7 B8 B9 BIO Step 5

X X 2

X X 2

X X 2

X X 2

X 1

X 1

X X 2

x l

X 1

X 1

X 1

A d d r e s s

5

6

A f t e r
Step 5 1 2 3 1 1 0 1 1 0 0

EP 0 095 669 B1

E r r o r s

W/L D/L
F I G ' 4

Addross Dl B2 B3 D4 B5 B6 B7 B8 B9 BIO Step 6

o x x 2

1

2

3

5 X 1

e x . x 2

7 X 1

1

9

A

B

1

1

E

F * X

A f t e r i i i

Step 6 1 1 0 0 1 0 1 0 0 0

EP 0 095 669 B1

E r r o r s
A f t e r

F I G . 5
B/ , W/L

A d d r e s s
"

Bl B2 B3 B4 B5 B6 B7 B8 B9 BIO Step 7

X ' 1

x .
x

X X 2

• x .
1

• X 1

X X 2

x 1

X
" 1

X 1

1

x i

x 1

X 1

x i

2

3

4

5

6

7

8

9

B

A f t e r

Step 7 o i i o i o o o 0 1

EP 0 095 669 B1

F I G . 6 I I V3. D E r r o r s
W/L B/L A f t e r

Address Bl B2 D3 B4 D5 B6 B7 B8 B9 BIO Step 3

* 1

x 1

X 1

X !

X 1

x i

X.. 1

X ' i

X 1

X 1

X 1

X 1

x x

X 1

X 1

X 1

1

2

4

5

8

9

A

B

A f t e r

Step 8 0 0 0 0 0 0 0 0 0

EP 0 095 669 B1

(̂ START ^ F I G . 7

IDENTIFY BIT SECTIONS CONTAINING FAULTS ALIGNING
WITH THE FAULTS IN OTHER SECTIONS IN DESCENDING

NUMBER OF ALIGNMENTS (MAX. DISPERSION POSSIBILITY)
PT

IDENTIFY TARGET ADDRESS SET I.E. THE SET OF ROW

ADDRESSES WHERE FAULTS CAN BE MOVED TO WITHOUT

CAUSING NEW ALIGNMENTS

SET ITERATION COUNTER= N

CHOOSE THE SECTION -WITH MAX. P j . "EXOR" THE ADDRESSES OF

THE FAULTS IN THE SECTION WITH EACH ADDRESS IN THE TARGET

SET TO FIND MOST COMPATIBLE PERMUTATION VECTOR

(ADDRESS TRANSLATION CONTROL VALUE)

RECONFIGURE THE MEMORY AND UPDATE TARGET ADDRESS SEl

AND PT VALUES AND TEST FOR UN-CORRECTABLE ERRORS

DONE

EP 0 095 669 B1

tn a
o k
OS
w

o

u o
a
K
o r v j ^ O O O r O O O O O C M O O O O O O O O O O O t N O i - l O O O O i - H O O

O O O i - l « N O O i - l (N O O C M O O < N O f O i - I O O O O O O O O O i -) O O C N i - l

O O O O O O O O O r H O O O i - H O O O O r H O r - I O O ^ l O O H O O O O O

10

M

M
u

00

VD

E-<

<
Cm

fa t tS in iTHOrH(OMH1"a1NHI^Oin '>*HNHH«lHU1t<1rHCVlM«* ' a ' f 03

u
w t/J
u
Q
a

<
o

OtHrv i fn^ invor^ooa iOHfNfn^ invor -a Jc r iO t - iCNi ro^ i r ivo r^oocnOr - i

15

EP 0 095 669 B1

ARRAY CHIP F I G . 1 6

UNCORRECTIBLE
ERROR

16

	bibliography
	description
	claims
	drawings

