(19)
(11) EP 0 097 613 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
04.01.1984  Patentblatt  1984/01

(21) Anmeldenummer: 83810225.9

(22) Anmeldetag:  31.05.1983
(51) Internationale Patentklassifikation (IPC)3C25C 3/16
(84) Benannte Vertragsstaaten:
AT CH DE FR GB IT LI NL SE

(30) Priorität: 23.06.1982 CH 3838/82

(71) Anmelder: SCHWEIZERISCHE ALUMINIUM AG
CH-3965 Chippis (CH)

(72) Erfinder:
  • Blanc, Jean-Marc
    CH-3960 Sierre (CH)
  • Pfister, Hans
    CH-8600 Dübendorf (CH)
  • Knaisch, Otto
    CH-8713 Uerikon (CH)


(56) Entgegenhaltungen: : 
   
       


    (54) Schienenanordnung für Elektrolysezellen


    (57) In einer asymmetrischen Schienenanordnung wird der elektrische Gleichstrom von den Kathodenbarrenenden (12, 14) einer quergestellten Aluminiumschmelzflusselektrolysezelle (10) zur Traverse (16) der Folgezelle (36) geleitet. Ein Teil der mit den stromauf liegenden Kathodenbarrenenden (12) verbundenen Stromschienen (18) führt unter Elektrolysezelle (10) durch.
    Die Schienenkonfiguration im kathodischen Teil der Elektrolysezelle (10) ist derart konzipiert, dass die Variation der Asymmetrie des aus den stromauf liegenden Kathodenbarrenenden (12) austretenden Stromes zwischen 3 und 30% liegt.




    Beschreibung


    [0001] Die vorliegende Erfindung betrifft eine asymmetrische Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer quergestellten Aluminiumschmelzflusselektrolysezelle zur Traverse der Folgezelle wobei ein Teil der mit den stromauf liegenden Kathodenbarrenenden verbundenen Stromschienen unter der Elektrolysezelle durch führt.

    [0002] Für die Gewinnung von Aluminium durch Schmelzflusselektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Elektrolysezelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. In die Schmelze tauchen von oben Anoden ein, die bei konventionellen Verfahren aus amorphem Kohlenstoff bestehen. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu C02 und CO verbindet.

    [0003] Die Elektrolyse findet in einem Temperaturbereich von etwa 940 - 970°C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Aluminiumoxid. Bei einer unteren Konzentration von 1 - 2 Gew.-% Aluminiumoxid im Elektrolyten kommt es zum Anodeneffekt, der sich in einer Erhöhung der Spannung von beispielsweise 4 - 5 V auf 30 V und darüber auswirkt. Spätestens dann muss die Aluminiumoxidkonzentration durch Zugabe von neuer Tonerde angehoben werden.

    [0004] Im Kohleboden der Elektrolysezelle sind Kathodenbarren eingebettet, wobei deren Enden die Seitenwandung der aus Stahlwanne, Isolationsschicht und Kohlenstoffauskleidung bestehenden Elektrolysewanne auf beiden Seiten durchgreifen.

    [0005] Durch den ohmschen Widerstand von den Kathodenbarren bis zu den Anoden der Folgezelle werden Energieverluste verursacht, die in der Grössenordnung von bis zu 1 kWh/kg produziertes Aluminium liegen. Es ist deshalb wiederholt v-r-sucht worden, die Anordnung der Stromschienen in bezug auf den ohmschen Widerstand zu optimalisieren. Dabei müssen jedoch auch die gebildeten Vertikalkomponenten der magnetischen Induktion berücksichtigt werden, welche - zusammen mit den horizontalen Stromdichtekomponenten - im durch den Reduktionsprozess gewonnenen flüssigen Metall ein Kraftfeld erzeugen.

    [0006] In einer Aluminiumhütte mit in Reihen angeordneten, quergestellten Elektrolysezellen erfolgt die Stromführung von Zelle zu Zelle folgendermassen: Der elektrische Gleichstrom wird von im Kohleboden der Zelle eingebetteten Kathodenbarren gesammelt und tritt in bezug auf die allgemeine Strom- richtung in der Regel aus den stromauf und stromab liegenden Enden aus. Die eisernen Kathodenbarren sind über flexible Bänder mit Stromschienen aus Aluminium verbunden. Die üblicherweise zu Sammelschienen zusammengefassten Stromschienen führen den Gleichstrom in den Bereich der Folgezelle, wo der Strom über andere flexible Bänder und über Steigleitungen zu der die Anoden tragenden Traverse geführt wird. Die Steigleitungen sind je nach Zellentyp mit den Stirn- und/oder einer Längsseite der Traverse elektrisch leitend verbunden.

    [0007] Diese für Aluminiumhütten charakteristischen Schienenführungen weisen jedoch sowohl elektrische als auch magnetische Unannehmlichkeiten auf, die nach mehreren Vorveröffentlichungen zu beheben versucht worden sind.

    [0008] In der GB-PS 1 032 810 wird im Rahmen einer Erfindung, welche die Zellenkapselung betrifft, offenbart, dass die Stromschienen unterhalb der Elektrolysezelle angeordnet werden können. Nach Fig. 2 werden Stromführungen 135 in bezug auf die Ofenquerrichtung symmetrisch unter der Zelle durch geführt und symmetrisch in die Traverse der Folgezelle eingespeist.

    [0009] Nach der US-PS 3 415 724 wird eine Schienenführung angestrebt, mit welcher die magnetischen Effekte nicht erhöht werden, wenn die Stromstärke erhöht wird. Zu diesem Zweck wird ein Teil des stromauf aus den Kathodenbarrenenden austretenden Stromes, jedoch weniger als die Hälfte, unter der Zelle durch geführt. Der übrige, stromauf aus den Kathodenbarrenenden austretende Strom wird konzentriert um die Stirnseiten der Zelle herum geführt. Nach Fig. 3 liegen die den Strom unter der Zelle durch führenden Leiter in der Mitte der Elektrolysezelle und sind als Sammelschienen ausgebildet. Die Einspeisung in die Traverse der Folgezelle erfolgt in bezug auf die Ofenquerachse symmetrisch an vier Stellen der Traversenlängsseite.

    [0010] Aucn die US-PS 4 313 811 hat eine Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer quergestellen Elektrolysezelle zur Traverse der Folgezelle zum Gegenstand. Die mit den stromauf liegenden Kathodenbarrenenden verbundenen Schienen sind alternierend einzeln unter der Elektrolysezelle durch und paketweise um die Elektrolysezelle herum angeordnet. Die alternierenden Gruppen bestehen aus 1 - 5 Schienen, vorzugsweise wird etwa ein Viertel des gesamten Stromes unter der Elektrolysezelle durch geführt.

    [0011] Obwohl insbesondere nach der letztgenannten Veröffentlichung die magnetischen und elektrischen Unannehmlichkeiten weitgehend beseitigt werden können, haben sich die Erfinder die Aufgabe gestellt, für quergestellte Aluminiumschmelzflusselektrolysezellen eine Schienenanordnung zu schaffen, bei welcher die Investitionskosten und die Stromausbeute bei praktisch vernachlässigbaren magnetischen und elektrischen Effekten weiter optimalisiert sind.

    [0012] Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Schienenkonfiguration im kathodischen Teil der Elektrolysezelle

    - eine Gruppe von Stromschienen, die im mittleren Zellenbereich mit 10 - 40% der stromauf liegenden Kathodenbarrenenden verbunden und einzeln unter der Elektrolysezelle durchführend angeordnet sind,

    - beidseits dieser Gruppe von Stromschienen paketweise um die Stirnseiten der Elektrolysezelle herum führende, mit den restlichen stromauf liegenden Kathodenbarrenenden verbundene Stromschienen, und

    - in 2 bis 6 Steigleitungen übergehende, den gesamten elektrischen Strom von stromauf und stromab liegenden Kathodenbarrenenden aufnehmenden Stromschienen


    umfasst, wobei die Variation der Asymmetrie des aus den stromauf liegenden Kathodenbarrenenden austretenden Stromes zwischen 3 und 30% liegt.

    [0013] Unter Asymmetrie wird der Unterschied der Ströme, die um die beiden Stirnseiten herum fliessen, ausgedrückt in % des gesamten aus den stromauf liegenden Kathodenbarrenenden fliessenden Stromes, verstanden.

    [0014] Die Gruppe von im mittleren Zellenbereich unten durchführenden Schienen ist bevorzugt mit 15 - 30% der stromauf liegenden Kathodenbarrenenden verbunden.

    [0015] Nach einer ersten Ausführungsform der Erfindung ist die im mittleren Zellenbereich angeordnete Gruppe von unter der Elektrolysezelle durch führenden Stromschienen in bezug auf die Zellenquerachse um 3 - 30%, vorzugsweise um 3 - 20%, verschoben, und zwar in von der Nachbarzellenreihe, welche den elektrischen Gleichstrom zurückführt, wegweisender Richtung. Die mit den übrigen, auf der stromauf liegenden Seite angeordneten Kathodenbarrenenden verbundenen Stromschienen führen um die jeweils näher liegende Stirnseite der Elektrolysezelle herum, falls sie an den unter der Elektrolysezelle durch führenden Stromschienen in Zellenlängsrichtung vorbei führen. Mit anderen Worten wird nie der gesamte Strom, der aus den stromauf liegenden Kathodenbarren austritt und nicht unter der Elektrolysezelle durch fliesst, um dieselbe Stirnseite herum geführt. Dadurch wird mehr Strom um die der Nachbarzellenreihe näher liegende Stirnseite der Elektrolysezelle herum geführt. Durch die damit erzeugte Asymmetrie werden die schädlichen magnetischen Einflüsse der Nachbarzellenreihe kompensiert.

    [0016] Nach einer weiteren Variante der Erfindung ist die im mittleren Zellenbereich liegende Gruppe von unter der Elektrolysezelle durchführenden Stromschienen in bezug auf die Zellenquerachse symmetrisch angeordnet. Die Asymmetrie wird erzeugt, indem 3 - 35%, vorzugsweise 3 - 20%, der stromauf unmittelbar neben der Gruppe von unter der Elektrolysezelle durchführenden Stromschienen liegenden, von der Nachbarzellenreihe abgewandten Kathodenbarrenenden mit mindestens einer Stromschiene verbunden sind, die um die "falsche" Stirnseite der Elektrolysezelle herumführt/en. Mit dem Ausdruck "falsch" wird ausgedrückt, dass diese Stromschiene/n in Zellenlängsrichtung an der unter der Elektrolysezelle durch geführten Gruppe von Stromschienen vorbei läuft/laufen und so die Asymmetrie erzeugt/en. Sämtliche mit den restlichen, stromauf liegenden Kathodenbarrenenden verbundenen Stromschienen laufen normal um die jeweils nähere Stirnseite der Elektrolysezelle herum, ohne in Zellenlängsrichtung an der unter der Elektrolysezelle durch führenden Gruppe von Stromschienen vorbei zu führen.

    [0017] Die beiden vorstehend beschriebenen Varianten können miteinander kombiniert werden. Die im mittleren Zellenbereich liegende Gruppe von unter der Elektrolysezelle durch führenden Stromschienen kann normal um 3 - 30% oder etwas weniger, beispielsweise um 3 - 27%, vorzugsweise um 3 - 17%, in von der Nachbarzellenreihe wegweisender Richtung verschoben werden. Ebenso kann die Anzahl der stromauf liegenden Kathodenbarrenenden, welche unmittelbar neben der im mittleren Zellenbereich angeordneten Gruppe, auf deren von der Nachbarzellenreihe abgewandten Seite, mit mindestens einer um die der Nachbarzellenreihe zugewandte Stirnseite der Elektrolysezelle herumführenden Stromschiene verbunden sind, normal bei 3 - 35% belassen oder zweckmässig etwas reduziert werden, vorzugsweise auf 3 - 20%.

    [0018] Die Steigleitungen, welche den gesamten elektrischen Strom von stromauf- und stromab liegenden Kathodenbarrenenden aufnehmen, münden bevorzugt seitlich in die Traverse der Folgezelle ein, d.h. in deren Längsseite. Die Verbindung der beiden äusseren Steigleitungen ist dabei vorzugsweise mindestens 5%, bezogen auf die Länge der Traverse, von der Stirnseite nach innen verschoben.

    [0019] Die Steigleitungen, zweckmässig 3 - 4, werden in bezug auf die Zellenquerachse zweckmässig symmetrisch zur Traverse der Folgezelle geführt.

    [0020] Die Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen schematisch:

    Fig. 1 eine asymmetrische Schienenanordnung einer Elektrolysezelle bis zur Traverse der Folgezelle, mit vier asymmetrisch angeordneten, unter der Elektrolysezelle durch führenden Stromschienen

    Fig. 2 eine Schienenanordnung einer Elektrolysezelle bis zur Traverse der Folgezelle, mit vier symmetrisch angeordneten, unter der Zelle durch führenden Stromschienen und einer von zwei Kathodenbarrenenden gespiesenen, um die "falsche" Stirnseite herum führenden Stromschiene.



    [0021] In die Elektrolysezelle 10 von Fig. 1 sind 24 Kathodenbarren mit in bezug auf die allgemeine Stromrichtung I stromauf 12 und stromab 14 liegenden Kathodenbarrenenden. Diese eisernen Kathodenbarrenenden 12, 14 sind mit Aluminiumschienen verbunden, welche den Strom zur Traverse 16 der Folgezelle führen.

    [0022] Im mittleren Bereich der Elektrolysezelle 10 ist eine Gruppe G von vier Stromschienen 18 unter der Elektrolysezelle durch geführt. Diese Stromschienen 18 sind in bezug auf die Zellenquerachse Q, d.h. die symmetrische Position, um zwei Kathodenbarren in Richtung der von der Nachbarzellenreihe abgewandten Stirnseite 20 der Elektrolysezelle 10 verschoben. Im vorliegenden Beispiel werden also 16,7% des aus den stromauf liegenden Kathodenbarrenenden 12 austretenden Stromes über einzelne Stromschienen 18 unter der Elektrolysezelle 10 durch geführt.

    [0023] Ueber die Stromschienen 24, welche um die der Nachbarzellenreihe zugewandte Stirnseite 22 der Elektrolysezelle 10 herum geführt werden, fliesst der Strom von 12 Kathodenbarrenenden. Ueber die Stromschienen 26 dagegen, welche um die der Nachbarzellenreihe abgewandte Stirnseite 20 der Elektrolysezelle 10 herum geführt werden, dagegen nur der Strom von 8 Kathodenbarrenenden. Diese Asymmetrie von 4 wird von einer Verschiebung der Gruppe G um 8,3% erzeugt.

    [0024] Die Stromschienen 24, 26 vereinigen sich mit Stromschienen von den stromab liegenden Kathodenbarrenenden 14 und führen in vier in bezug auf die Zellenquerachse Q symmetrisch angeordneten Steigleitungen 28, 30, 32, 34 zur Traverse 16 der Folgezelle 36. Sie münden in die Längsseiten der Traverse 16, die äusseren Steigleitungen 28, 34 sind um je etwa 10%, bezogen auf die gesamte Traversenlänge, von deren Stirnseite eingerückt.

    [0025] Bei der Schienenanordnung nach Fig. 2 liegt die Gruppe G der vier unter der Elektrolysezelle durch führenden Stromschienen 18 in bezug auf die Zellenquerachse Q symmetrisch. Sie führen, wie bei Fig. 1, 16,7% des aus den stromauf liegenden Kathodenbarrenenden 12 austretenden Stromes unter der Elektrolysezelle durch. Die Asymmetrie wird erzeugt, indem der Strom von zwei stromauf liegenden Kathodenbarrenenden 12 mittels einer Stromschiene 38 in Längsrichtung der Elektrolysezelle 10 an der Gruppe G vorbei nach der "falschen" Stirnseite 22 der Elektrolysezelle 10 geführt wird. Diese um die der Nachbarzellenreihe zugewandte Stirnseite 22 herum führenden Stromschienen 24 (welche auch den Strom der Stromschiene 38 enthalten) leiten den Strom von 12 stromauf liegenden Kathodenbarrenenden. Die um die der Nachbarzellenreihe abgewandte Stirnseite 20 herum führenden Stromschienen 26 dagegen leiten nur den Strom von 8 stromauf liegenden Kathodenbarrenenden. Damit ergibt sich eine Asymmetrie von 4.

    [0026] Die entsprechend von Fig. 1 angeordneten Steigleitungen 28, 30, 32, 34 leiten den elektrischen Gleichstrom in zwei Aeste der Traverse 16 der Folgezelle 36.

    [0027] Bei den Stromschienen 18 ist von wesentlicher Bedeutung, dass sie einzeln, entsprechend dem Abstand der Kathodenbarren, unter der Elektrolysezelle durch geführt werden. Die Stromschienen 24, 26 dagegen können gebündelte Einzelleiter oder ein einziger Leiter mit entsprechendem Querschnitt sein.


    Ansprüche

    1. Asymmetrische Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer quergestellten Aluminiumschmelzflusselektrolysezelle zur Traverse der Folgezelle
    wobei ein Teil der mit den stromauf liegenden Kathodenbarrenenden verbundenen Stromschienen unter der Elektrolysezelle durch führt, dadurch gekennzeichent, dass
    die Schienenkonfiguration im kathodischen Teil der Elektrolysezelle (10)

    - eine Gruppe (G) von Stromschienen (18), die im mittleren Zellenbereich mit 10 - 40% der stromauf liegenden Kathodenbarrenenden (12) verbunden und einzeln unter der Elektrolysezelle (10) durch führend angeordnet sind,

    - beidseits dieser Gruppe (G) von Stromschienen (18) paketweise um die Stirnseiten (20,22) der Elektrolysezelle (10) herumführende, mit den restlichen, stromauf liegenden Kathodenbarrenenden (12) verbundene Stromschienen (24,26), und

    - in 2 - 6 Steigleitungen (28,30,32,34) übergehende, den gesamten elektrischen Strom von stromauf- und stromab liegenden Kathodenbarrenenden aufnehmenden Stromschienen (24,26)


    umfasst, wobei die Variation der Asymmetrie des aus den stromauf liegenden Kathodenbarrenenden (12) austretenden Stromes zwischen 3 und 30% liegt.
     
    2. Schienenanordnung nach Anspruch 1, dadurch gekennzeich- net, dass die im mittleren Zellenbereich liegende Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) in bezug auf die Zellenquerachse (Q) um 3 - 30% in von der Nachbarzellenreihe wegweisender Richtung verschoben angeordnet ist, und sämtliche mit den restlichen, stromauf liegenden Kathodenbarrenenden (12) verbundenen Stromschienen (24,26) um die jeweils nähere Stirnseite (20,22) der Elektrolysezelle (10) herum führen.
     
    3. Schienenanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die im mittleren Zellenbereich liegende Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) in bezug auf die Zellenquerachse (Q) symmetrisch angeordnet ist, 3 - 35% der stromauf liegenden Kathodenbarrenenden (12), welche unmittelbar neben der im mittleren Zellenbereich ange-ordneten Gruppe (G), auf deren von der Nachbarzellenreihe abgewandten Seite, mit mindestens einer Stromschiene (38) verbunden sind, die um die der Nachbarzellenreihe zugewandte Stirnseite (22) der Elektrolysezelle (10) herum führt, während die mit den übrig bleibenden, stromauf liegenden Kathodenbarrenenden (12) verbundenen Stromschienen (24,26) um die jeweils nähere Stirnseite (22,20) der Elektrolysezelle (10) herum führen.
     
    4. Schienenanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die im mittleren Zellenbereich liegende Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) in bezug auf die Zellenquerachse (Q) um 3 - 30% in von der Nachbarzellenreihe wegweisender Richtung verschoben angeordnet ist, 3 - 35% der stromauf liegenden Kathodenbarrenenden (12), welche unmittelbar neben der im mittleren Zellenbereich angeordneten Gruppe (G), auf deren von der Nachbarzellenreihe abgewandten Seite, mit mindestens einer Stromschiene (38) verbunden sind, die um die der Nachbarzellenreihe zugewandte Stirnseite (22) der Elektrolysezelle (10) herum führt, während die mit den übrig bleibenden, stromauf liegenden Kathodenbarrenenden (12) verbundenen Stromschienen (24,26) um die jeweils nähere Stirnseite (22, 20) der Elektrolysezelle (10) herum führen.
     
    5. Schienenanordnung nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, däss die Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) im mittleren Zellenbereich mit 15 - 30% der stromauf liegenden Kathodenbarrenenden verbunden ist.
     
    6. Schienenanordnung nach wenigstens einem der Ansprüche 1, 2, 4 oder 5, dadurch gekennzeichent, dass die Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) im mittleren Zellenbereich um 3 - 20% asymmetrisch verschoben ist.
     
    7. Schienenanordnung nach wenigstens einem der Ansprüche 1 und 3 - 6, dadurch gekennzeichnet, dass 3 - 20% der stromauf liegenden Kathodenbarrenenden (12), welche unmittelbar neben der im mittleren Zellenbereich angeordneten Gruppe (G), auf deren von der Nachbarzellenreihe abgewandten Seite, mit Stromschienen (38) verbunden sind, die um die der Nachbarzellenreihe zugewandte Stirnseite (22) der Elektrolysezelle (10) herum führen.
     
    8. Schienenanordnung nach wenigstens einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass alle Steigleitungen (28,30,32,34) seitlich in die Traverse (16) der Folgezelle (36) einmünden und die beiden äusseren Steigleitungen (28,34) je mindestens 5%, bezogen auf die Länge der Traverse (16), von der Stirnseite nach innen verschoben sind.
     
    9. Schienenanordnung nach Anspruch 8-dadurch gekennzeichnet, dass vorzugsweise 3 - 4 max.,jedoch sechs Steigleitungen vorgesehen sind.
     
    10. Schienenanordnung nach wenigstens einem der Ansprüche 7 - 9, dadurch gekennzeichnet, dass die Steigleitungen in bezug auf die Zellenquerachse (Q) symmetrisch in die Traverse (16) der Folgezelle (36) einmünden.
     




    Zeichnung










    Recherchenbericht