(1) Publication number:

O 100 197

(12)

#### **EUROPEAN PATENT APPLICATION**

21 Application number: 83304179.1

(f) Int. Cl.<sup>3</sup>: C 10 C 3/00, D 01 F 9/14

22 Date of filing: 19.07.83

30 Priority: 19.07.82 US 399750

Applicant: Exxon Research and Engineering Company, P.O.Box 390 180 Park Avenue, Fiorham Park New Jersey 07932 (US)

43 Date of publication of application: 08.02.84 Bulletin 84/6

 Inventor: Dickakian, Ghazi, 2117 Cleveland Street, Greenville South Carolina (US)

Designated Contracting States: BE DE FR GB IT NL

Representative: Pitkin, Robert Wilfred et al, ESSO Engineering (Europe) Ltd. Patents & Licences Apex Tower High Street, New Malden Surrey KT3 4DJ (GB)

A pitch from catalytic cracker bottoms and other feedstocks.

A pitch suitable for spinning directly into carbon fibers, characterised by containing (i) from 80 to 100 percent by weight toluene insolubles, (ii) at least 15 percent by weight quinoline insolubles and/or from 1 to 60 percent by weight pyridine insolubles and (iii) is preferably substantially free of impurities and ash; said pitch having been derived from a substantially deasphaltenated fraction of a feedstock, preferably catalytic cracker bottoms.

EP 0 100 197 A1

## 1 FIELD OF THE INVENTION:

- This invention pertains to an aromatic pitch
- 3 containing a high liquid crystal (optically active)
- 4 fraction, and more particularly to a pitch which can be
- 5 directly spun into carbon fibers.

#### 6 BACKGROUND OF THE INVENTION:

As is well-known, the catalytic conversion of 7 8 virgin gas oils containing aromatic, naphthenic and 9 paraffinic molecules results in the formation of a 10 variety of distillates that have ever-increasing utility 11 and importance in the petrochemical industry. 12 economic and utilitarian value, however, of the residual 13 fractions of the cat cracking processes (also known as 14 cat cracker bottoms) has not increased to the same 15 extent as have the light overhead fractions. potential use for such cat cracker bottoms is in the 16 17 manufacture of carbon artifacts. As is well-known, carbon artifacts have been made by pyrolyzing a wide 19 variety of organic materials. Indeed, one carbon 20 artifact of particularly important commercial interest is carbon fiber. Hence, particular reference is made 21 22 herein to carbon fiber technology. Nevertheless, it should be appreciated that this invention has applicability to carbon artifacts in a general sense, with 25 emphasis upon the production on shaped carbon articles 26 in the form of filaments, yarns, films, ribbons, sheets, etc. 27

The use of carbon fibers for reinforcing plastic and metal matrices has gained considerable commercial acceptance. The exceptional properties of these reinforcing composite materials, such as their high strength to weight ratio, clearly offset their high preparation costs. It is generally accepted that large

- 1 scale use of carbon fibers as reinforcing material would
  - 2 gain even greater acceptance in the marketplace, if the
  - 3 costs of the fibers could be substantially reduced.
  - 4 Thus, the formation of carbon fibers from relatively
  - 5 inexpensive carbonaceous pitches has received consider-
  - 6 able attention in recent years.
  - 7 Many materials containing polycondensed
  - 8 aromatics can be converted at early stages of carboni-
  - 9 zation to a structurally ordered optically anisotropic
- 10 spherical liquid crystal called mesophase. The presence
- Il of this ordered structure prior to carbonization is
- 12 considered to be fundamental in obtaining a high quality
- 13 carbon fiber. Thus, one of the first requirements of a
- 14 feedstock material suitable for carbon fiber production,
- 15 is its ability to be converted to a highly optically
- 16 anisotropic material.
- 17 In addition, suitable feedstocks for carbon
- 18 artifact manufacture, and in particular carbon fiber
- 19 manufacture, should have relatively low softening points
- 20 and sufficient viscosity suitable for shaping and
- 21 spinning into desirable articles and fibers.
- 22 Unfortunately, many carbonaceous pitches have
- 23 relatively high softening points. Indeed, incipient
- 24 coking frequently occurs in such materials at temper-
- 25 atures where they have sufficient viscosity for spinning.
- 26 The presence of coke, infusible materials, and/or high
- 27 softening point components, are detrimental to the
- 28 fiber-making process. Thus, for example, U.S. Patent
- 29 3,919,376 discloses the difficulty in deforming pitches
- 30 which undergo coking and/or polymerization at the
- 31 softening temperature of the pitch.
- 32 Another important characteristic of the
- 33 feedstock for carbon artifact manufacture is its rate of

conversion to a suitable optically anisotropic material. 1 For example, in the above-mentioned U.S. patent, it is disclosed that 350°C is the minimum temperature generally required to produce mesophase from a carbonaceous pitch. More importantly, however, is the fact that at 5 least one week of heating is necessary to produce a 6 mesophase content of about 40%, at that minimum temper-Mesophase, of course, can be generated in 8 shorter times by heating at higher temperatures. 9 However, as indicated above, incipient coking and other 10 undesirable side reactions take place at temperatures in 11 excess of about 440°C. 12

In U.S. Patent 4,208,267, it has been disclos-13 ed that typical graphitized carbonaceous pitches contain 14 a separable fraction which has important physical and 15 chemical properties. Indeed, this separable fraction 16 exhibits a softening range and viscosity suitable for 17 It also has the ability to be converted spinning. 18 rapidly (at temperatures in the range generally of about 19 230°C to about 400°C) to an optically anisotropic, 20 deformable, liquid crystalline material structure. 21 Unfortunately, the amount of separable fraction present 22 in well-known commercially available petroleum pitches, 23 such as Ashland 240 and Ashland 260, to mention a few, 24 is exceedingly low. For example, with Ashland 240, no 25 more than about 10% of the pitch constitutes a separable 25 fraction capable of being thermally converted to a 27 deformable anisotropic phase. 28

In U.S. Patent 4,184,942, it has been disclosed that the amount of the aforementioned fraction
yielding an optical anisotropic pitch can be increased
by heat soaking the feedstock at temperatures in the
range of 350°C to 450°C, until spherules visible under
polarized light begin to appear.

In U.S. Patent 4,219,404, it has been dis-1 closed that the polycondensed aromatic oils present in isotropic graphitizable pitches are generally detrimen-3 tal to the rate of formation of highly anisotropic material in such feedstocks when they are heated at elevated temperatures and that, in preparing a feedstock for carbon artifact manufacture, it is particularly advantageous to remove at least a portion of the polycondensed aromatic oils normally present in the pitch simultaneously with, or prior to, heat soaking of the 10 pitch for converting it into a feedstock suitable in 11 carbon artifact manufacture. 12

More recently, in U.S. Patent 4,271,006 (June 13 2, 1981), a process has been disclosed for converting 14 cat cracker bottoms to a feedstock suitable in carbon 15 artifact manufacture. Basically, the process requires 16 stripping cat cracker bottoms of fractions boiling below 17 400°C and thereafter heat soaking the residue followed 18 by vacuum stripping to provide a carbonaceous aromatic - 19 pitch. 20

Cat cracker bottoms like all other heavy 21 aromatic residues obtained from steam cracking, fluid 22 cracking or coal processing are composed of two compo-23 nents: (1) a low molecular weight oil fraction which 24 can be distilled; and (2) an undistillable fraction of 25 high molecular weight. This high molecular weight 26 fraction is insoluble in paraffinic solvents such as 28 n-heptane, iso-octane, pet ether, etc. This fraction is generally called "asphaltene".

It is preferred to use an asphaltene-free feed for the production of pitches. These asphaltenes have a very high molecular weight (up to 10,000), a very high coking characteristic (coking value as high as 67.5 wt% l coke yield at 550°C), and a very high melting point 2 (200-250°C).

It is desired to use an asphaltene-free cat 3 cracker bottom. The asphaltene-free cat cracker bottom 4 is free of ash, coke particles and other impurities. 5 The absence of asphaltene, ash, coke particles and other 7 organic and inorganic impurities make the cat cracker bottom distillate an ideal feed for the production of an aromatic pitch with a very high content of liquid 9 This asphaltene-free cat cracker bottom can 10 be prepared by two methods: (a) by a distillation 11 process; e.g., vacuum or steam distillation; and 12 by deasphaltenation of the cat cracker bottom. 13 The deasphaltenation can be made readily by solvent extrac-14 tion with a paraffinic solvent. 15

- In U.S. Patent No. 4,363,715 a process is described for obtaining a feedstock with a low liquid crystal fraction by heat soaking a distillate derived from a cat cracker bottom. The pitch produced in the above patent No. 4,363,715 cannot be used directly for carbon fiber production. The liquid crystal fraction has to be extracted from the pitch and used for fiber production.
- Whereas, U.S. Patent No. 4,363,715 teaches that all of the cat cracker bottoms can be used to obtain a pitch having low toluene insolubles (Ti), the present invention teaches the opposite, i.e. obtaining a pitch from fractions of the cat cracker bottoms which has a high Ti content (a high content of liquid crystals).
- The present invention uses deasphaltenated generated feedstock fractions to provide a pitch having a high Ti

1 content, and one which does not require Ti solvent
2 extraction prior to spinning into fibers.

The deasphaltenated fractions of a feedstock 3 in accordance with this invention is generally free of ash and impurities, and has the proper rheological 5 properties to allow direct spinning into carbon fibers. 7 The pitch obtained from this fraction produces fibers which have high strength and performance. For example, 8 a deasphaltenated cat cracker bottom fraction obtained in accordance with the present invention, has virtually 10 no coking value at 550°C compared with a 56% standard 11 coking value for Ashland 240. The deasphaltenated cat 12 cracker bottom fraction is composed of 4, 5, and 6 13 polycondensed aromatic rings. This provides a uniform 14 feed material which can be carefully controlled to 15 produce a uniform product with a narrow molecular weight 16 distribution. 17

# 18 SUMMARY OF THE INVENTION:

The present invention pertains to a high Ti 19 pitch for direct spinning into carbon fibers. 20 aromatic pitch with a very high liquid crystal fraction 21 22 (80-100%) can be prepared by thermally reacting a deasphaltenated fraction of either a cat cracker bottom, 23 24 steam cracker tar or a coal distillate, that are respec-25 tively rich in (4, 5 and 6); (2, 3, 4 and 5); and (3, 4, 5 and 6) aromatic rings. The various feedstocks frac-26 tion are heat soaked in a temperature range from 420°C 27 to 450°C at atmospheric pressure, and then vacuum 28 29 stripped to remove at least a portion of the unreacted 30 oils at a temperature in the approximate range of from 320°C to 440°C at 0.1 to 100 mmHg, and preferably at 31 32 greater than 400°C at 1.0 - 5.0 mmHg of pressure.

- More specifically, in the case of cat cracker bottoms the fraction is heat soaked at approximately 440°C for 2-4 hours at atmospheric pressure. In the case of steam cracker tars, the fraction is heat soaked at 430°C for approximately 4.0 hours; and in the case of coal distillate, the fraction is heat soaked at approximately 440°C for 1/4 to 1/2 hour. All the heat soaked materials are then vacuum stripped and spun directly into carbon fibers. The pitch of this invention is definable only in terms of deasphaltenated fractions of a feedstock and containing 4, 5 and 6 aromatic rings.
- 13 For the purposes of definition the terms 14 "deasphaltenated feedstock" and/or "deasphaltenated middle fraction of a feedstock shall mean: 15 16 phaltenated material obtained from a middle cut of a 17 feedstock, and/or one caused to be relatively free of 18 asphaltenes by means of obtaining a distillate portion of said feedstock which when further treated will form a 19 20 precursor which can be spun into a carbon fiber and 21 which has the following general characteristics:
- 22 (1) a relatively low coking value;
- 23 (2) a relatively low content of ash and 24 impurities; and
- 25 (3) a relatively narrow average molecular 26 weight range.
- 27 (4) consisting of 3, 4, 5 and 6 alkyl-substi-28 tuted polycondensed aromatics.
- 29 A typical weight percentage of asphaltenes 30 in a deasphaltenated cat cracker bottom feedstock being
- 31 in the range of approximately 0.0 to 1.0%.

- A directly spinnable pitch of this invention has the proper rheological properties characterized as a glass transition temperature (Tg) in the approximate range of 180°C to 250°C at atmospheric pressure, and/ or a viscosity of less than approximately 2,500 cps in a temperature of approximately 360°C at atmospheric pressure.
- 8 It is an object of this invention to provide 9 an improved pitch which can be directly spun into carbon 10 fibers.
- It is another object of the invention to 12 provide a pitch for manufacturing carbon fibers which is 13 more uniform, and which is relatively free of ash and 14 impurities.
- It is a further object of this invention to 16 provide a pitch having high toluene insolubles, and 17 which does not require Ti solvent extraction prior to 18 spinning into fibers.
- These and other objects of this invention will be better understood and will become more apparent with reference to the following detailed description considered in conjunction with the accompanying drawings.

#### 23 BRIEF DESCRIPTION OF THE DRAWINGS:

and the state of t

Figure 1 is a graphical representation of deasphaltenated fractions of various feedstocks used to provide the inventive pitches for direct spinning into carbon fibers, including the deasphaltenated cat cracker bottom of this invention.

- Figure 2 shows a graph of viscosity vs.
- 2 temperature for a number of pitches made from deasphal-
- 3 tenated cat cracker bottom distillates; and
- 4 Figure 3 depicts a graph of a glass transition
- 5 temperature scan for one of the pitches shown in Figure
- 6 2.

#### 7 DETAILED DESCRIPTION OF THE INVENTION:

- 8 The term catalytic cracking refers to a ther-
- 9 mal and catalytic conversion of gas oils, particularly
- 10 virgin gas oils, boiling generally between 316°C and
- 11 566°C, into lighter, more valuable products.
- 12 Cat cracker bottoms refer to that fraction of
- 13 the product of the cat cracking process which boils in
- 14 the range of from about 200°C to about 550°C.
- 15 Cat cracker bottoms typically have relatively
- 16 low aromaticity as compared with graphitizable isotropic
- 17 carbonaceous pitches suitable in carbon artifact manu-
- 18 facture.
- 19 Specifications for a typical cat cracker
- 20 bottom that is suitable in the present invention are
- 21 given in Table 1:

TABLE 1

| 2   | Physical Characteristics              | Range                 |
|-----|---------------------------------------|-----------------------|
| 3   | Viscosity cst @ 210°F                 | 1.0-10.0              |
| 4   | Ash content, wt%                      | 0.010-02.0            |
| 5   | Coking value (wt%.@ 550°C)            | 6.0-18.0              |
| 6   | Asphaltene (n-heptane insoluble), %   | 1.1-12.0              |
| 7   | Toluene insolubles (0.35 LL), %       | 0.010-1.0             |
| 8   | Number average mol. wt.               | 220-290               |
| 9   | Elemental Analysis                    |                       |
| 10  | Carbon, %                             | 88.0-90.32            |
| 11. | Hydrogen, %                           | 7.74-7.40             |
| 12  | Oxygen, %                             | 0.10-0.30             |
| 13  | Sulfur, %                             | 1.0-4.5               |
| 14  | Chemical Analysis (proton NMR)        |                       |
| 15  | Aromatic carbon (atom%)               | 54-72                 |
| 16  | Carbon/hydrogen atomic ratio          | 0.90-1.0              |
| 17  | Asphaltene Analysis                   |                       |
| 18  | Number average mol. wt.               | 550-750               |
| 19  | Coking value, wt% at 550°C            | 3.5-6.5               |
| 20  | Aromatic carbon (atom%)               | 55-70                 |
| 21  | Bureau of Mines Correlation Index     | 120-140               |
| 22  | Tables 2 and 3 below, ill             | ustrate the various   |
| 23  | fractions and characteristics of frac | tions 3 through 6 for |
| 24  | a typical cat cracker bottom:         |                       |

1 TABLE 2

|          | •                         |                                              |             |
|----------|---------------------------|----------------------------------------------|-------------|
| 2        | Fractions                 | Boiling Point, OC/760 mm Mercury             | Wt &        |
|          |                           |                                              | •           |
| 4        | Distillate Fraction 1     | 271-400                                      | 10.0        |
| 5        | Distillate Fraction 2     | 400-427                                      | 23.8        |
| 6        | Distillate Fraction 3     | 454                                          | 13.3        |
| 7        | Distillate Fraction 4     | 454-471                                      | 11.7        |
| 8        | Distillate Fraction 5     | 471-488                                      | 13.4        |
| 9        | Distillate Fraction 6     | 488.                                         | 10.0        |
| 10.      | (Residue)                 | 510+                                         | 17.5        |
|          |                           |                                              |             |
| 11       | The boiling p             | oint corrected to at                         | mospheric   |
| 12       | pressure and weight perce | ent breakdown of fract                       | ions 3-6 is |
| 13       | given in Table 3 below:   |                                              |             |
|          | ·                         |                                              |             |
| 14       | <u>:</u>                  | TABLE 3                                      |             |
|          |                           |                                              |             |
| 15       | Chemical and Pl           | hysical Characteristic                       | sof         |
| 16<br>17 |                           | ractions 3-6 (427-510°)<br>t Cracker Bottoms | C)          |
|          |                           |                                              |             |
| 18       | Ash (wt%)                 |                                              | 0.0001      |
| 19       | Asphaltene (n-heptane in  | solubles), %                                 | nil         |
| 20       | Coking value (coke yield  |                                              | nil         |
| 21       | Average mol wt% (MS-metho | od)                                          | 260         |
| 22       | Carbon/hydrogen atomic ra | atio                                         | 0.89        |
| 23       | Aromaticity (aromatic ca  |                                              | 66          |
|          | <del>-</del>              | -                                            |             |
| 24       | Aromatic Ring Distributi  | on (MS-method)                               |             |
|          | - A                       |                                              |             |
| 25       | l ring (%)                |                                              | 1.5         |
| 26       | 2 ring (%)                |                                              | 13.0        |
| 27       | 3 ring (%)                | ,                                            | 31.0        |
| 28       | 4 ring (%)                |                                              | 44.0        |
| 29       | 5 ring (%)                |                                              | 6.4         |
| 30       | 6+ ring(%)                |                                              | 1.0         |

# TABLE 3 (CONTINUED)

| 2 Aromatic Ring Composition (by MS-method) | 2 | Aromatic | Ring | Composition | (by | MS-method) |
|--------------------------------------------|---|----------|------|-------------|-----|------------|
|--------------------------------------------|---|----------|------|-------------|-----|------------|

| 3 | Rings with | carbon a | and hydrog | jen - | (୫)    |     | 63 |
|---|------------|----------|------------|-------|--------|-----|----|
| 4 | Rings with | carbon,  | hydrogen   | and   | oxygen | (%) | 2  |
| 5 | Rings with | carbon.  | hydrogen   | and   | sulfur | (2) | 33 |

| 6 | Mass Spectrometric Analysis of the Distillate |
|---|-----------------------------------------------|
| 7 | Fractions 3-6 (427-510°C) of Cat Cracker      |
| 8 | Residue Indicated the Presence of the         |
| 9 | Following Main Polycondensed Aromatics        |

| 10<br>11<br>12  | Molecular<br>Formula                                                                                                                  | Typical Name                                                                                                                                                                                     | Weight (%)<br>(Average Molecular<br>Weight)                                                                                    |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                 | CnH2n-16<br>CnH2n-18<br>CnH2n-20<br>CnH2n-22<br>CnH2n-24<br>CnH2n-26<br>CnH2n-14S<br>CnH2n-16S<br>CnH2n-16S<br>CnH2n-18S<br>CnH2n-20S | Name  Acencephthenes Phenanthrenes Naphtheno- Phenanthrene Pyrenes Chrysenes Chrysenes Cholanthrenes Benzopyrene Indothiophenes Naphthotiophene Acenophthylene Thiophenes Anthraceno- Thiophenes | Weight)  1.54 (218) 8.95 (243) 9.78 (254)  15.4 (253) 8.70 (265) 2.9 (283) 1.0 (295) 1.45 (280) 4.7 (249) 4.0 (273)  3.8 (261) |
| 2.7<br>28<br>29 | C <sub>n</sub> H <sub>2n-24</sub> S                                                                                                   | Naphteno-<br>Phenanthreno<br>Thiophenes                                                                                                                                                          | 9.9 (271)                                                                                                                      |
| 30<br>31<br>32  | $c_{n}H_{2n-26}S$ $c_{n}H_{2n-28}S$ $c_{n}H_{2n-30}S$                                                                                 | Pyrenothiophenes Chryseno- Thiophenes                                                                                                                                                            | 1.20 (295)<br>0.82 (295)                                                                                                       |

In the process of the present invention, the 1 cat cracker bottoms are fractionally distilled by heating the cat cracker bottom to elevated temperatures 3 and reduced pressures, for example, by heating to temperatures in the range of 200°C to 300°C at pres-5 sures ranging from about 250 to 500 millimeters of mercury. Basically, the cat cracker bottom is separated into at least a single distillate having a boiling point at 760 mm mercury in the range of from about 250°C to about 530°C, and the residue being the fraction not 10 distillable at temperatures up to 530°C, at a pressure 11 of about 350 to 450 millimeters of mercury. In a par-12 ticularly preferred embodiment of the present invention, 13 the distillate fraction of the cat cracking bottom which 14 is employed in forming a suitable carbonaceous pitch for 15 carbon artifact manufacture is that fraction boiling in 16 the approximate range of about 450°C to about 510°C 17 at 760 mm of mercury. The desired cat cracker bottom 18 fraction can also be obtained by other commercially 19 known separation methods such as steam distillation, 20 flash stripping or by using a thin film evaporator. 21

To produce a pitch with a high fraction of 22 anisotropic liquid crystal, the cat cracker bottom 23 fraction is heat soaked at temperatures in the approxi-. 24 mate range of 420°C to 450°C at atmospheric pressure. 25 In general, heat soaking is conducted for times ranging 26 from 2 hours to about 4 hours. In the practice of the 27 present invention, it is particularly preferred that 28 heat soaking be done in an atmosphere such as nitrogen, 29 or alternatively in a hydrogen atmosphere. 30

When the heat soaking is completed, the reaction mixture is then subjected to a reduced pressure at a liquid temperature between 320-440°C, and most preferably at 400-430°C, to remove from the mixture at least part of the distillable unreacted oils. Prefer-

ably, all of the unreacted oils are removed in order to concentrate and increase the anisotropic liquid crystal fraction in the final pitch product. The use of a high liquid temperature, e.g., 400-430°C, is very desirable. The high liquid temperature helps to remove the distillable unreacted oils, which if left in the final pitch product tend to dilute and reduce the liquid crystal content of the pitch. Optionally, the heat soaked mixture can be purged with a gas such as nitrogen in order to accelerate the removal of the unreacted oils.

11 The resultant pitch produced by the above-12 described method has a low melting point (as defined by 13 our DSC method) (190-230°C), has very high aromaticity (85-90% of aromatic carbon atoms by carbon NMR method) 14 and contains a high anisotropic liquid crystal fraction 15 (80-100% by polarized light microscopy). The pitch 16 composition is defined readily by using solvent analysis, 17 wherein the content insolubles in toluene at room 18 temperature and the content insolubles in quinoline at 75°C are determined. The toluene insoluble (Ti) 20 fraction in the pitch can be used to give a measure of 21 22 the liquid crystal content in the pitch. One of the 23 objectives of this invention is to transform the cat 24 cracker bottom distillate fraction into a pitch with a 25 very high content of toleune insolubles (80-100%), and which can be spun directly into carbon fibers, as shown 27 in Figure 1.

28

29

30

The pitch of this invention /S

definable in terms of deasphaltenated fractions of

a feedstock (Figure 1).

- Table 4 below, summarizes the heat soaking
- 2 conditions for a variety of deasphaltenated feedstocks,
- 3 and the resultant characteristics of each pitch:

| 4   |
|-----|
| ]e  |
| Tab |

The Production of Directly Spinnable Pitch from Distillates of CCB, SCT and Coal

| 7                        |                                                            |                      | Disti        | from Distillates o | CCB,         | of CCB, SCT and Coal | Codi       |              |                                       | •                  |
|--------------------------|------------------------------------------------------------|----------------------|--------------|--------------------|--------------|----------------------|------------|--------------|---------------------------------------|--------------------|
| •                        | -                                                          |                      | ָ<br>כ       | -<br>- DIG#II      | 7 T T        |                      | S          | SCT          | CO                                    | COAL<br>DISTILLATE |
| 4. ru                    | FEED<br>Example                                            | -                    | 2            | 2 3                | 4            | ស                    | 9          | L 9          | 8                                     | 6                  |
| 9                        | Heat-Soaking Process Conditions                            | su<br>Su             |              | ٠                  |              | ٠                    |            |              | -                                     |                    |
| V 86                     | Temp (OC)<br>Time (hrs)<br>Pressure: atmosphere            | 440                  | 440<br>3     | 440<br>4           | 450          | 440<br>3-1/2         | 430        | 430          | 430                                   | 1/4                |
| 10                       | Pitch Composition                                          |                      |              |                    | •            |                      |            |              |                                       |                    |
| 111                      | TiSep (%) QiASTM (%)                                       | 84.5<br>17.3         | 86.8<br>25.4 | 91.7               | 89.9<br>27.1 | 94.4<br>32.4<br>4.0  | 86.0       | 89.1<br>32.8 | 97.0                                  | 97.5               |
| 14                       | HFI (%)<br>Glass Transition Temp (OC)                      | •                    | 4            |                    |              | 1                    |            |              |                                       |                    |
| 15<br>16                 | of total pitch<br>of TiSep                                 | 194<br>235           | 219<br>235   | 228                | 214          | 207<br>242           | 193<br>245 | 1 1          | 183<br>210                            | 1 1                |
| 17                       | Elemental Analysis                                         |                      |              |                    |              |                      |            |              |                                       | -                  |
| 220<br>220<br>310<br>310 | Carbon (%) Hydrogen (%) Sulfur (%) Oxygen (%) Nitrogen (%) | 93.99<br>4.32<br>1.5 | 1 1 1 1 1    | 93.48              | 92.89        | 1111                 | 1 1 1 1 1  | 11111        | 89.88<br>5.37<br>0.41<br>2.91<br>1.59 |                    |

1 1 1

1 1 1

5229 1523 696

435 218 -

4352 1409

|                   |                                                                                     | COAL DISTILLATE 8 9      |               | 1 1                                             |                 | 1     | 1   | 1      | 1       |
|-------------------|-------------------------------------------------------------------------------------|--------------------------|---------------|-------------------------------------------------|-----------------|-------|-----|--------|---------|
|                   |                                                                                     |                          |               | 1.59                                            |                 | 1     | t   | 1      | 1       |
|                   | itch                                                                                | SCT<br>DISTILLATE<br>6 7 | -             | 1 1                                             |                 | 1     | 1   | 1      | •       |
|                   | nable P<br>and Co                                                                   | 9                        |               | ii                                              |                 | 1     | 1   | - 6    |         |
| nued              | Spin                                                                                | ស                        |               | 1 1                                             |                 | i     | 1   | 5229   | 1500    |
| Table 4 Continued | rectly<br>of CCB,                                                                   | ATE                      |               | 1.87                                            |                 | 1     | 1   | 435    | סנכ     |
| Table.            | The Production of Directly Spinnable Pitch<br>from Distillates of CCB, SCT and Coal | CCB-DISTILLATE 2 3       |               | 1.90                                            |                 | 1     | i   |        | ( ) ( ) |
|                   | ductio                                                                              | CCB-                     |               | 1 1                                             |                 | 1     | 1   | ı      |         |
|                   | Pro<br>from                                                                         |                          |               |                                                 |                 | •     |     |        |         |
|                   | The                                                                                 | -                        |               | 88<br>1.80                                      |                 | 1393  | 400 | 131    | !       |
|                   |                                                                                     | -                        |               |                                                 |                 |       |     |        |         |
|                   |                                                                                     | FEED<br>Example          | 6 Aromaticity | Aromatic carbon<br>atom (%)<br>C/H atomic ratio | Viscosity (cps) | 31000 |     | 200156 |         |
| _                 | 0 E                                                                                 | 4. 7J                    | 9             | <b>∠</b> 8 6                                    | 10              | =     | 12  | 7 -    | 1       |

The rehology of pitches used for direct 1 spinning is of great importance to obtain good spinn-2 It is desired to have pitches with low viscosity at the spinning temperature which is preferrably below around 400°C, in order to avoid pitch cracking and volatilization which could lead to serious foaming of the fiber and substantial reduction in the fiber strength. The pitch for direct spinning is also desired to be less sensitive to heat, i.e. does not change its viscosity too much when changing temperature. sensitivity of the pitch to temperature variation can be 11 12 determined from viscosity - temperature curves. relationship for several pitches designated A, B, C, and 14 D is shown in Figure 2.

Differential Scanning Calorimetry (DSC) is 15 used to obtain information on glass transition and 16 softening characteristics of pitches. An OMINITHERM 17 Corp. DSC Model (QC25) is used to obtain the glass transition (Tg) data. The method comprises heating a 19 small sample of the pitch in the DSC pan, allowed to cool and the DSC trace was then obtained by heating at 21 the rate of 10°C/min under nitrogen (30cc/min). 22 the DSC trace three DSC data points are determined; the 23 onset of Tg (Ti), the termination of Tg (Tf) and the Tg 24 25 point which is at the midway between the Ti and Tf It has been reported that there is a relation-26 27, ship between the Tg of the pitch and its softening point as determined by the traditional method such as the ring 28 and ball method. The softening point is higher by 29 around 60°C than the Tg. 30

The DSC data of CCB-distillate pitches is presented in table 5 below:

TABLE 5

|    | Pitch                | A   | E   | С   | В   | D   |
|----|----------------------|-----|-----|-----|-----|-----|
| DS | SC data              |     |     |     |     |     |
| Ti | i (onset of Tg)      | 166 | 185 | 193 | 179 | 166 |
| Tç | g (glass transition) | 194 | 219 | 228 | 214 | 207 |
| Tí | (termination of Tg)  | 228 | 258 | 269 | 253 | 251 |

<sup>8</sup> in Figure 3.

CLAIMS:

1

5

1. A pitch suitable for spinning directly into carbon fibers, characterised by containing (i) from 80 to 100 percent by weight toluene insolubles, (ii) at least 15 percent by weight quinoline insolubles and/or from 1 to 60 percent by weight pyridine insolubles and (iii) is preferably substantially free of impurities and ash; said pitch having been derived from a substantially deasphaltenated fraction of a feedstock.

10

2. A pitch as claimed in claim 1, wherein the feedstock for said fraction comprises a cat cracker bottom.

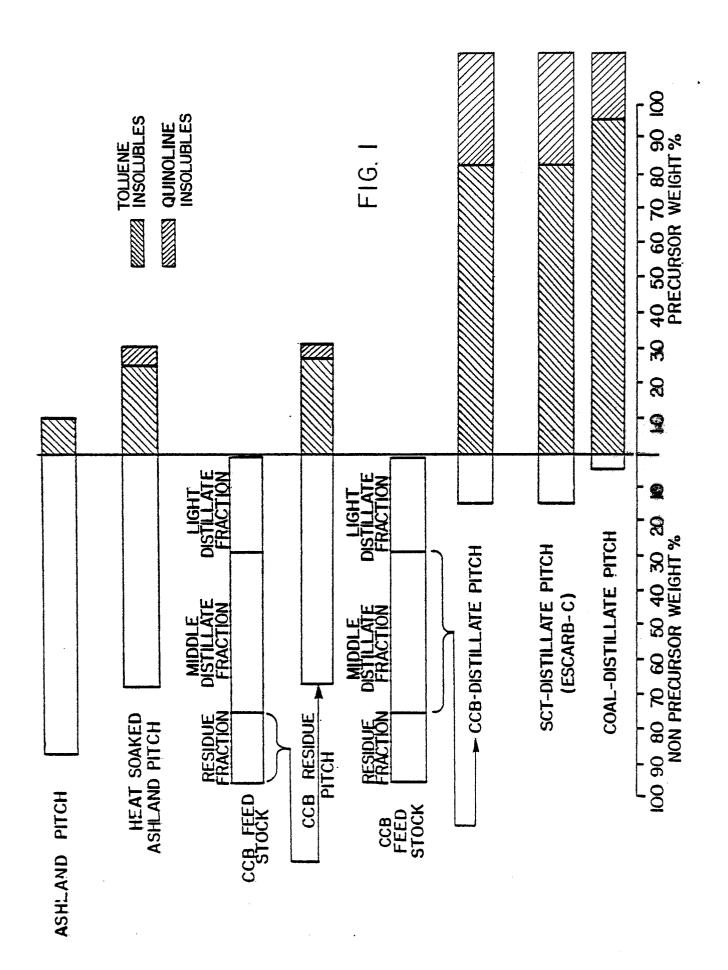
3. A process for preparing a pitch suitable for carbon artifact manufacture, characterised by:

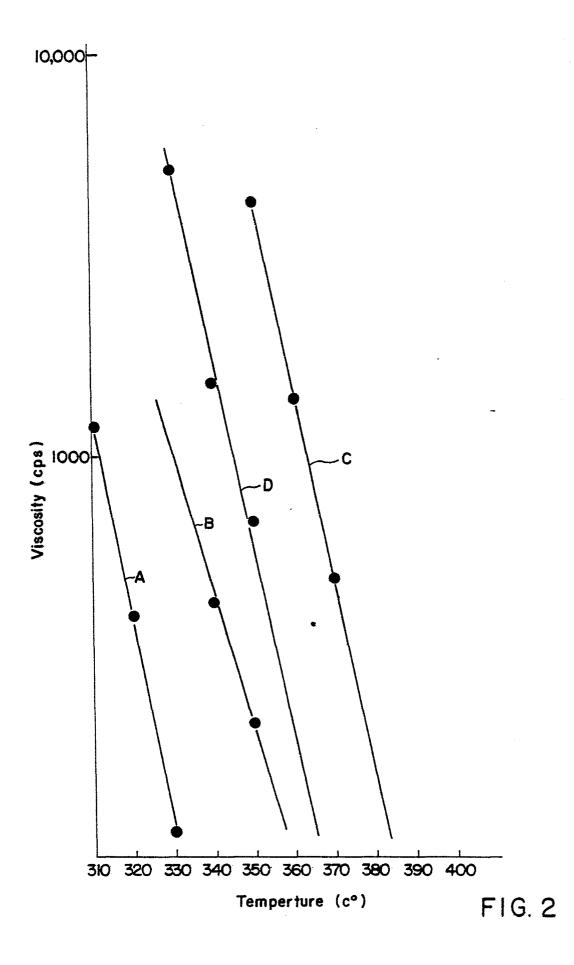
15

(a) distilling a feedstock, preferably a cat cracker bottom, to obtain a substantially deasphaltenated fraction rich in 4, 5 and 6 polycondensed aromatic rings;

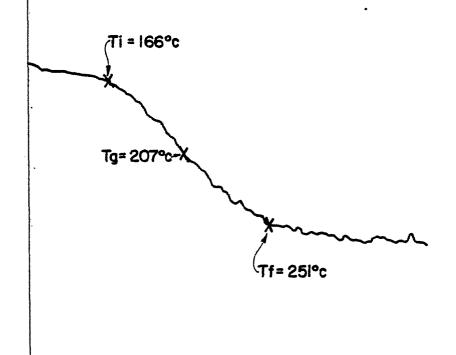
(b) heat soaking said middle fraction; and

(c) vacuum stripping said heat soaked middle fraction to remove oils therefrom, resulting in a pitch comprising 80 to 100 percent by weight of toluene insolubles.


20


4. A pitch for spinning directly into carbon fibers that has been derived from a substantially deasphaltenated fraction of a feedstock and having the proper rheological properties for direct spinning into carbon fibers characterised by a glass transition temperature in the approximate range of 180°C to 250°C at atmospheric pressure.

25


5. A pitch as claimed in claim 4, wherein said pitch is derived from a middled fraction of a cat cracker bottom rich in 4, 5, and 6 polycondensed aromatic rings.

6. A pitch for spinning directly into carbon fibers that has been derived from a substantially deasphaltenated fraction of a feedstock and having the proper rheological properties for direct spinning into carbon fibers characterised by a glass transition temperature in the approximate range of 180°C to 250°C, and a viscosity of less than approximately 2,500 cps in a temperature range of approximately 360°C at atmospheric pressure.





DSC Scan of CCB-Distillate Pitch D
Heating Rate = IO°c/min.; Nitrogen Rate 3Occ/min



F I G. 3



### **EUROPEAN SEARCH REPORT**

0100197

Application number

ΕP 83 30 4179

|          | DUCUMENTS CONS                                      | IDERED TO BE RELEVAN                                                            | <del></del>          |                                                |
|----------|-----------------------------------------------------|---------------------------------------------------------------------------------|----------------------|------------------------------------------------|
| Category |                                                     | h indication, where appropriate,<br>ant passages                                | Relevant<br>to claim | CLASSIFICATION OF THE APPLICATION (Int. Ci. 3) |
| E        | * Page 3, lin                                       | (MITSUBISHI OIL) nes 7-9; page 7, page 8, lines 1-7; -14 *                      | 1-3                  | C 10 C 3/00<br>D 01 F 9/14                     |
| A,D      | et al.) * Column 2, 1: 3, lines 33-4                | (R.J. DIEFENDORF ines 40-42; column 7; column 8, lines 9, lines 1-5; col-5-37 * | 1,2                  |                                                |
| A,D      | US-A-4 271 006<br>* Column 3, line<br>lines 28-37 * | (G. DICKAKIAN)<br>es 6-18; column 4,                                            | 1,3,4                |                                                |
| A        | US-A-4 086 156<br>* Column 1, 1:<br>3, lines 34-36  | ines 52-62; column                                                              | 1,3                  | TECHNICAL FIELDS<br>SEARCHED (Int. Cl. 3)      |
| A,D      | US-A-4 184 942<br>al.)                              | <br>(D.J. ANGIER et                                                             |                      | C 10 C<br>D 01 F                               |
| A,D      | US-A-4 219 404                                      | <br>(G. DICKAKIAN)                                                              |                      |                                                |
| E        | EP-A-0 056 338                                      | (EXXON)                                                                         |                      |                                                |
|          |                                                     |                                                                                 |                      |                                                |
|          | The present search report has b                     | een drawn up for all claims                                                     |                      |                                                |
|          | Place of search<br>THE HAGUE                        | Date of completion of the search 25–10–1983                                     | KERRE                | Examiner<br>ES P.M.G.                          |

PU Form 1503, 03 82

X: particularly relevant if taken alone
 Y: particularly relevant if combined with another document of the same category

A: technological Daungico.
O: non-written disclosure
pintermediate document technological background

after the filing date

D: document cited in the application
L: document cited for other reasons

& : member of the same patent family, corresponding document