[0001] This invention relates to a device for distributing and/or combining microwave electric
power between a single waveguide and a plurality of microwave transmission paths.
[0002] In recent years, it has been attempted to use semiconductor amplifier elements such
as gallium-arsenic (GaAs) field effect transistors (FETs) instead of conventional
travelling-wave tubes, in order to amplify signals in the microwave band. However,
the semiconductor amplifier element has an output power of several watts at the most.
When it is necessary to amplify a high frequency signal of high electric power, such
elements must be operated in parallel. For this reason, it is accepted practice to
distribute input signals in the microwave band into a plurality of channels by a microwave
distributor, to amplify the signals of each channel by the above-mentioned semiconductor
amplifier element, and to combine the amplified output signals of each of the channels
into a signal of one channel by a microwave combiner, thereby obtaining a high power
high frequency signal. However, electric power is lost when the phases of the microwave
electric signals distributed by the microwave distributor are not in agreement, or
when the microwave signals are not combined in phase by the microwave combiner. It
is, therefore, desired that phases of microwave signals be uniformly distributed in
the microwave distributor and in the microwave combiner. It is also necessary that
the distributor or combiner itself lose as little electric power as possible.
[0003] Figure 1A of the accompanying drawings shows a conventional microwave power amplifier,
in which a high frequency input signal IN is divided into four 3-dB hybrid circuits,
the divided input signals are individually amplified by four solid state amplifier
elements 2 to 5, and the amplified output signals are combined by hybrid circuits
6, thereby obtaining an amplified high-frequency output signal OUT. In the amplifier
of Fig. 1A, when the microwave electric power is distributed from a single waveguide
to a plurality of transmission paths or is combined in the opposite direction, branching
points which branch at a ratio of 1:2 or combining points must be provided at each
of the places as denoted by reference numeral 1 in Fig. 1B. The distribution of electric
power from a single waveguide 7 directly into many transmission paths (such as waveguides)
8―1, 8―2,.... or vice versa, is not possible. In the conventional amplifier of Fig.
1A, each of the hybrid circuits 1 or 6 consists of a magic T as shown in Fig. 1C.
Therefore, if magic T's are used at a plurality of branching points, the whole amplifier
becomes very bulky and complex in construction. Furthermore, the amplifier element
and the waveguide are usually connected via a structure which consists of the following
interconnected components: a waveguide - a ridge waveguide - an amplifier element
with strip lines which serve as input and output terminals - a ridge waveguide - a
waveguide. Therefore, the construction is complicated and, moreover, its reliability
is not good, since the strip lines are connected to the ridge waveguides simply by
a press fit.
[0004] An object of the present invention is to provide a device for distributing and/or
combining microwave electric power between a single waveguide and a plurality of microwave
transmission paths which is capable of uniformalizing the phase distribution of microwave
electric power when it is to be distributed or combined.
[0005] US―A―4291278 discloses a microwave power amplifier comprising a first electromagnetic
horn having a throat portion which is coupled to an input microwave path and which
radially disperses a microwave input signal; an oversized waveguide coupled at one
end to the open end of the first electromagnetic horn; a second electromagnetic horn
the open end of which is coupled to the other end of the oversized waveguide and which
combines microwave signals from the oversized waveguide; a plurality of amplifier
units which are arranged in the oversized waveguide, each of the amplifier units receiving
and amplifying the microwave signal from the first electromagnetic horn after converting
it into an MIC mode signal, and the output signal of each of the amplifier units being
transmitted into the second electromagnetic horn after it is converted into a waveguide
mode signal; and phase compensating means for uniformalizing the phases of the microwave
signals distributed by the first electromagnetic horn or for adjusting the phases
of the microwave signals fed out from the plurality of amplifier units, the phase
compensating means being arranged between the first electromagnetic horn and the oversized
waveguide or between the oversized waveguide and the second electromagnetic horn,
wherein the compensating means comprises for each of the plurality of amplifier units
an MIC transmission line and a waveguide/MIC converting element which is coupled to
the MIC transmission line and which is disposed within the oversized waveguide. This
disclosure contains no detail on how phase compensation is achieved.
[0006] In accordance with one aspect of the present invention, a microwave power amplifier
comprises a first electromagnetic horn having a throat portion which is coupled to
an input microwave path and which radially disperses a microwave input signal; an
oversized waveguide coupled at one end to the open end of the first electromagnetic
horn; a second electromagnetic horn the open end of which is coupled to the other
end of the oversized waveguide and which combines microwave signals from the oversized
waveguide; a plurality of amplifier units which are arranged in the oversized waveguide,
each of the amplifier units receiving and amplifying the microwave signal from the
first electromagnetic horn after converting it into an MIC mode signal, and the output
signal of each of the amplifier units being transmitted into the second electromagnetic
horn after it is converted into a waveguide mode signal; and phase compensating means
for uniformalizing the phases of the microwave signals distributed by the first electromagnetic
horn or for adjusting the phases of the microwave signals fed out from the plurality
of amplifier units, the phase compensating means being arranged between the first
electromagnetic horn and the oversized waveguide or between the oversized waveguide
and the second electromagnetic horn, wherein the phase compensating means comprises
for each of the plurality of amplifier units an MIC transmission line and a waveguide/MIC
converting element which is coupled to the MIC transmission line and which is disposed
within the oversized waveguide, and is characterised in that the length of the MIC
transmission line corresponding to the waveguide/MIC converting element disposed at
the central position along the direction of enlargement of the oversized waveguide
is the largest, and the lengths become smaller as the distance from the central position
increases; and in that the positions of the waveguide/MIC converting elements along
the direction of propagation of the microwave signals vary in accordance with the
position thereof along the direction of enlargement of the oversized waveguide, the
lengths and positions of the MIC transmission lines being selected in accordance with
the phase of microwave electric power at the position of the corresponding waveguide/MIC
converting element relative to the direction of enlargement of the oversized waveguide.
[0007] In accordance with a second aspect of the present invention, a device for distributing
and/or combining microwave electric power between a first microwave path and a plurality
of second microwave paths, comprises an electromagnetic horn having a throat portion
which is coupled to the first microwave path; an oversized waveguide coupled at one
end to the open end of the horn and at the other end to the plurality of second microwave
paths; and phase compensating means for uniformalizing the phases of the microwave
signals distributed by the horn or for adjusting the phases of the microwave signals
fed out from the plurality of second microwave paths, the phase compensating means
being provided by the plurality of second microwave paths each of which comprises
an MIC transmission line and a waveguide/ MIC converting element which is coupled
to the MIC transmission line and disposed at the end portion of, or within, the oversized
waveguide, and is characterised in that the length of the MIC transmission line corresponding
to the waveguide/MIC converting element disposed at the central position along the
direction of enlargement of the oversized waveguide is the largest, and the lengths
become smaller as the distances from the central position become larger; and in that
the positions of the waveguide/MIC converting elements along the direction of propagation
of the microwave signals vary in accordance with the position thereof along the direction
of enlargement of the oversized waveguide, the lengths and positions of the MIC transmission
lines being selected in accordance with the phase of microwave electric power at the
position of the corresponding waveguide/MIC converting element relative to the direction
of enlargement (E) of the oversized waveguide.
[0008] Embodiments of the invention will now be described, by way of example, with reference
to the accompanying drawings, in which:-
Figure 1A is a block circuit diagram of a microwave amplifier which uses a conventional
distributor and a conventional combiner of microwave electric power;
Figure 1B is a diagram of a conventional distributor or combiner used in the amplifier
of Figure 1A;
Figure 1C is a perspective view of a magic T used in a conventional distributor or
combiner of Figure 1B;
Figure 2 is a perspective view of a microwave amplifier which uses a distributor and
a combiner according to the present invention;
Figure 3 is a perspective view of part of the microwave amplifier of Figure 2;
Figure 4 is a partial perspective view of another embodiment of the present invention;
Figure 5A is a perspective view of a microwave amplifier which uses a distributor
and a combiner according to the present invention;
Figure 5B is an enlarged view of part of the microwave amplifier of Figure 5A;
Figure 6 is a schematic view of a distributor or combiner according to the present
invention;
Figure 7 is a graph of the phase distribution characteristics of the device of Figure
6;
Figures 8 to 11 are perspective views of waveguide-MIC converters used in distributors
or combiners according to the present invention;
Figure 12 is a schematic view of a conventional microwave power amplifier;
Figure 13 is a schematic partially cut-away view of a microwave power amplifier used
in a distributor or a combiner according to the present invention;
Figure 14 shows partial plan and side views of the microwave power amplifier of Figure
13 in detail;
Figure 15 is a block circuit diagram of an equivalent circuit of the device of Figure
14;
Figure 16 is a perspective view of the structure of a microstrip line; and
Figure 17 is a graph of the frequency-gain characteristics of the circuit of Figure
15.
[0009] Figure 2 illustrates a microwave amplifier which uses a distributor and a combiner
according to the present invention. The amplifier includes an input waveguide 20,
a distributing electromagnetic horn (E-plane horn) 21, an oversized waveguide 22 which
has a broad E-plane, a combining electromagnetic horn (E-plane horn) 23, and an output
waveguide 24. In the oversized waveguide 22 a plurality of amplifiers 30 is arranged,
each amplifier being made up of an input dipole antenna 25, a solid state amplifier
26 constructed in the form of a microwave integrated circuit (MIC) employing one or
more stages of solid state amplifier elements, and a dipole antenna 27 on the output
side.
[0010] Figure 3 illustrates a concrete example of an amplifier 30, comprising a dielectric
substrate 31 with a metal block 32 on its back surface. The metal block is secured
to the bottom of the waveguide 22. One side (segment) of the dipole antenna 25 having
an overall length of a/2, is formed by a pattern 25a on the front surface, and the
other side thereof is formed by a pattern 25b on the back surface. A matching circuit
33 is provided, wherein small squares represent electrically conductive patterns for
adjusting the impedance, these patterns being wire-bonded to a base portion of the
antenna according to need. Reference numeral 34 denotes an amplifier element (such
as an FET) with its gate being connected to the pattern 25a. The source of the FET
34 is grounded, and its drain is connected to an amplifier element 35 of the next
stage. Reference numerals 36, 37, --- denote amplifier elements of the subsequent
stages, and the output of the final stage is connected to the antenna 27 of the output
side. When the electromagnetic horn 21 is an E-plane horn, segments of the antennas
25 (the same holds true for the antennas 27) are arrayed along the direction of electric
field E as shown in Fig. 2, and the antennas are all arrayed in series along the electric
field. When the electromagnetic horn 21 is an H-plane horn, the antenna elements are
turned by 90° toward the direction of electric field E as shown in Fig. 4, whereby
the antennas are all arrayed in a direction at right angles to the direction of electric
field E, i.e., parallel with the direction of electric field E.
[0011] Figure 5A illustrates a microwave amplifier using a distributor and a combiner as
another embodiment of the present invention in which slot antennas are employed as
small antennas. Namely, a unit amplifier 30 comprises slot antennas 41, 42 on the
input and output sides, an amplifier 26, and slot/strip line converters 43, 44. Slot
antennas 41 a, 41 b, 41 c, --- and 42a, 42b, 42c, --- on the input side and output
side are arrayed in series along the direction of electric field E. With this construction,
electromagnetic waves emitted from an antenna 41 b are not mixed into the electromagnetic
waves emitted from the other antenna 41 a as shown in Fig. 5B, so that an isolation
effect between the antennas is attained. In Fig. 5B, reference numeral 45 denotes
a dielectric substrate, and 46a, 46b, --- denote electrically conductive patterns
which form horned slots for antennas 41 a, 41 b, ---. Converters 43, 44 of Fig. 5A
comprise electrically conductive patterns formed on the opposite surface of the substrate.
It should be noted that the above-mentioned isolation effect results from the fact
that the electric lines of force 47 of the slot antenna 41 are evenly absorbed by
the conductors 46a, 46b constituting the slot antenna 41a. Like the case of Fig. 4,
the slot antennas may be arrayed in a direction at right angles to the direction of
electric field, that is, parallel with the direction of the electric field. In this
case, however, the isolation effect cannot be expected.
[0012] In the above-mentioned microwave amplifier, a high-frequency input is distributed
into a plurality of input antennas by the distributing electromagnetic horn, and outputs
amplified by amplifiers coupled to the input antennas are combined into one output
by the output antennas and the combining electromagnetic horn. Therefore, the high
power microwave amplifier can be realized in a compact and simplified construction
without requiring hybrid devices such as magic T's. Furthermore, a reliable connection
between the amplifiers and the waveguides is obtained.
[0013] Figure 6 illustrates a device for distributing microwave electric power according
to an embodiment of the present invention. The distributor of Fig. 6 comprises an
E-plane horn 102 coupled to a standard waveguide 101 through which microwave signals
are introduced, an oversized waveguide 103 coupled to the E-plane horn 102, and an
MIC device 104' coupled to transmission paths of the oversized waveguide 103. The
MIC device 104' comprises waveguide-MIC converters 105a', 105b', --- 105e' arrayed
in the direction of electric field vector, i.e. in the direction of vector E indicated
by arrows E in the oversized waveguide 103, and formed on a dielectric substrate 108',
MIC transmission paths 106a', 106b', --- 106e' connected to the waveguide-MIC converters,
and microwave amplifiers 107a, 107b, ---, 107e connected to the MIC transmission paths.
The waveguide-MIC converters 105a', 105b', ---,105e' are composed of dipole antennas
formed on a dielectric substrate 108' and linearly arrayed in the widthwise direction
of the oversized waveguide, i.e., in the direction of vector E. Further, the MIC transmission
paths 106a', 106b', ---, 106e' are composed of microstrip lines formed on the dielectric
substrate 108'.
[0014] In the microwave distributor of Fig. 6, microwave signals introduced via the standard
waveguide 101 are dispersed in the direction of vector E by the E-plane horn 102 and
received by the waveguide-MIC converters 105a', 105b', ---, 105e' via oversized waveguide
103. Microwave signals received by the waveguide-MIC converters 105a', 105b', ---,
105e' are transmitted via MIC transmission paths 106a', 106b', ---, 106e' to amplifiers
107a, 107b, ---, 107e and amplified. In this case, the input microwave signals are
distributed into a plurality of waveguide-MIC converters 105a', 105b', ---, 105d'
by the E-plane horn 102 and the oversized waveguide 103.
[0015] Depending upon the positions in the widthwise direction of the oversized waveguide
103, the waveguide-MIC converters 105a', 105b', ---, 105e' are arrayed at different
positions in the lengthwise direction of the oversized waveguide 103. Furthermore,
MIC transmission paths 106a', 106b', ---, 106e' are formed straight to connect the
waveguide-MIC converters 105a', 105b', ---, 105e' to the amplifiers 107a, 107b, ---,
107e. Due to this construction, the lengths of the MIC transmission paths 106a', 106b',
---, 106e' can be increased toward the center portion in the widthwise direction of
the oversized waveguide and decreased toward the peripheral portions, in order to
uniformalize the phase distribution of microwave electric powers input to the amplifiers
107a, 107b, ---, 107e. In this case, differences in the signal transmission distances
from the throat portion of the E-plane horn 102 to the waveguide-MIC converters via
the oversized waveguide between the central portion and peripheral portions of the
waveguide can become large. However, since microwave signals propagate in the space
in the oversized waveguide 103 at a speed faster than when they propagate on the dielectric
substrate 108', it is possible to adjust the lengths of the MIC transmission paths
106a', 106b', ---, 106e' so that the phase distribution can be perfectly uniformalized.
[0016] Below the phase distribution characteristics of the E-plane horn are described. As
illustrated in Fig. 7, central axis of the E-plane horn is set on the x-axis so that
the y-axis passes through the throat portion of the E-plane horn. In this case, the
phase distribution on an opening plane of the E-plane horn, i.e., the phase distribution
at a given point P on a line which passes through a point (r, o) in Fig. 7 which is
perpendicular to the x-axis, is given by the following equation:

[0017] In the above equation, (p represents a phase distribution at a given point P when
the phase at the point (r, o) is O rad., λg represents a guide wavelength in the E-plane
horn, 8 represents an angle between the x-axis and the line segment connecting the
point P to the origin O.
[0018] Below, the case in which the phase difference generated by the E-plane horn is corrected
by changing the lengths of strip lines as shown in Fig. 6 is discussed. In the device
for distributing microwave electric power of Figure 6, if the plane which includes
a connection portion between the E-plane horn and the oversized waveguide is denoted
by AA', the plane which is closest to the E-plane horn 102 which includes the waveguide-MIC
converters is denoted by BB', and the plane which is remotest from the E-plane horn
102 which includes the waveguide-MIC converters is denoted by CC', the phase difference
on the plane AA' is found from the equation (1). In the portion between the plane
AA' and the plane BB', the phase difference generated by the E-plane horn is almost
maintained provided the distance is short between the plane AA' and the plane BB'.
Therefore, it is the portion between the plane BB' and the plane CC' which contributes
to correct the phase. Here, the wavelength λg
2 of a strip line is given by the following equation:

where A denotes a free-space wavelength, and ε
eff denotes an effective dielectric constant of a dielectric material on which strip
lines are formed.
[0019] Further, if a guide wavelength of the waveguide is denoted by λg, and the length
of the waveguide by L, the quantity of phase shift ϕ
1 is given by:

[0020] In Fig. 11, therefore, if the distance between the waveguide-MIC converters and the
plane BB' is denoted by I, the phase distribution ϕ
2 on the plane CC' is given by:

with the quantity of the phase shift at an intersecting point of the central axis
00' and the plane CC' as a reference. Here, the sum of ϕ
2 of the equation (4) and (p of the equation (1) should be brought to zero. Therefore,
the phase distribution can be uniformalized by finding distances I which satisfy an
equation:

with regard to various angles 0.
[0021] Although the above description has dealt with the device for distributing microwave
electric power, it will be obvious that the phase distribution is uniformalized even
for a device for combining microwave electric power by using the same construction.
That is, in the device for combining microwave electric power having the same construction
as that of Fig. 6, microwave signals of a plurality of channels are introduced from
the side of strip lines, combined through the oversized waveguide 103 and the E-plane
horn 102, and the combined signals are sent into the standard waveguide 101. In this
case, the microwave signals can be combined maintaining a uniform phase by changing
the lengths of the strip lines depending upon the positions in the widthwise direction
of the oversized waveguide.
[0022] In the embodiments mentioned above, the phase distribution can be uniformalized in
a device for distributing and combining microwave electric power relying upon a very
simple construction. Moreover, since hybrid circuits are not employed, a device for
distributing and combining microwave electric power can be realized featuring greatly
reduced transmission losses.
[0023] Figure 8 illustrates the construction of a waveguide-MIC converter used in a device
for distributing and combining microwave electric power according to the present invention.
In an oversized rectangular waveguide 131, the distance of a set of opposing walls
is made greater than a distance between the walls of a standard waveguide. In this
embodiment, the distance between the walls is increased in the direction of electric
field vector indicated by arrow E, i.e., increased in the direction of vector E. On
a dielectric substrate 132 a plurality of, e.g. four in the case of Fig. 8, MIC antennas
133-1, 133-2, 133-3, and 133-4 are formed. Each of the MIC antennas 133-1, 133-2,
-- is a so-called slot antenna obtained by forming electrically conductive patterns
on the dielectric substrate 132 as indicated by the hatched areas. Further, the MIC
antennas 133-1, 133-2, -- are arrayed in the direction of electric field vector E
of the oversized waveguide 131 and coupled to the transmission path of the oversized
waveguide 131 at an end portion thereof.
[0024] In the waveguide-MIC converter of Fig. 8, microwave signals introduced from the side
of the oversized waveguide 131, i.e., introduced from the direction of arrow A, are
received by the array of MIC antennas 133-1, 133-2, -- at the end of oversized waveguide
131 and transmitted to a plurality of MIC channels. In this case, a standard waveguide
is coupled to the input side of the oversized waveguide 131 via, for example, a horn
element. Microwave power amplifiers comprising gallium-arsenic FET's are connected
to the plurality of MIC antennas 133-1, 133-2, --. When the microwave electric power
is combined by the waveguide-MIC converter of Fig. 8, microwave signals are input
to the MIC antennas from the direction of arrow B. The microwave signals are emitted
from the MIC antennas into the transmission path in the oversized waveguide 131 and
combined into microwave electric power.
[0025] In the waveguide-MIC converter of Fig. 8, if microwave signal input from the side
of arrow A is transmitted in a TE 10 mode through the oversized waveguide 131, the
electric field is established by the microwave signal in a direction indicated by
arrow E in Fig. 8, whereby potential differences develop among the conductors constituting
the slot antennas 133-1, 133-2, --, and microwave electric power is transmitted. In
this case, the magnetic field in the oversized waveguide 131 is established in a direction
perpendicular to the arrow E, i.e., established in a direction perpendicular to slot
planes of the MIC antennas or perpendicular to the plane of the dielectric substrate
132.
[0026] Figure 9 shows the construction of another waveguide-MIC converter. In the waveguide-MIC
converter of Fig. 9, dipole antennas 145-1, 145-2, 145-3, and 145―4 are formed on
a dielectric substrate 144 in place of the slot antennas 133-1, 133-2, -- employed
in the converter of Fig. 8. The dipole antennas 1451, 1452, -- comprise conductive
patterns formed on the front surface of the dielectric substrate 144 as indicated
by solid lines and conductive patterns formed on the back surface as indicated by
dotted lines. Conductors 146-I, 146-2, 146-3, and 146―4 forming MIC transmission paths
are coupled to the dipole antenna elements formed on the front surface of the dielectric
substrate 144. To the dipole antenna elements formed on the back surface of the dielectric
substrate 144 are coupled balanced-to-unbalanced transformer portions 147-1, 147-2,
147-3, and 147-4 which have gradually increasing pattern widths. Patterns formed on
the back surface of the dielectric substrate 144 stretching over the whole width are
coupled to the subsequent stage of the balanced-to-unbalanced transformer portions.
[0027] Even in the waveguide-MIC converter of Fig. 9, microwave signal input from the side
of the oversized waveguide 141 is received separately by the dipole antennas 145-1,
145-2, -- formed on the MIC substrate and taken out via transmission paths 146-1,
146-2, -- in a similar manner to the case of Fig. 8. Further, the microwave signals
input from the side of transmission paths 146-1, 146-2, -- on the side of MIC substrate,
are emitted from dipole antennas 145-1, 145-2, -- into the transmission path in the
oversized waveguide 141 and transmitted being combined together. Even in this case,
the oversized waveguide 141 is connected to the standard waveguide via, e.g., an E-plane
horn. In the embodiment of Fig. 9, also, a microwave signal is transmitted in the
TE 01 mode through the oversized waveguide 141 in a similar manner to the embodiment
of Fig. 8. As indicated by arrow E in Fig. 9, therefore, the electric field vector
is generated in a direction perpendicular to the direction in which the signal travels
through the oversized waveguide 141.
[0028] Figure 10 illustrates still another waveguide-MIC converter. In the waveguide-MIC
converter of Fig. 10, the oversized waveguide 158 has a larger width in the direction
of the magnetic field vector as indicated by arrow H. Further, MIC antennas 159-1,
159-2, ---, 159-n coupled to the oversized waveguide 158, are so arrayed that their
substrate surfaces are perpendicular to the magnetic field vector H. Therefore, the
microwave signal in the oversized waveguide 158 assumes the form of, for example,
TE waves of such as the TE 10 mode. In the waveguide-MIC converter of Fig. 10, therefore,
TM waves in the oversized waveguide 158 are separately transmitted to the MIC antennas
159-1, 159-2, ---, 159-n, or microwave signals from the MIC antennas 159―1,159―2,―,159―n
are emitted into the oversized waveguide 158 and combined and transmitted in the form
of TM waves.
[0029] Figure 11 shows still another waveguide-MIC converter. In the waveguide-MIC converter
of Fig. 11, an MIC substrate 163 having a plurality of dipole antenna elements 162-1,
162-2, 162-3, 162-4 is coupled to an end of the oversized waveguide 161 which is the
same as that of Fig. 8 or 9. Here, however, the MIC substrate 163 is disposed at right
angles to the direction in which the electromagnetic waves travel through the oversized
waveguide 161, unlike the device of Fig. 8 or 9. The dipole antenna elements 162-1,
162-2, 162-3,162-4, however, are arrayed in the oversized waveguide 161 in a direction
of electric field vector E of the microwaves. In the construction of Fig. 11, the
microwaves in the oversized waveguide 161 are transmitted, for example, in the TE
10 mode, received by the dipole antenna elements 162-1, 162-2, ---, and distributed
into MIC transmission paths 164-1, 164-2, 164-3, and 164-4. Conversely, microwave
signals input from the MIC transmission paths 164-1, 164-2, 164-3, and 164-4 are emitted
into the oversized waveguide 161 through the MIC antennas, i.e., through the dipole
antennas 162-1, 162-2, 162-3, and 162-4 and transmitted being combined into one signal.
According to the construction of Fig. 11, the oversized waveguide 161 and the MIC
transmission paths 164-1, 164-2, 164-3, and 164-4, can be set at right angles of each
other or at any desired angle, thereby increasing the degree of freedom for arraying
the transmission paths.
[0030] In the above-mentioned waveguide-MIC converters, the mode of electromagnetic field
can be converted between the waveguide and the MIC transmission paths relying upon
a very simply constructed device, thereby enabling distribution and combination of
microwave electric power. In the above-mentioned converters, furthermore, microwave
electric power can be distributed and combined without using hybrid circuits. In distributing
and combining microwave electric power, therefore, transmission losses can be reduced
strikingly.
[0031] According to the above-mentioned embodiments, phase characteristics of microwaves
in the waveguides can be uniformalized at predetermined distances from the opening
plane of the oversized waveguide. Therefore, phase characteristics of the distributed
microwave signals can be uniformalized by providing waveguide-MIC converters or microwave
amplifiers at the above-mentioned positions. In the case of the device for combining
microwave electric power, the microwave signals can be efficiently combined maintaining
the same phase by supplying microwave signals of the same phase from the above-mentioned
positions.
[0032] Also in the embodiments mentioned above, the phase distribution can be uniformalized
in combining or distributing microwave signals relying upon a very simply constructed
device. Moreover, since hybrid circuits are not employed, transmission losses can
be greatly reduced at the time of distributing or combining microwave electric power.
[0033] Figure 12 illustrates a conventional power amplifier in which an amplifier 241 of
a microwave integrated circuit (MIC) is inserted in waveguides 244, 245 of the transmission
path via mode-converting ridge waveguides 242, 243 being interposed on the input and
output sides of the amplifier 241. With this system, however, increased space is required
for inserting the waveguides 242, 243, mode conversion losses are increased, and connection
between the amplifier 241 and waveguides 242, 243 is not so reliable since the conductor
pieces 241 c of the input and output terminals of the amplifier are simply brought
into contact with ridges 242a, 243a of the waveguides 242, 243. In Fig. 12, reference
numeral 241b denotes an amplifier element such as an FET.
[0034] Figure 13 illustrates a power amplifier which can be adaptable to the device for
distributing and combining microwave electric power according to the present invention.
In Fig. 13, reference numeral 250 denotes a short waveguide that is inserted between
waveguides 255 and 256 which constitute a signal transmission path, 251 denotes a
metal block secured to the bottom surface 250a of the waveguide 250, 252 denotes a
high-frequency power amplifier of the MIC construction secured onto the metal block
251, and 253 and 254 denote terminals for biasing the amplifier element.
[0035] Figure 14 illustrates in detail the amplifier 252, in which reference numeral 260
denotes an amplifier element such as a packaged-type FET, 261 and 262 denote dielectric
substrates divided into two (the element 260 may be mounted on the center of a piece
of substrate), 263 and 264 denote surface patterns, i.e., conductors, and 265 denote
a back-surface pattern which stretches to the side of the conductor 264.
[0036] Base portions of the surface patterns 263, 264, i.e., the sides of the amplifier
element 260, constitute a microstrip line together with the back-surface pattern 265
as shown in Fig. 16, whereby ends thereof serve as the transmitting antenna and a
receiving antenna, respectively. Gate electrode G and drain electrode D of the FET
260 are soldered or wire-bonded to the base portions of the surface patterns 263 and
264. Matching adjusting elements 267 and 268 are provided in the base portions of
the surface patterns 263 and 264 to properly match the impedance with regard to the
FET 260. That is, the amplifier element have different S-parameters even when they
have the same ratings, and the frequency f vs. gain G characteristics are often deviated
from a predetermined curve C, as shown by C
2 in Fig. 17. To correct the deviation, a plurality of thin conductive films represented
by small squares in Fig. 14 are suitably wire-bonded onto the surface patterns 263
and 264 to adjust the electrostatic capacity with respect to the back-surface pattern.
Figure 15 is a diagram of an equivalent circuit, in which -Vg denotes a negative bias
voltage applied to the gate electrode G, and +Vd denotes a positive bias voltage applied
to the drain electrode D. The source electrode S is grounded via the metal block 251.
Choke coils 270 and 271 are established by branched patterns 269 of the surface patterns
263 and 264.
[0037] The tapered end of the back-surface pattern 265 works to adjust the impedance so
that the surface pattern 263 will effectively serve as an antenna. In the ordinary
MIC construction, the back surface has a uniform earth pattern. According to the present
invention, however, the end of the pattern 265 is narrowed to adjust the capacity
relative to the surface pattern 263, i.e., the width of the pattern gradually increases
from the end to realize an optimum matching condition with the least amount of reflection.
[0038] The above-mentioned high-frequency power amplifier presents the following advantages:
(1) Reduced space is required since two ridge waveguides are not needed to convert
the mode.
(2) The amplifier element features improved input and output efficiency due to the
use of a microstrip matching circuit which is based upon a tapered back-surface pattern
and surface patterns.
(3) Since the amplifier is coupled to the transmission path through antennas, high
reliability is maintained in the connection portions.
(4) When the amplifiers are to be connected in a plurality of stages, a plurality
of waveguides 250 containing amplifiers should be connected in cascade. In this case,
the amplifiers are connected through antennas which have a function to cut off direct
current. Therefore, there is no need to use capacitors for cutting off the direct
current, i.e, for cutting off the bias voltage, unlike the case of connecting the
transistors in a plurality of stages.
1. A microwave power amplifier comprising a first electromagnetic horn (102) having
a throat portion which is coupled to an input microwave path (101) and which radially
disperses a microwave input signal; an oversized waveguide (103) coupled at one end
to the open end of the first electromagnetic horn; a second electromagnetic horn the
open end of which is coupled to the other end of the oversized waveguide (103) and
which combines microwave signals from the oversized waveguide; a plurality of amplifier
units (107a-107e) which are arranged in the oversized waveguide (103), each of the
amplifier units receiving and amplifying the microwawe signal from the first electromagnetic
horn after converting it into an MIC mode signal, and the output signal of each of
the amplifier units being transmitted into the second electromagnetic horn after it
is converted into a waveguide mode signal; and phase compensating means for uniformalizing
the phases of the microwave signals distributed by the first electromagnetic horn
or for adjusting the phases of the microwave signals fed out from the plurality of
amplifier units, the phase compensating means being arranged between the first electromagnetic
horn and the oversized waveguide or between the oversized waveguide and the second
electromagnetic horn, wherein the phase compensating means comprises for each of the
plurality of amplifier units (107a-107e) an MIC transmission line (106'a,... 10(i'e)
and a waveguide/MIC converting element (105'a,... 105'e) which is coupled to the MIC
transmission line and which is disposed within the oversized waveguide (103), characterised
in that the length of the MIC transmission line (106'c) corresponding to the waveguide/MIC
converting element (105'c) disposed at the central position along the direction of
enlargement of the oversized waveguide (103) is the largest, and the lengths become
smaller as the distance from the central position increases; and in that the positions
of the waveguide/MIC converting elements along the direction of propagation of the
microwave signals vary in accordance with the position thereof along the direction
of enlargement of the oversized waveguide (103), the lengths and positions of the
MIC transmission lines being selected in accordance with the phase of microwave electric
power at the position of the corresponding waveguide/MIC converting element relative
to the direction of enlargement of the oversized waveguide. (Figure 6)
2. An amplifier according to claim 1, characterised in that each of the amplifier
units (26, 30) is equipped with a microwave power amplifier comprising a metal block
(251) secured and disposed in a waveguide (250); dielectric substrates (261, 262)
secured on the metal block; a pair of strip conductors (263, 264) formed on the surfaces
of the substrates; at least one antenna element formed at the end of at least one
of the pair of strip conductors; an amplifier element (260) having an input terminal
(G) and an output terminal (D) connected to the pair of strip conJuctors, respectively;
and back surface patterns (265) which are provided on the back surfaces of the substrates,
each of which constitutes a microstrip line together with the strip conductor for
impedance matching with the amplifier element, at least one of the back surface patterns
having a narrowed end to obtain impedance matching with the antenna. (Figure 14)
3. An amplifier according to any of the preceding claims, characterised in that each
of the amplifier units (26) comprises an MIC transmission line connected to a waveguide/MIC
converting element which is disposed at the end portion of or within the oversized
waveguide (22), each of the waveguide/MIC converting elements being an MIC dipole
antenna (25) formed on the sides of a dielectric substrate.
4. An amplifier according to claim 1 or claim 2, characterised in that each of the
amplifier units (30) comprises an MIC transmission line connected to a waveguide/MIC
converting element (41a―41c; 42a-42c) which is disposed at the end portion of or within
the oversized waveguide (22), each of the waveguide/MIC converting elements being
an MIC slot antenna formed on one side of a dielectric substrate. (Figure 5A)
5. An amplifier according to claim 4, characterised in that each of the waveguide/MIC
converting elements (43, 44) comprises a conductor line pattern formed on the side
opposite to the side carrying the MIC slot antenna, the conductor line pattern being
formed along the direction perpendicular to the direction of the slot line portion
of the MIC slot antenna.
6. A device for distributing and/or combining microwave electric power between a first
microwave path and a plurality of second microwave paths, the device comprising an
electromagnetic horn having a throat portion which is coupled to the first microwave
path; an oversized waveguide coupled at one end to the open end of the horn and at
the other end to the plurality of second microwave paths; and phase compensating means
for uniformalizing the phases of the microwave signals distributed by the horn or
for adjusting the phases of the microwave signals fed out from the plurality of second
microwave paths, the phase compensating means being provided by the plurality of second
microwave paths each of which comprises an MIC transmission line (106'a,... 106'e)
and a waveguide/MIC converting element (105'a, ... 105'e) which is coupled to the
MIC transmission line and disposed at the end portion of, or within, the oversized
waveguide (103), characterised in that the length of the MIC transmission line (106'c)
corresponding to the waveguide/MIC converting element (105'c) disposed at the central
position along the direction of enlargement (E) of the oversized waveguide (103) is
the largest, and the lengths become smaller as the distances from the central position
become larger; and in that the positions of the waveguide/MIC converting elements
(105a', ... 105e') along the direction of propagation of the microwave signals vary
in accordance with the position thereof along the direction of enlargement (E) of
the oversized waveguide (103), the lengths and positions of the MIC transmission lines
being selected in accordance with the phase of microwave electric power at the position
of the corresponding waveguide/MIC converting element relative to the direction of
enlargement (E) of the oversized waveguide. (Figure 6)
7. A device according to claim 6, characterised in that each of the second microwave
paths comprises an MIC transmission line (106'a,...106'e) connected to a waveguide/MIC
converting element (105'a, ... 105'e) which is disposed at the end portion of or within
the oversized waveguide (103), each of the waveguide/MIC converting elements being
an MIC dipole antenna formed on the sides of a dielectric substrate (108').
8. A device according to claim 6, characterised in that each of the second microwave
paths comprises an MIC transmission line connected to a waveguide/MIC converting element
which is disposed at the end portion of or within the oversized waveguide (131), each
of the waveguide/MIC converting elements (133-1, ... 133-4) being an MIC slot antenna
formed on one side of a dielectric substrate (132). (Figure 5A)
9. A device according to claim 8, characterised in that each of the waveguide/MIC
converting elements comprises a conductor line pattern (43) formed on the substrate
on the opposite side to the MIC slot antenna, the conductor line pattern being formed
along the direction perpendicular to the direction of the slot line portion of the
MIC slot antenna (41a, ... 41c). (Figure 5A)
10. A device according to any of claims 6 to 9, arranged to distribute microwave electric
power between a first microwave path (60) and a plurality of second microwave paths
(65-1, ... 65-n), wherein each of the second microwave paths is equipped with a microwave
power amplifier comprising a metal block (251) secured and disposed in a waveguide
(250); dielectric substrates (261, 262) secured on the metal block; a pair of strip
conductors (263, 264) formed on the surfaces of the substrates; at least one antenna
element formed at the end of at least one pair of strip conductors; an amplifier element
(260) having an input terminal (G) and an output terminal (D) connected to the strip
conductors, respectively; and back surface patterns (265) which are provided on the
back surfaces of said substrates, each of which constitutes a microstrip line together
with the strip conductor for impedance matching with the amplifier element, at least
one of the back surface patterns having a narrowed end to obtain impedance matching
with the antenna.
11. A device according to any of claims 6 to 9, arranged to combine microwave electric
power between a first microwave path (60) and a plurality of second microwave paths
(651, . . . 65-n), wherein each of the second microwave paths is equipped with a
microwave power amplifier comprising a metal block (251) secured and disposed in a
waveguide (250); dielectric substrates (261, 262) secured on the metal block; a pair
of strip conductors (263, 264) formed on the surfaces of the substrates; at least
one antenna element formed at the end of at least one pair of strip conductors; an
amplifier element (260) having an input terminal (G) and an output terminal (D) connected
to the strip conductors, respectively; and back surface patterns (265) which are provided
on the back surfaces of said substrates, each of which constitutes a microstrip line
together with the strip conductor for impedance matching with the amplifier element,
at least one of the back surface patterns having a narrowed end to obtain impedance
matching with the antenna.
1. Mikrowellenleistungsverstärker mit einem ersten elektromagnetischen Horn (102),
das einen Halsabschnitt hat, der an einen Eingangs-Mikrowellenweg (101) gekoppelt
ist, und das ein Mikrowelleneingangssignal radial dispergiert; einem übergroßen Wellenleiter
(103), der an einem Ende mit dem offenen Ende des ersten elektromagnetischen Horns
gekoppelt ist; einem zweiten elektromagnetischen Horn, dessen offenes Ende mit dem
anderen Ende des übergroßen Wellenleiters (103) gekoppelt ist und das Mikrowellensignal
von dem übergroßen Wellenleiter kombiniert; einer Vielzahl von Verstärkereinheiten
(107a-107e), welche in dem übergroßen Wellenleiter (103) angeordnet sind, wobei jede
der Verstärkereinheiten das Mikrowellensignal von dem ersten elektromagnetischen Horn
empfängt und es, nachdem es dieses in ein MIC-Modussignal umgewandelt hat, verstärkt,
und das Ausgangssignal von jeder der Verstärkereinheiten in das zweite elektromagnetische
Horn übertragen wird, nachdem es in ein Wellenleitermodussignal umgewandelt worden
ist; und phasenkompensationseinrichtungen zur Uniformierung der Phasen der Mikrowellensignale,
die durch das erste elektromagnetische Horn verteilt worden sind, oder zum Justieren
der Phasen der Mikrowellensignale, die aus der Vielzahl von Verstärkereinheiten ausgespeist
werden, wobei die Phasenkompensationseinrichtungen zwischen dem ersten elektromagnetischen
Horn und dem übergroßen Wellenleiter oder zwischen dem übergroßen Wellenleiter und
dem zweiten elektromagnetischen Horn angeordnet sind, wobei die Phasenkompensationseinrichtungen
für jede der Vielzahl von Verstärkereinheiten (107a-107e) eine MIC-Transmissionsleitung
(106'a, ... 106'e) und ein Wellenleiter/MIC-Umwandlungselement (105'a, ... 105'e),
welches mit der MIC-Transmissionsleitung verbunden ist und welches innerhalb des übergroßen
Wellenleiters (103) angeordnet ist, umfassen, dadurch gekennzeichnet, daß die Länge
der MIC-Transmissionsleitung (106'c), die dem Wellenleiter/MIC-Umwandlungselement
(105'c) entspricht und die an der zentralen Position längs der Richtung der Vergrößerung
des übergroßen Wellenleiters (103) angeordnet ist, die größte ist, und die Längen
mit zunehmendem Abstand von der zentralen Position kleiner werden; und daß die Positionen
der Wellenleiter/MIC-Umwandlungselemente längs der Fortpflanzungsrichtung der Mikrowellensignale
in Übereinstimmung mit deren Position längs der Richtung der Vergrößerung des übergroßen
Wellenleiters (103) variieren, wobei die Längen und Positionen der MIC-Transmissionsleitungen
in Übereinstimmung mit der Phase der elektrischen Mikrowellenenergie bei der Position
des entsprechenden Wellenleiter/MIC-Umwandlungselementes relativ zu der Richtung der
Vergrößerung des übergroßen Wellenleiters ausgewählt werden (Figur 6).
2. Verstärker nach Anspruch 1, dadurch gekennzeichnet, daß jede der Verstärkereinheiten
(26, 30) ausgestattet ist mit einem Mikrowellenleistungsverstärker, der einen Metallblock
(251) umfaßt, welcher in einem Wellenleiter (250) angeordnet und befestigt ist; mit
dielektrischen Substraten (261,262), die auf dem Metallblock gesichert sind; einem
Paar von Streifenleitern (263,264), die auf den Oberflächen der Substrate gebildet
sind; wenigstens einem Antennenelement, welches an dem Ende von wenigstens einem von
dem Paar von Streifenleitern gebildet ist; einem Verstärkerelement (260), das einen
Eingangsanschluß (G) und einen Ausgangsanschluß (D) hat, die jeweils mit dem Paar
von Streifenleitern verbunden sind; und mit Rückseitenmustern (265), die auf den rückseitigen
Oberflächen der Substrate vorgesehen sind, von denen jedes eine Mikrostreifenleitung
zusammen mit dem Streifenleiter zur Impedanzanpassung mit dem Verstärkerelement bildet,
wobei wenigstens eines der Rückseitenmuster ein schmaleres Ende hat, um eine Impedanzanpassung
mit der Antenne zu erzielen (Figur 14).
3. Verstärker nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
jede der Verstärkereinheiten (26) eine MIC-Transmissionsleitung umfaßt, die mit einem
Wellenleiter/MIC-Umwandlungselement verbunden ist, das an dem Endabschnitt von oder
innerhalb des übegroßen Wellenleiters (22) angeordnet ist, wobei jedes der Wellenleiter/MIC-Umwandlungselemente
eine MIC-Dipolantenne (25) ist, die auf den Seiten eines dielektrischen Substrates
gebildet ist.
4. Verstärker nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß jede der Verstärkereinheiten
(30) eine MIC-Transmissionsleitung umfaßt, die mit einem Wellenleiter/MIC-Umwandlungselement
(41a-41c; 42a-42c) verbunden ist, das an dem Endabschnitt von oder innerhalb des übergroßen
Wellenleiters (22) angeordnet ist, wobei jedes der Wellenleiter/MIC-Umwandlungselemente
eine MIC-Schlitzantenne ist, die auf einer Seite eines dielektrischen Substrates angeordnet
ist (Figur 5A).
5. Verstärker nach Anspruch 4, dadurch gekennzeichnet, daß jedes der Wellenleiter/MIC-Umwandlungselemente
(43, 44) ein Leiterleitungsmuster umfaßt, das auf der Seite gegenüber derjenigen Seite
gebildet ist, welche die MIC-Schlitzantenne trägt, wobei das Leiterleitungsmuster
längs der Richtung senkrecht zu der Richtung des Schlitzleitungsabschnitts der MIC-Schlitzantenne
gebildet ist.
6. Vorrichtung zur Verteilung und/oder Kombination von elektrischer Mikrowellenenergie
zwischen einem ersten Mikrowellenweg und einer Vielzahl von zweiten Mikrowellenwegen,
welche Vorrichtung ein elektromagnetisches Horn umfaßt, das einen Halsabschnitt hat,
der an den ersten Mikrowellenweg angekoppelt ist; einen übergroßen Wellenleiter, der
an einem Ende mit dem offenen Ende des Horns und an dem anderen Ende mit der Vielzahl
von zweiten Mikrowellenwegen gekoppelt ist; und Phasenkompensationseinrichtungen zur
Uniformierung der Phasen der Mikrowellensignale, die durch das Horn verteilt werden
oder zur Justierung der Phasen der Mikrowellensignale, die von der Vielzahl von zweiten
Mikrowellenwegen ausgespeist werden, welche Phasenkompensationseinrichtungen durch
eine Vielzahl von zweiten Mikrowellenwegen gebildet sind, von denen jeder eine MIC-Transmissionsleitung
(106'a,... 106'e) und ein Wellenleiter/MIC-Umwandlungselement (105'a,... 105'e) umfaßt,
welches mit der MIC-Transmissionsleitung gekoppelt und an dem Endabschnitt von, oder
innerhalb des, übergroßen Wellenleiters (103) angeordnet ist, dadurch gekennzeichnet,
daß die Länge der MIC-Transmissionsleitung (106'c), die dem Wellenleiter/MIC-Umwandlungselement
(105'c) entspricht und die an der zentralen Position längs der Richtung der Vergrößerung
(E) des übergroßen Wellenleiters (103) angeordnet ist, die größte ist, und die Längen
mit zunehmenden Abständen von der zentralen Position kleiner werden; und daß die Positionen
der Wellenleiter/MIC-Umwandlungselemente (105a',... 105e') längs der Fortpflanzungsrichtung
der Mikrowellensignale in Übereinstimmung mit deren Position längs der Richtung der
Vergrößerung (E) des übergroßen Wellenleiters (103) variieren, wobei die Längen und
Positionen der MIC-Transmissionsleitungen in Übereinstimmung mit den Phasen der elektrischen
Mikrowellenenergie bei der Position des entsprechenden Wellenleiter/MIC-Umwandlungselementes
relativ zu der Richtung der Vergrößerung (E) des übergroßen Wellenleiters ausgewählt
werden (Figur 6).
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß jede der zweiten Mikrowellenwege
eine MIC-Transmissionsleitung (106'a, ... 106'e) umfaßt, die mit einem Wellenleiter/MIC-Umwandlungselement
(105'a,... 105'e) verbunden ist, das an dem Endabschnitt oder innerhalb des übergroßen
Wellenleiters (103) angeordnet ist, jedes der Wellenleiter/MIC-Umwandlungselemente
eine MIC-Dipolantenne ist, die auf den Seiten des dielektrischen Substrats (108')
gebildet ist.
8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß jeder der zweiten Mikrowellenwege
eine MIC-Transmissionsleitung umfaßt, die mit einem Wellenleiter/MIC-Umwandlungselement
verbunden ist, das an dem Endabschnitt von oder innerhalb des übergroßen Wellenleiters
(131) angeordnet ist, jedes der Wellenleiter/MIC-Umwandlungselemente (133―1....133―4)
eine MIC-Schlitzantenne ist, die auf einer Seite eines dielektrischen Substrats (132)
gebildet ist (Figur 5A).
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß jedes der Wellenleiter/MIC-Umwandlungselemente
ein Leiterleitungsmuster (43) umfaßt, welches auf dem Substrat auf der gegenüberliegenden
Seite der MIC-Schlitzantenne gebildet ist, das Leiterleitungsmuster längs der Richtung
senkrecht zu der Richtung des Schlitzleitungsabschnitts der MIC-Schlitzantenne (41a,
... 41c) gebildet ist (Figur 5A).
10. Vorrichtung nach einem der Ansprüche 6 bis 9, angeordnet zur Verteilung von elektrischer
Mikrowellenenergie zwischen einem ersten Mikrowellenweg (60) und einer Vielzahl von
zweiten Mikrowellenwegen (65-1, ... 65-n), bei der jeder der zweiten Mikrowellenwege
mit einem Mikrowellenleistungsverstärker ausgestattet ist, der einen Metallblock (251)
umfaßt, der in einem Wellenleiter (250) angeordnet und gesichert ist; mit dielektrischen
Substraten (261, 262), die an dem Metallblock gesichert sind; einem Paar von Streifenleitern
(263, 264), die auf den Oberflächen der Substrate gebildet sind, wenigstens einem
Antennenelement, das an dem Ende von wenigstens einem Paar von Streifenleitern gebildet
ist; einem Verstärkerelement (260), das einen Eingangsanschluß (G) und einen Ausgangsanschluß
(D) hat, die jeweils mit den Streifenleitern verbunden sind; und Rückseitenmustern
(265), welche auf den rückseitigen Oberflächen der genannten Substrate vorgesehen
sind, von denen jedes eine Mikrostreifenleitung zusammen mit dem Streifenleiter zur
Impedanzanpassung mit dem Verstärkerelement bildet, wobei wenigstens eines der Rückseitenmuster
ein schmaleres Ende hat, um eine Impedanzanpassung mit der Antenne zu erhalten.
11. Vorrichtung nach einem der Ansprüche 6 bis 9, angeordnet zum Kombinieren von elektrischer
Mikrowellenenergie zwischen einem ersten Mikrowellenweg (60) und einer Vielzahl von
zweiten Mikrowellenwegen (65―1....65―n), bei der jeder der zweiten Mikrowellenwege
mit einem Mikrowellenleistungsverstärker ausgestattet ist, der einen Metallblock (251)
umfaßt, der in einem Wellenleiter (250) angeordnet und gesichert ist; mit dielektrischen
Substraten (261, 262), die an dem Metallblock gesichert sind; einem Paar von Streifenleitern
(263, 264), die auf den Oberflächen der Substrate gebildet sind; wenigstens einem
Antennenelement, das an dem Ende von wenigstens einem Paar von Streifenleitern gebildet
ist; einem Verstärkerelement (260), das einen Eingangsanschluß (G) und einen Ausgangsanschluß
(D) hat, die jeweils mit den Streifenleitern verbunden sind; und rückseitigen Oberflächenmustern
(265), die auf den rückseitigen Oberflächen der genannten Substrate vorgesehen sind,
von denen jedes zusammen mit dem Streifenleiter eine Mikrostreifenleitung zur Impedanzanpassung
mit dem Verstärkerelement bildet, und wenigstens eines der rückseitigen Oberflächenmuster
ein schmaleres Ende zur Erzielung einer Impedanzanpassung mit der Antenne hat.
1. Amplificateur de puissance micro-onde comprenant un premier cornet électromagnétique
(102) possédant une partie d'étranglement qui est couplée à un trajet micro-onde d'entrée
(101) et qui disperse radialement un signal d'entrée micro-onde; un guide d'ondes
surdimensionné (103) couplé, par une première extrémité, à l'extrémité ouverte du
premier cornet électromagnétique; un deuxième cornet électromagnétique dont l'extrémité
ouverte est couplée à l'autre extrémité du guide d'ondes surdimensionné (103) et qui
combine les signaux micro-onde venant du guide d'ondes surdimensionné; plusieurs unités
amplificatrices (107a-107e) qui sont disposées dans le guide d'ondes surdimensionné
(103), chacune des unités amplificatrices recevant et amplifiant le signal micro-onde
qui vient du premier cornet électromagnétique après l'avoir converti en un signal
de mode MIC (circuit intégré micro-onde), le signal de sortie de chacune des unités
amplificatrices étant transmis dans le deuxième cornet électromagnétique après avoir
été converti en un signal de mode guide d'ondes; et un moyen de compensation de phase
servant à uniformiser les phases des signaux micro-onde distribués par le premier
cornet électromagnétique ou à ajuster les phases des signaux microonde délivrés par
les différentes unités amplificatrices, le moyen de compensation de phase étant disposé
entre le premier cornet électromagnétique et le guide d'ondes surdimensionné ou entre
le guide d'ondes surdimensionné et le deuxième cornet électromagnétique, où le moyen
de compensation de phase comprend, pour chacune des différentes unités amplificatrices
(107a-107e), une ligne de transmission MIC (106'a, ... 106'e) et un élément de conversion
guide d'ondes/MIC (105'a,... 105'e) qui est couplé à la ligne de transmission MIC
et qui est disposé à l'intérieur du guide d'ondes surdimensionné (103), caractérisé
en ce que la longueur de la ligne de transmission MIC (106'c) correspondant à l'élément
de conversion guide d'ondes/MIC (105'c) disposé à la position centrale suivant la
direction d'élargissement du guide d'ondes surdimensionné (103) est la plus grande,
et les longueurs deviennent plus petites au fur et à mesure que la distance à la position
centrale augmente; et en ce que les positions des éléments de conversion guide d'ondes/MIC
suivant la direction de propagation des signaux micro-onde varie en fonction de leur
position suivant la direction d'élargissement du guide d'ondes surdimensionné (103),
les longueurs et les positions des lignes de transmission MIC étant choisies en fonction
de la phase de la puissance électrique micro-onde à la position de l'élément correspondant
de conversion guide d'ondes/MIC par rapport à la direction d'élargissement du guide
d'ondes surdimensionné. (figure 6)
2. Amplificateur selon la revendication 1, caractérisé en ce que chacune des unités
amplificatrices (26, 30) est équipée d'un amplificateur de puissance micro-onde comprenant
un bloc de metal (251) fixé et disposé dans un guide d'ondes (250); des substrats
diélectriques (261,262) fixés sur le bloc de métal; une paire de conducteurs en bandes
(263, 264) formés sur les surfaces des substrats; au moins un élément d'antenne formé
à l'extrémité d'au moins un conducteur de la paire de conducteurs en bandes; un élément
amplificateur (260) possédant une borne d'entrée (G) et une borne de sortie (D) respectivement
connectées à la paire de conducteurs en bandes; et des configurations de surfaces
dorsales (265) qui sont disposées sur les surfaces dorsales des substrats, chacune
d'elles constituant une ligne à microbande avec le conducteur en bande servant à l'adaptation
d'impédance vis-à-vis de l'élément amplificateur, au moins une des configurations
de surfaces dorsales ayant une extrémité rétrécie de manière à réaliser l'adaptation
d'impédance vis-à-vis de l'antenne. (figure 14)
3. Amplificateur selon l'une quelconque des revendications précédentes, caractérisé
en ce que chacune des unités amplificatrices (26) comprend une ligne de transmission
MIC connectée à un élément de conversion guide d'ondes/MIC qui est disposé à la partie
terminale du guide d'ondes surdimensionné (22) ou à l'intérieur de celui-ci, chacun
des éléments de conversion guide d'ondes/MIC étant une antenne dipolaire MIC (25)
formée sur les côtés d'un substrat diélectrique.
4. Amplificateur selon la revendication 1 ou 2, caractérisé en ce que chacune des
unités amplificatrices (30) comprend une ligne de transmission MIC connectée à un
élément de conversion guide d'ondes/MIC (41a-41c; 42a-42c) qui est disposé à la partie
terminale du guide d'ondes surdimensionné (22) ou à l'intérieur de celui-ci, chacun
des éléments de conversion guide d'ondes/MIC étant une antenne fendue MIC formée sur
un côté d'un substrat diélectrique. (figure 5A)
5. Amplificateur selon la revendication 4, caractérisé en ce que chacun des éléments
de conversion guide d'ondes/MIC (43, 44) comprend une configuration de ligne conductrice
formée sur le côté opposé au côté portant l'antenne fendue MIC, la configuration de
ligne conductrice étant formée suivant la direction perpendiculaire à la direction
de la partie de ligne fendue de l'antenne fendue MIC.
6. Dispositif permettant de distribuer et, ou bien, de combiner une puissance électrique
micro-onde entre un premier trajet micro-onde et une pluralité de deuxièmes trajets
micro-onde, le dispositif comprenant un cornet électromagnétique possédant une partie
d'étranglement qui est couplé au premier trajet micro-onde; un guide d'ondes surdimensionné
couplé par une première extrémité à l'extrémité ouverte du cornet et, par l'autre
extrémité, à la pluralité de deuxièmes trajets micro-onde; et un moyen de compensation
de phase servant à uniformiser les phases des signaux micro-onde distribués par le
cornet ou à ajuster les phases des signaux micro-onde délivrés par la pluralité de
deuxièmes trajets micro-onde, le moyen de compensation de phase étant produit par
la pluralité de deuxièmes trajets micro-onde, lesquels comprennent chacun une ligne
de transmission MIC (106'a,... 106'e) et un élément de conversion guide d'ondes/MIC
(105'a,... 105'e) qui est couplé à la ligne de transmission MIC et disposé à la partie
terminale du guide d'ondes surdimensionné (103) ou à l'intérieur de celui-ci, caractérisé
en ce que la longueur de la ligne de transmission MIC (106'c) correspondant à l'élément
de conversion guide d'ondes/MIC (105'c) disposé à la position centrale suivant la
direction d'élargissement (E) du guide d'ondes surdimensionné (103) est la plus grande,
et les longueurs deviennent plus petites au fur et à mesure que les distances à la
position centrale deviennent plus grandes; et en ce que les positions des éléments
de conversion guide d'ondes/MIC (105a', ... 105e') suivant la direction de propagation
des signaux micro-onde varie en fonction de leur position suivant la direction d'élargissement
(E) du guide d'ondes surdimensionné (103), les longueurs et les positions des lignes
de transmission MIC étant choisies en fonction de la phase de la puissance électrique
micro-onde à la position de l'élément correspondant de conversion guide d'ondes/ MIC
par rapport à la direction d'élargissement (E) du guide d'ondes surdimensionné. (figure
6)
7. Dispositif selon la revendication 6, caractérisé en ce que chacun des deuxièmes
trajets micro-onde comprend une ligne de transmission MIC (106'a, ... 106'e) connectée
à un élément de conversion guide d'ondes/MIC (105'a,. . . 105'e) qui est disposé à
la partie terminale du guide d'ondes surdimensionné (103) ou à l'intérieur de celui-ci,
chacun des éléments de conversion guide d'ondes/MIC étant une antenne bipolaire MIC
formée sur les côtés d'un substrat diélectrique (108).
8. Dispositif selon la revendication 6, caractérisé en ce que chacun des deuxièmes
trajets micro-onde comprend une ligne de transmission MIC connectée à un élément de
conversion guide d'ondes/MIC qui est disposé à la partie terminale du guide d'ondes
surdimensionné (131) ou à l'intérieur de celui-ci, chacun des éléments de conversion
guide d'ondes/MIC (133-1, ... 133-4) étant une antenne fendue MIC formée sur un côté
d'un substrat diélectrique (132). (figure 5A)
9. Dispositif selon la revendication 8, caractérisé en ce que chacun des éléments
de conversion guide d'ondes/MIC comprend une configuration de ligne conductrice (43)
formée sur le substrat du côté opposé à l'antenne fendue MIC, la configuration de
ligne conductrice étant formée suivant la direction perpendiculaire à la direction
de la partie de ligne fendue de l'antenne fendue MIC (41a, ... 41c) (figure 5A)
10. Dispositif selon l'une quelconque des revendications 6 à 9, conçu pour distribuer
une puissance électrique micro-onde entre un premier trajet micro-onde (60) et une
pluralité de deuxièmes trajets micro- onde (65-1, ... 65-n), où chacun des deuxièmes
trajets micro-onde est équipé d'un amplificateur de puissance micro-onde comprenant
un bloc de métal (251) fixé et disposé dans un guide d'ondes (250); des substrats
diélectriques (261, 262) fixés sur le bloc de métal; une paire de conducteurs en bandes
(263, 264) formés sur les surfaces des substrats; au moins un élément d'antenne formé
à l'extrémité d'au moins une paire de conducteurs en bandes; un élément amplificateur
(260) possédant une borne d'entrée (G) et une borne de sortie (D) respectivement connectées
aux connecteurs en bandes; et des configurations de surfaces dorsales (265) qui sont
disposées sur les surfaces dorsales desdits substrats, chacune d'elles constituant
une ligne à microbande avec le conducteur en bande pour l'adaptation d'impédance vis-à-vis
de l'élément amplificateur, au moins une des configurations de surfaces dorsales ayant
une extrémité rétrécie afin de réaliser une adaptation d'impédance vis-à-vis de l'antenne.
11. Dispositif selon l'une quelconque des revendications 6 à 9, conçu pour combiner
une puissance électrique micro-onde entre un premier trajet micro-onde (60) et une
pluralité de deuxièmes trajets micro- onde (65-1, ... 65-n), où chacun des deuxièmes
trajets micro-onde est équipé d'un amplificateur de puissance micro-onde comprenant
un bloc métallique (251) fixé et disposé dans un guide d'ondes (250); des substrats
diélectriques (261, 262) fixés sur le bloc métallique; une paire de conducteurs en
bandes (263, 264) formés sur les surfaces des substrats; au moins un élément d'antenne
formé à l'extrémité d'au moins une paire de conducteurs en bandes; un élément amplificateur
(260) possédant une borne d'entrée (G) et une borne de sortie (D) respectivement connectées
aux conducteurs en bandes; et des configurations de surfaces dorsales (265) qui sont
disposées sur les surfaces dorsales desdits substrats, chacune d'elles constituant
une ligne à microbande avec le conducteur en bande pour l'adaptation d'impédance vis-à-vis
de l'élément amplificateur, au moins une des configurations de surfaces dorsales ayant
une extrémité rétrécie afin de réaliser une adaptation d'impédance vis-à-vis de l'antenne.