(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 83108983.4

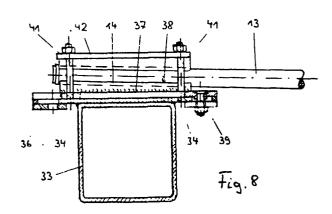
(51) Int. Cl.³: B 07 B 1/12

(22) Anmeldetag: 12.09.83

(30) Priorität: 17.09.82 DE 3234437

(43) Veröffentlichungstag der Anmeldung: 28.03.84 Patentblatt 84/13

84) Benannte Vertragsstaaten: AT BE CH FR GB IT LI NL SE (1) Anmelder: Mogensen GmbH & Co KG Kronskamp 126 D-2000 Hamburg/Wedel(DE)


72 Erfinder: Eggerstedt, Karl-Heinz Egenbûttlerweg 48 D-2000 Wedel(DE)

(14) Vertreter: Struck, Willi, Dr.-ing. Friedrich-Ebert-Strasse 10f D-2080 Pinneberg(DE)

54) Siebvorrichtung, insbesondere für siebschwierige Materialien.

(57) Die Erfindung betrifft eine Siebvorrichtung, insbes. für das Aussieben von unterschiedlichen Materialien wie Hausmüll oder dergl., bei der zwischen den Siebwänden eines mit einer Vibrationsvorrichtung verbundenen Rahmens Träger angeordnet sind, an denen Siebstäbe einseitig gehalten sind und bezweckt die Anpassung solcher Siebvorrichtung mit geringstem Aufwand und in kürzester Zeit an unterschiedliche Sortiergutbeschaffenheiten, um immer eine optimale Ausnutzung der Siebvorrichtung zu ermöglichen.

Zur Erreichung dieses Zieles wird bei einer Sortiervorrichtung der genannten Art vorgeschlagen, die Siebstäbe (13) mit ihren Tragorganen (17) einzeln oder in Gruppen abnehmbar oder verschiebbar an den schwenkbar an den Seitenwänden (10) gelagerten Trägern (12) anzubringen (Fig. 8)

PATENT ANWALT

DR.-ING. WILLI STRUCK

PINNEBERG / HOLST.

FRIEDRICH - EBERT-STR. 10 f
Postanachritt: Patentinwalt Dr. W. Struck

2080 Pinneberg/Holist Pontfach 2007

0103831

Siebvorrichtung, insbes. für siebschwierige Materialien

Anm.: Fa. Mogensen GmbH & Co. KG 2000 Wedel/Hamburg

Patentansprüche

- 1. Siebvorrichtung, insbes. für das Aussieben von unterschiedlichen Materialien wie Hausmüll, Kompost oder dergl., bei
 der zwischen den Seitenwänden eines Rahmens bzw. an einem
 Gestell Träger angeordnet sind, an denen Siebstäbe einseitig gehalten sind, dadurch gekennzeichnet, daß die Siebstäbe (13, 24) mit ihren Tragorganen (17, 38) einzeln oder
 in Gruppen abnehmbar und/oder verschiebbar an den schwenkbar an den Seitenwänden (10) bzw. an dem Gestell (31)
 gelagerten Trägern (12) angebracht sind.
- 2. Siebvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Träger (12) als zwischen Stirnscheiben (18) gehaltene rechteckige oder quadratische Rohrkonstruktionen

- (19, 32, 33) ausgebildet sind, an denen sich über die Länge der Träger erstreckende Auskragungen (20, 34, 35) vorgesehen sind, die mit Bohrungen (21) zur Durchführung von Schrauben zum Halten der Tragorgane (17, 38) für die Siebstäbe (13, 24) am Träger versehen sind.
- Siebvorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Tragorgane (17) für die Siebstäbe (13,
 24) mittels mit den Tragorganen verbundener Klemmschienen
 (22) an der Rohrkonstruktion (19) gehalten sind.
- Siebvorrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Tragorgane (17) für die Siebstäbe (13,
 24) als Prismen- oder Halbrundführungen (14) ausgebildet
 sind, die unter die Klemmschienen (22) am Träger (12) greifende Fußteile (23) aufweisen.
- 5. Siebvorrichtung nach ANspruch 1 und 2, dadurch gekennzeich-/38) net, daß die Tragorgane (17, für die Siebstäbe (13, 24) mittels Klemmlaschen (36) an den Auskragungen (34) der Rohrkonstruktion (33) gehalten sind.
- 6. Siebvorrichtung nach ANspruch 1 und 2, dadurch gekennzeichnet, daß die Siebstäbe (13) mit ihren Tragorganen (17) mittels in Schlitzen in den Auskragungen (34) der Rohrkonstruktion (32) geführter Bügelschraube (40) gehalten sind.

- 7. Siebvorrichtung nach ANspruch 1 bis 6, dadurch gekennzeichnet, daß die Führungen (14) der Tragorgane (17) der Siebstäbe (13, 24) für benachbarte Siebstäbe mit unterschiedlichen Neigungen ausgeführt sind.
- Siebvorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die unterschiedliche Neigung der Siebstäbe (13 24) durch Drehung der Tragorgane (17) um 180° einstellbar ist.
- Siebvorrichtung nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß die Siebstäbe als Rundstäbe (13) oder -rohre ausgebildet sind.
- 10. Siebvorrichtung nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß die Siebstäbe Dreikant- (24) oder ähnlich geformte Stäbe sind, die in der Wiese angeordnet sind, daß sich die Öffnungen zwischen benachbarten Stäben unterhalb der Aufgabeseite des Siebgutes erweitern.
- 11. Siebvorrichtung nach ANspruch 1 bis 10, dadurch gekennzeichnet, daß mehrere Träger (12) mit Reihen von Siebstäben (13, 24) zwischen den Seitenwänden (10) des Rahmens
 /am
 bzw. Gestell (31) untereinander angeordnet sind.
- 12. Siebvorrichtung nach Anspruch 1 bis 10, dadurch gekennzeichnet, daß mehrere Träger (12) mit Reihen von Siebstäben (13, 24) zwischen den Seitenwänden (10) des Rahmens

bzw. am Gestell (31) versetzt zueinander angebracht sind.

- 13. Siebvorrichtung nach Anspruch 11 und 12, dadurch gekennzeichnet, daß unterhalb von einem oder mehreren versetzt
 zueinander angebrachten Trägern (12) mit Reihen von Siebstäben (13, 24) ein oder mehrere Siebböden (27) untereinander angeordnet sind.
- 14) Siebvorrichtung nach Anspruch 1 bis 13, dadurch gekennzeichnet, daß der Rahmen, an dem die Träger (12) für die Siebstäbe (13, 24) mit ihren Tragorganen (17, 38) sowie gegebenenfalls die zusätzlichen Siebböden (27) fest angebracht sind, mit einer für die Stäbe und die Siebböden gemeinsamen Vibrationsvorrichtung (11) verbunden ist.
- 15. Siebvorrichtung nach Anspruch 1 bis 13, dadurch gekenn/Siebstäbe
 zeichnet, daß die Träger (12) für die (13, 24) mit ihren
 Tragorganen (17, 38) sowie gegebenenfalls die zusätzlichen
 Siebböden elastisch am Rahmen bzw. am Gestell (31) gelagert
 und jeweils mit einer gesonderten Vibrationsvorrichtung (11)
 verbunden sind.
- 16. Siebvorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß an jeder Seite eines Trägers (12) eine Vibrationsvorrichtung (11) angebracht ist...
- 17. Siebvorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß nur eine Vibrationsvorrichtung (11) in der Mitte jedes

Trägers (12) angeordnet ist.

18. Siebvorrichtung nach Anspruch 1 bis 17, dadurch gekennzeichnet, daß das Gestell (31) mit den Trägern (12) als
nach dem Baukstensystem erweiterungsfähige Siebvorrichtung
ausgebildet ist.

Die Neuerung betrifft eine Siebvorrichtung, insbes. für das Aussieben von unterschiedlichen Materialien wie Hausmüll oder dergl., bei der zwischen den Seitenwänden eines Rahmens Träger angeordnet sind, an denen Siebstäbe einseitig gehalten sind.

Siebvorrichtung mit Stabrosten, bei denen die mit Abstand nebeneinanderliegenden Stäbe nur an der Aufgabeseite eingespannt sind und auf der Abgabeseite völlig frei liegen sind bekannt. Insbesondere durch die freiliegenden Enden der Stäbe können diese Siebroste nicht verstopfen und sind deshalb besonders gut für schwierige Siebvorgänge geeignet, wie z. B. bei Hausmüll mit seiner Zusammensetzung aus unterschiedlichsten z. T. auch klebrigen Materialien gegeben sind.

Nachteilig bei den bekannten Siebvorrichtungen dieser Art ist, daß sie nur schwer an unterschiedliche Zusammensetzungen und damit Betriebserfordernisse des zu sortierenden Gutes anpaßbar sind, da die Stabroste in die Siebvorrichtungen starr eingebaut sind.

Durch die Erfindung soll deshalb die Aufgabe gelöst werden, die Siebvorrichtungen mit geringstem Aufwand und in kürzester Zeit an unterschiedliche Sortiergutbeschaffenheiten anpassen zu können, um immer eine optimale Ausnutzung der Siebvorrichtung zu ermöglichen.

Zur Lösung dieser Aufgabe wird bei einer Sortiervorrichtung der

eingangs genannten Art vorgeschlagen, die Siebstäbe mit ihren Tragorganen einzeln oder in Gruppen abnehmbar und/oder verschiebbar an den schwenbar an den Seitenwänden bzw. an dem Gestell gelagerten Trägern anzubringen.

Dabei können die Träger vorteilhaft als zwischen Stirnscheiben gehaltene rechteckige oder quadratische Rohrkonstruktionen
ausgebildet sein, an denen sich über die Länge der Träger erstreckende Auskragungen vorgesehen sind, die mit Bohrungen
zur Durchführung von Schrauben zum Halten der Tragorgane für
die Siebstäbe am Träger versehen sind.

Die Tragorgane für die Siebstäbe können beispielsweise mittels mit den Tragorganen verbundener Klemmschienen an der Rohrkonstruktion gehalten sein und sollen insbesondere bei runden Siebstäben, als Prismen- oder Halbrundführungen ausgebildet sein, die unter die Klemmschienen am Träger greifende Fußteile aufweisen.

Die Tragorgane für die Siebstäbe können auch durch Klemmlaschen an den Auskragungen der Rohrkonstruktion gehalten sein. Es können aber auch die Siebstäbe mit ihren Tragorganen mittels in Schlitzen in den Auskragungen der Rohrkonstruktionen geführter Bügelschrauben gehalten werden.

Die Führung en Tragorgane der Siebstäbe können für benachbarte Stäbe mit unterschiedlichen Neigungen ausgeführt sein, so daß benachbarte Stäbe zu ihren freien Enden hin divergieren wodurch sich erweiternde oder verengende Siebschlitze geschaffen werden. Es ist auch möglich, die unterschiedlichen Neigungen der Siebstäbe durch einfaches DRehen der Tragorgane um 180° einzustellen, wobei dann nur eine einzige Ausführungsform von Tragorganen für zwei unterschiedliche Stabneigungen erforderlich ist.

In der Regel sind die Siebstäbe als Rundstäbe oder -rohre ausgeführt, sie können aber auch Drehkant- oder ähnlich geformte Stäbe sein, die in der Weise augeordnet sind, daß sich die Offnungen zwischen benachbarten Stäben unterhalb der Aufgabeseite des Siebgutes erweitern, was zur Folge hat, daß durch die Siebschlitze hindurchgetretenes Gut nicht mehr hängen bleiben kann.

Bei einer Siebvorrichtung dieser Art können mehrere Träger mit Reihen von Siebstäben zwischen den Seitenwänden des Rahmens bzw. am Gestell untereinander, gegebenenfalls versetzt zueinander angebracht sein. Es ist auch möglich Träger mit Reihen von Siebstäben und Siebgewebe an sich bekannter Art in Kombination vorzusehen.

Der Rahmen, an dem die Träger für die Siebstäbe mit ihren Tragorganen, sowie gegebenenfalls die zusätzlichen Siebböden fest angebracht sind, kann mit einer für die Siebböden gemeinsamen Vibrationsvorrichtung verbunden sein, es können aber auch die Träger für die Siebstäbe mit ihren Tragorganen, sowie gegebenenfalls die zusätzlichen Siebstäbe elastisch am

Rahmen bzw. am Gestell gelagert und jeweils mit einer gesonderten Vibrationsvorrichtung verbunden sein. Wahlweise kann an jeder Seite eines Trägers eine Vibrationsvorrichtung angebracht sein, oder auch, wenn eine andere Schwingungscharakteristik gewünscht wird, nur eine Vibrationsvorrichtung in der Mitte jedes Trägers vorgesehen werden.

Bei einer Siebvorrichtung mit an einem Gestell gelagerten Trägern, kann die Vorrichtung nach dem Baukastensystem beliebig erweitert werden, indem nur das Gestell erweitert wird und immer gleiche Träger mit den Sieb- und Schwingungseinheiten zusätzlich am Gestell angebracht werden.

An Hand der beiliegenden Zeichnungen, auf denen

- Fig. 1 eine Gesamtansicht einer Siebvorrichtung gemäß der Erfindung,
- Fig. 2 in vergrößerter Darstellung einen Träger für die Siebstäbe im Querschnitt,
- Fig. 3 ein Tragorgan für die Siebstäbe in Vorder- und Seitenansicht,
- Fig. 4 beispielsweise Anordnungen von Siebstabreihen,
- Fig. 5 eine andere Ausführungsform einer Siebvorrichtung
 nach der Erfindung in Seitenansicht,
- Fig. 6 die gleiche Siebvorrichtung in Vorderansicht,
- Fig. 7 ein Beispiel für die Anordnung und Befestigung der Siebstäbe an der Rohrkonstruktion des Trägers,
- Fig. 8 ein weiteres Ausführungsbeispiel für die Anordnung

- **b**/₂ -

und Befestigung der Siebstäbè an der Rohrkonstruktion des Trägers in Seitenansicht und

Fig. 9 ein Beispiel für die Befestigung der Stäbe am Tragorgan für die Stäbe in Vorderansicht

zeigen, soll die Erfindung nachfolgend noch näher erläutert werden.

In Fig. 1 ist mit 10 eine Seitenwand bezeichnet. Zwischen jeweils zwei von derartigen Seitenwänden sind Träger 12 für die Stäbe 13 angeordnet, wobei die Figur jeweils eine obere Stabreihe und eine untere Stabreihe erkennen läßt. An den Seitenwänden 10 ist eine Rütteleinrichtung 11 in an sich bekannter Weise angeordnet. Oberhalb der Befestigung der Stäbe 13 an den Trägern 12 sind Abdeckbleche 15, 16 vorgesehen, durch die verhindert werden soll, daß sich Schmutz, Müll oder dergl. an den Befestigungen der Stäbe an den Trägern festsetzt.

Unterhalb der Siebstabreihen ist bei dem Ausführungsbeispiel der Erfindung gemäß Fig. 1 noch ein Siebboden 27 angeordnet, bei dem an jedem Ende des Siebgewebes falzartig angeformte Bleche 28 befestigt sind, die eingehakt und mit einer Spannvorrichtung verbunden werden. Im Mittelteil des Siebbodens können noch Umterstützungsrohre 29 zur Abstützung des Siebgewebes vorgesehen werden.

Durch die dargestellte Kombination wird erreicht, daß durch die Stäbe sperriges Material und auch faseriges Material wie Lappen, Plastiktüten oder dergl. zurückgehalten werden - W -

und nicht den Siebboden verstopfen. Andererseits können lange schmale Gegenstände, die zwischen den STäben durchfallen könnten noch vom Siebboden aufgefangen werden.

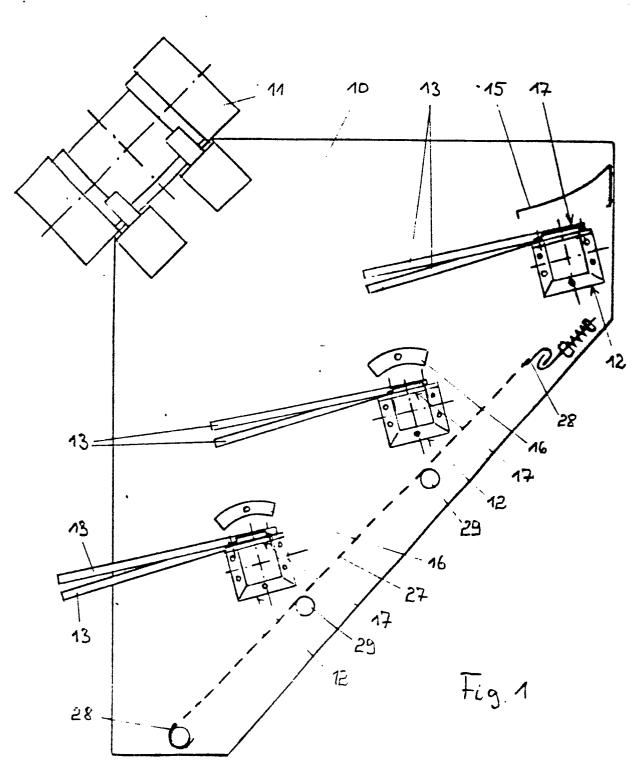
Bei dem in Fig. 2 dargestellten Träger 12, sind an den Stirnseiten einer quadratischen Rohrkonstruktion 19 Scheiben 18 angebracht, mit denen der Träger an den Seitenwänden der Siebvorrichtung gehalten und gelagert werden kann. Am oberen Teil der Rohrkonstruktion 19 sind Auskragungen 20 angeschweißt, so daß sich dort eine breite Auflagefläche für die Tragorgane 17 für die Stäbe 13 ergibt. In den Auskragungen 20 befinden sich über die ganze Trägerlänge verteilt Bohrungen 21, durch die Schrauben 25 hindurchführbar sind, die in Klemmschienen 22 eingreifen. Mit diesen Klemmschienen werden die Tragorgane 17 für die Stäbe 13 am Träger 12 festgehalten.

Die Tragorgane 17 für die Stäbe 13 weisen einen Prismenkörper 14 auf, und einen Fußteil 23 mit Nasen 26, die unter die Klemmschienen 22 greifen und durch diese am Träger 12 verspannt werden. Beim Lösen der Klemmschienen 22 sind die Tragorgane 17 mit den Stäben 13 vom Träger 12 abnehmbar oder auch auf diesem seitlich verschiebbar, so daß sich auch unterschiedliche Spaltweiten oder Spreizungen zwischen den Stäben leicht einstellen lassen.

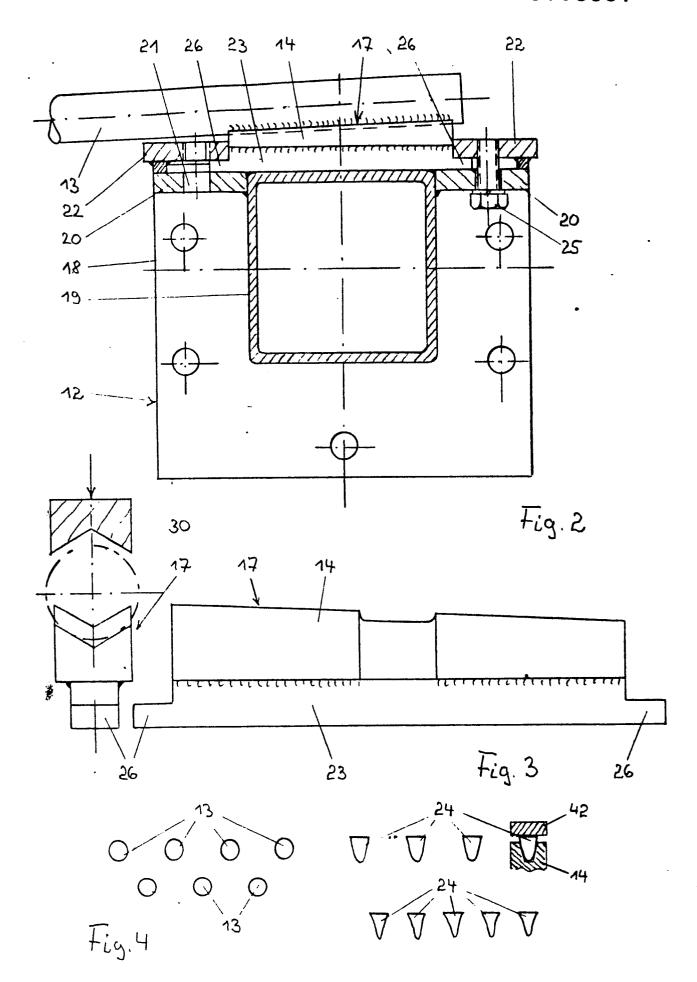
Fig. 3 läßt ein Tragorgan 1/ für sich allein erkennen, bei dem auf ein Fußteil 23 mit Nasen 26 ein Prismenkörper 14 aufgeschweißt ist. Auf den Prismenkörper sind, wie Fig. 2 erkennen läßt, die Stäbe 13 aufgelegt. Sie können am Prismenkörper 14 angeschweißt sein und dadurch mit diesem eine Einheit bilden, es liegt aber auch im Rahmen der Erfindung, daß
die Stäbe 13 auf dem Prismenkörper nur aufliegen und durch
eine Klemmlasche, z. B. ein Gegenprisma 30, welches durch
Schrauben angedrückt wird, auf dem Prismenkörper festgeklemmt
werden. Auf diese Weise ist es möglich, bei Verschleiß nur einzelne Stäbe ohne Tragorgan auszuwechseln.

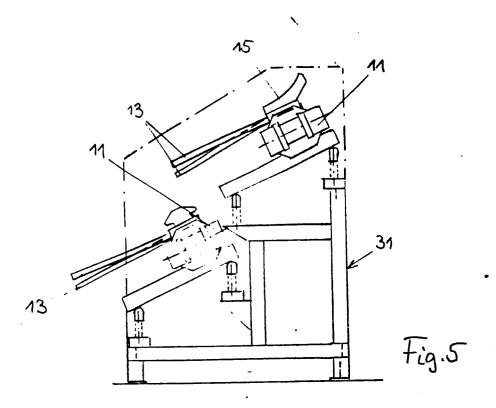
Fig. 4 gibt schematische Darstellungen unterschiedlicher Stabanordnungen mit Rundstäben 13 und Dreikant- oder dreikantähnlichen Stäben 24 wieder. Die Dreikantstäbe 24 können mit ihren spitzen Seiten in einem Prismenkörper 14 liegen, die Festklemmung kann hier durch eine ebene Platte 42 erfolgen.

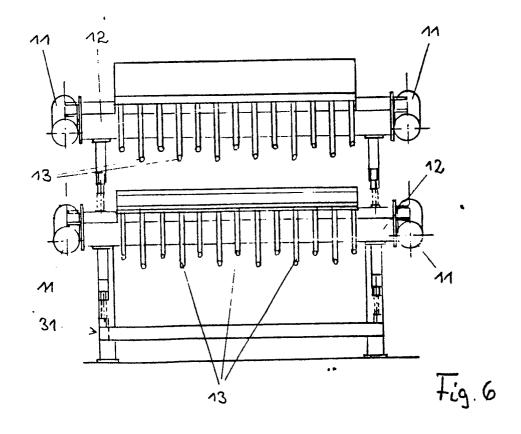
Die Figuren 5 und 6 zeigen eine andere Ausführungsform einer erfindungsgemäßen Siebvorrichtung, bei der, wie man erkennen kann, die Träger 12 für die Siebstäbe 13 auf einem Gestell 31 federnd gelagert sind. Da hier jeder Träger 12 mit eigenen Vabritationsvorrichtungen 11, die statt wie dargestellt an beiden Enden auch in der Mitte eines Trägers angebracht sein können, wenn eine andere Schwingungsform erzielt werden soll, ausgerüstet ist, sind die Träger 12 über Federn am Gestell 31 angebracht, so daß unterschiedliche Schwingungen beim Sortiervorgang auch an jedem Träger gesondert einstellbar sind. Das Gut wird über das Abdeck- bzw. Führungsblech 15 der Siebvorrichtung zugeführt und dann in an sich bekannter Weise von einer Stabreihe auf die darunterliegende Stæreihe weitergegeben.

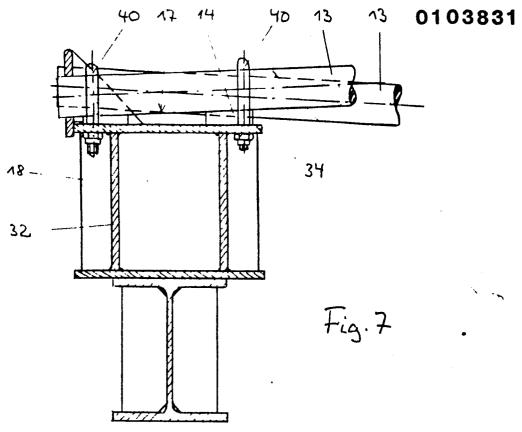

Dabei können natürlich auch noch mehr Stabreihen als dargestellt hintereinandergeschaltet werden. Baukastenartig können die Gestelle 31 je nach den Betriebserfordernissen erweitert werden und mit Trägern 12 mit Stabreihen und Vibrationsvorrichtungen 11 ausgerüstet werden.

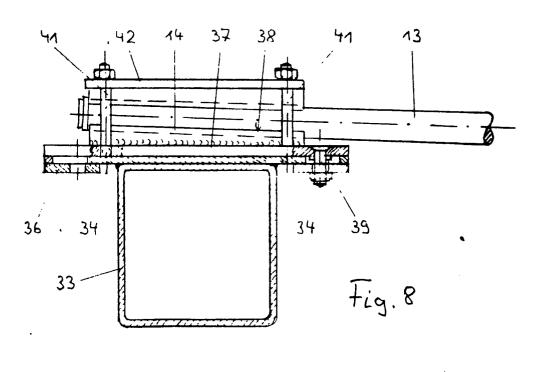
In den Figuren 7 bis 9 sind noch weitere Beispiele für die Befestigung der Siebstäbe an den Rohrkonstruktionen der Träger dargestellt.


Bei der aus Flachstählen zusammengeschweißten Rohrkonstruktion 32 mit den Stirnscheiben 18 der Fig. 7 weist der obere Flachstahl Auskragungen 34 auf. Auf dieser oberen Abdeckung der Rohrkonstruktion 32 liegen die insgesamt mit 17 bezeichneten Tragorgane für die Siebstäbe 13 auf, die in Prismen- oder Halbrundführungen 14 liegen. Die Tragorgane mit den Stäben sind durch Bügelschrauben 40 an der Rohrkonstruktion gehalten, wozu Bohrungen oder Schlitze in den Auskragungen vorgesehen sind.


Bei dem Befestigungsbeispiel der Fig. 8 und 9 ist am oberen Teil eines Vierkantrohres 33 eine durchgehende Flacheinsenschiene angeschweißt, die Auskragungen 34 gegenüber dem Rohr aufweist. Auf der Schiene mit den Auskragungen liegen die Tragorgane 38 für die Hanlbrundführungen 14 der Stäbe 13 auf. Die Tragorgane weisen dabei Laschen auf, in denen Bohrungen für die Durchführung von Schrauben 39 vorgesehen sind. Mit


diesen Schrauben werden Klemmlaschen 36 gegen die Auskragungen 30 am Tragrohr 33 festgeklemmt. Die Tragorgane und damit die Stäbe 13 lassen sich so in beliebigen Abständen zueinander anbringen. Die Stäbe 13 werden hier, wie auch Fig. 9 erkennen läßt, in Halbrundführungen 14 gehalten, von denen die unteren am Fußteil 37 angeschweißt sind und die oberen durch Klemmplatten 42 mittels Stehbolzen 41, die in die Fußteile 37 eingeschraubt sind, festgeklemmt werden.




••

