11 Publication number:

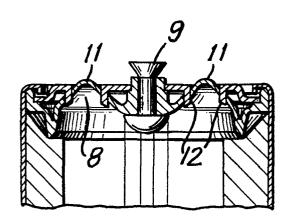
0 107 267

12

EUROPEAN PATENT APPLICATION

2 Application number: 83303671.8

(f) Int. Cl.3: H 01 M 2/12


2 Date of filing: 24.06.83

30 Priority: 28.06.82 US 392960

Applicant: UNION CARBIDE CORPORATION, Old Ridgebury Road, Danbury Connecticut 06817 (US)

- 43 Date of publication of application: 02.05.84 Bulletin 84/18
- Inventor: Huhndorff, Harry Roland, 322 Plymouth Drive, Bay Village 44140 Ohio (US)

- Designated Contracting States: BE CH FR GB LI
- Representative: McCall, John Douglas et al, W.P. THOMPSON & CO. Coopers Building Church Street, Liverpool L1 3AB (GB)
- (Galvanic cell having pressure relief cover.
- (d) having a safety, non-resealable pressure relief means formed by punching in the cover at least one opening (8) with at least one extending tooth (12) that is disposed in cooperative relation to the diaphragm/gasket (4) so that upon a build up of internal pressure, the diaphragm section (6) will be expanded into the opening where the diaphragm will be torn, to provide a vent.

DESCRIPTION

GALVANIC CELL

This invention relates to a safety, non-resealable pressure relief device for galvanic cells.

5

10

15

20

quantities of gas under certain conditions during use. Since many cells are required to be tightly sealed at all times in order to prevent loss of electrolyte by leakage, high internal gas pressures may develop. Such pressures may cause leakage, bulging or possible explosion of the cell if not properly vented. If a vent valve is employed, it generally is resealable in order to avoid drying out of the electrolyte over the life of the cell and to prevent ingress of oxygen from the atmosphere which can cause wasteful corrosion of the anode.

In the past several different types of resealable pressure relief vent valves have been used for releasing high internal gas pressures from inside a sealed galvanic cell. One type of valve that has been commonly used consists basically of a

valve member, such as a flat rubber gasket, which is biased into sealing position over a vent orifice by means of a resilient member, such as a helical spring. The resilient member or spring is designed to yield at a certain predetermined internal gas pressure so as to momentarily relieve the seal and allow the gas to escape through the vent orifice.

5

10

15

20

25

30

Another type of resealable vent is disclosed in U.S. Patent No. 3,415,690 to Richman issued on December 10, 1968. In this vent, a flat elastomeric seal gasket overlies the vent opening and is retained in place by a resilient terminal cap on the top of the cell. This vent operates in generally the same manner as the vent previously described.

In U.S. Patent No. 3,664,878 to Amthor issued on May 23, 1972, a resealable vent is disclosed which comprises a resilient deformable ball of elastomeric material positioned to overlie a vent orifice provided within the cell's container. A retainer means is positioned over the resilient ball for maintaining the ball in place over the vent orifice and in contract with a valve seat provided around the peripheral edge portions of the vent orifice and for compressing and deforming the resilient ball into a flattened configuration forming a normally fluid-tight seal between the flattened ball and the valve seat. The resilient ball is capable of undergoing further temporary deformation upon the buildup of a predetermined high internal gas pressure inside the container so as to momentarily break the seal and allow gas to escape through the vent orifice.

A major problem encountered with resealable pressure relief vent valves of the types just described is that they are bulky and/or difficult to incorporate into the cell assembly. Furthermore, these pressure relief vent valves are expensive to manufacture. In addition, some of the prior art resealable vents as exemplified by the foregoing patents are not suitable for low pressure venting.

5

Alternates to high pressure resealable vent 10 means are fail safe venting systems as illustrated in U.S. Patents 3,218,197 and 3,314,824. Specifically in the '197 patent a venting means is disclosed in which the seal gasket has a thin section that will rupture or "blow-out" at a 15 predetermined high pressure buildup within the The difficulty with this type of venting means is that it is difficult to obtain consistency in the thickness of the "blow-out" section of the gasket using conventional manufacturing techniques. 20 In the '824 patent a puncture-type safety seal is disclosed which comprises a spring washer positioned within the cell's seal assembly and a radially acting toothed puncture washer. The teeth of the washer slige relative to the spring washer when the 25 spring washer is subjected to internal pressure so that at a predetermined gas pressure buildup, the teeth of the washer will puncture the seal's gasket thereby providing a vent passage. This type of venting means requires several component parts, and 30 is rather expensive to make and assemble.

A sealing and pressure relief device for galvanic cells is shown in U.S. Patent 3,062,910 which comprises a thin diaphragm having a central portion which is outwardly bendable under fluid

pressure. The diaphragm is subject to the pressure within the cell and is mounted in cooperative relation to a cover member carrying a rigid tooth the end of which is normally disposed adjacent to the diaphragm such that the diaphragm is capable of being pierced by the tooth upon the development of a predetermined high gas pressure in the cell.

As discussed above, resealable, high pressure relief vent valves are generally bulky and/or difficult to incorporate into a cell assembly, while low pressure vent means for some cell systems may not adequately and sufficiently prevent loss of electrolyte through leakage or prevent ingress of oxygen from the atmosphere which could cause wasteful corrosion of the anode.

10

15

30

In the arrangement of the present invention the cover of each cell has an opening which defines at least one horizontal tooth or initially defines at least two cooperating teeth which are subsequently bent inwardly towards the diaphragm section of a diaphragm/gasket member. Thus upon an internal gas pressure buildup, the diaphragm section will be forced against the tooth or teeth of the cover and tear thereby providing a vent passage for the gas to escape.

One aspect of the invention is directed to a galvanic cell in which the cover is disposed over and mounted in cooperative relation to a diaphragm/gasket member and is provided with an opening which defines at least one horizontal tooth such that an internal gas pressure buildup within the cell will force the diaphragm section of the diaphragm/gasket

member against the tooth and tear the diaphragm section thereby providing a vent passage for the gas to escape.

Another aspect of this invention is directed to a galvanic cell in which the cover is disposed over and mounted in cooperative relation to a diaphragm/gasket member and is provided with an opening which initially defines at least two cooperating teeth subsequently bent inwardly towards the diaphragm section of the diaphragm/gasket member such that an internal gas pressure buildup within the cell will force the diaphragm section again the sharp points of the teeth thereby tearing the diaphragm section to form a vent passage for the gas to escape.

15

20

25

30

According to the present invention there is provided a galvanic cell comprising a container having an open end and an inner disposed active ahode, an active cathode and an electrolyte within said container; a diaphragm/gasket member disposed over the anode and the cathode; and a cover secured over and insulated from the open end of the container; the improvement wherein said cover has at least one opening with at least two cooperating teeth extending therefrom which are bent inwardly toward the diaphragm section of the diaphragm/gasket member and said diaphragm/gasket being in cooperative relation to. the teeth so that upon a predetermined level of an internal gas pressure buildup within the cell the diaphragm section will be forced against the sharp end of the teeth thereby securing, puncturing and tearing the diaphragm section to form a vent opening for the gas to escape.

5

10

15

20

25

30

35

According to another embodiment of the invention there is provided a galvanic cell comprising a container having an open end and an inner disposed active anode, an active cathode and an electrolyte within said container; a diaphragm/gasket member disposed over the anode and the cathode; and a cover secured over and insulated from the open end of the container; the improvement wherein said cover has at least one opening which defines at least one tooth disposed substantially parallel to the plane of the edge defining said opening such that a predetermined level of an internal gas pressure buildup within the cell will force the diaphragm section of the diaphragm/gasket member against the sharp end of the tooth thereby shearing and tearing the diaphragm section to form a vent opening for the gas to escape.

By way of the present invention there may be provided;

- (i) a compact and economical high pressure vent for use in galvanic cells.
- (ii) a high pressure vent for galvanic cells which requires a small number of parts and which is easy to assemble and inexpensive to manufacture.

The cell of this invention is generally encased in an outer cell jacket with an appropriate terminal disc at each end in a conventional manner. Any expelling of the closure means from the cell could distort the jacket and/or terminal discs to a degree where the cell could possibly get lodged in the device in which it is assembled. In addition, any projecting of component parts out of the cell is usually accompanied by a relatively loud noise that could upset or even frighten the individual or individuals in close proximity to the device containing the cell. To prevent the possibility of

such damage or noise from the release of high pressure buildup within a cell, the present invention is directed to a unique and simple pressure relief means that permits a projected tooth or teeth in the cover to tear the diaphragm section thereby forming a passage or opening for venting the gas after a predetermined high pressure buildup. This will prevent the cover or any other component of the cell from being expelled from the cell and at the same time effectively eliminate the loud noise usually accompanied by any such expulsion.

The first embodiment, which employs a cover with at least one opening with at least two cooperating teeth extending therefrom and which 15 teeth are bent inwardly toward the diaphragm section of the diaphragm/gasket member, can be easily produced by simply punching overlapping holes in the cover and then bending the teeth, with the burr side of the teeth at the bottom surface, into the 20 container. This will provide at least two spaced-apart teeth directed inwardly towards the flexible diaphragm section or portion of the diaphragm/gasket member. Thus as gas pressure buildup occurs, the flexible diaphragm section 25 disposed opposite the teeth will deflect or expand and contact the burr side of the teeth. The teeth will secure and restrict a portion of the expanding diaphragm section such that upon a predetermined gas pressure buildup, the restricted portion of the $_{30}$ diaphragm section will puncture and tear, thereby providing a pathway or opening for venting the excessive internal gas pressure. The opening so formed in the diaphragm section will be sufficiently large so that it will not be effectively blocked by any portion of the active materials forced towards

the opening. Without the teeth to restrict and secure a portion of the diaphragm section, the diaphragm section would expand through the opening like a balloon and only burst when a dangerous excessive pressure buildup occurred. function to restrict and secure a portion of the diaphragm section so that at a predetermined pressure buildup, the pressure will expand, stretch or otherwise thin out the restricted portion of the diaphragm section whereupon the tips of the teeth will be sufficient to pierce and tear the expanded, restricted portion of the diaphragm section.

10

15

20

30

35

The overlapping holes in the cover to form at least two teeth could assume many configurations. For example, a circular, square, triangle, rectangle, or any polygonal contour punch could be employed for punching overlapping holes in the cover. In addition, the overlapping holes do not have to be the same configuration but could comprise one circular opening overlapping a square opening or the like.

The number of teeth extending from the edge of the opening can be more than two. For example, when two overlapping triangular contours are punched 25 _and one is displaced by 60° in the cover, six cooperating teeth are formed, whereupon two or more of the teeth can then be bent into the cell. embodiment will provide multiple securing and restricting tips for the diaphragm section when said section deflects or expands due to internal pressure buildup. The holes need not overlap but could touch and still form cooperating teeth in accordance with this invention. For example, a square opening could be disposed adjacent to and touching the peak of a triangular opening to form two cooperating teeth as will be described below in conjunction with the drawings. Once the teeth are formed, they can be

bent into the cell facing the diaphragm section in any conventional manner.

5

10

15

20

25

30

The mode of operation is that internal pressure (fluid or gas) will deflect and expand a portion of the diaphragm section against the inwardly orientated teeth. A portion of the diaphragm section will be restricted by the teeth and the central portion will pass between the tips of the teeth into the opening in the cover. cooperating action of the teeth is such that the diaphragm section will be torn open or apart upon a buildup of a predetermined pressure level. means that the higher the pressure, the bigger the vent opening formed. In an embodiment employing only a single bent tooth, the material of the diaphragm may flow laterally and simply envelope the single tooth without full penetration and tearing of the material.

In the second embodiment the cover of the cell has at least one opening which defines at least one tooth that is disposed in the plane of the edge defining said opening. In a similar manner as above, the tooth and burr associated therewith secures and restrains a portion of the diaphragm section that is expanded into the opening due to internal pressure buildup within the cell. upon reaching a predetermined level, the internal force will expand and stretch the portion of the diaphragm section through the opening in the cover whereby the tooth will shear the diaphragm section to provide a vent opening for the gas to escape. Again if the opening in this embodiment is punched in a conventional manner, then it is even more preferable than in the first embodiment to have the burred edge

of the tooth facing the diaphragm section. This embodiment is preferable for small size cells in which the spacing between the cover and diaphragm/gasket is limited. Thus the

5 diaphragm/gasket could be placed in contact with the internal surface of the cover, while in the first embodiment the diaphragm/gasket has to be spaced from the cover by at least the projected distance of the teeth into the cell. In either embodiment, a portion of the metal is generally removed from the cover in the process of making the teeth as opposed to a simple lancing without loss of metal.

Preferably, at least the undersurface of the diaphragm/gasket should be coated with a 15 protective material such as asphalt, wax or the like . to minimize any stress corrosion of the diaphragm/gasket when in contact with a caustic electrolyte. Asphalt is the preferred coating material because it is inexpensive and inert to most 20 electrolytes such as KOH. The asphalt will isolate the diaphragm/gasket from the electrolyte and thereby allow the diaphragm/gasket to retain its physical and chemical properties. diaphragm/gasket could also be coated with a fatty polyamidé as disclosed in U.S. Patent No. 3,922,178. Fatty polyamides are described on pages 597 to 615 in Volume 10 of the "Encyclopedia of Polymer Science and Technology*, Interscience Publishers (John Wiley and Sons, Inc.), New York. 30 Briefly, fatty polyamides are produced by reacting a polybasic acid with a polyfunctional amine. Generally the polybasic acids are principally dibasic acids formed by the dimerization of, for instance, a C₁₈ unsaturated fatty acid derived from an unsaturated vegetable oil.

dimers are then reacted with a diamine, such as ethylenediamine, propylenediamine, and the like.

The internal pressure level at which the cell can be made to vent can be predetermined by selecting the identity and thickness of the diaphragm/gasket material and the diaphragm section spacing from the cover; the size, shape and number of teeth; the size, shape and number of openings; the size, thickness and shape of the cover; and the specific embodiment of the invention to be employed. Preferably, for cylindrical cells having a diameter of about 1.0 inch ("C" size), the venting pressure would be between about 500 psi to 700 psi, more preferably about 550 psi to about 650 psi. For cylinder cells having a diameter of about 1.25 ("D" size), the venting pressure would be between about 300 psi to about 550 psi, and more preferably about 350 psi to 500 psi.

10

15

The diaphragm/gasket for use in this invention has to be stable in the presence of the 20 cell components and can be selected from such materials as polytetrafluoroethylene, fluorinated ethylene-propylene, ethylene copolymer with __fluorinated ethylene-propylene, chlorotrifluoroethylene, perfluoro-alkoxy polymer, polyvinyl, 25 polyethylene, polypropylene, polystyrene, nylon, Preferably a nylon material marketed under the Tradename Zytel 101 (6-6 nylon), 151 (6-12 nylon) or 151L (lubricated) by Dupont Inc. should be employed. Of the above nylons, 6-12 nylon would be 30 the most preferred.

The subject invention is admirably suitable for use in the following cell systems:

lithium-MnO₂ cells, lithium-iron sulfide cells, alkaline-MnO₂ cells, and nickel-cadmium cells.

5

10

20

25

30

The present invention will become more apparent from the following description thereof when considered together with the accompanying drawing which is set forth as being exemplary of embodiments of the present invention and is not intended in any way to be limitative thereof.

Figure 1 is a top plan view of a cover-diaphragm/gasket assembly for use in a galvanic cell in accordance with this invention.

Figure 2 is a sectional elevation taken through line 2-2 of Figure 1.

Figure 3 is a perspective view of a sealed galvanic cell using the diaphragm/gasket assembly of Figure 1.

Figure 4 is a partial sectional elevation of the cover-diaphragm/gasket assembly of Figure 3 illustrating the expansion of the diaphragm section of the diaphragm/gasket member through the opening in the cover and being restrained by the inturned teeth.

Figure 5 is a top plan view of another embodiment of a cover-diaphragm/gasket assembly for use in a galvanic cell in accordance with this invention.

Figure 6 is a sectional elevation taken through line 6-6 of Figure 5.

Figure 7 is a perspective view of a sealed galvanic cell using the cover-diaphragm/gasket assembly of Figure 5.

Figure 8 is a top plan view of a cover-diaphragm gasket assembly for use in a galvanic

cell in accordance with this invention.

5

10

15

20

25

Figure 9 is a sectional elevation taken through line 9-9 of Figure 8.

Figure 10 is a perspective view of a sealed galvanic cell using the cover-diaphragm/gasket assembly of Figure 8.

Figure 11 is a top plan view of a cover-diaphragm/gasket assembly for use in a galvanic cell in accordance with this invention.

Figure 12 is a sectional elevation taken through line 12-12 of Figure 11.

Figure 13 is a perspective view of a sealed galvanic cell using the cover-diaphragm/gasket assembly of Figure 11.

Figure 14 is a partial sectional elevation of the cover-diaphragm/gasket assembly of Figure 13 illustrating the expansion of the diaphragm section of the diaphragm/gasket member through the opening in the cover and being restrained by the teeth.

Figure 15 is a top view of a cover having an opening formed by punching overlapping triangular contours in the cover.

Figure 16 is a top view of a cover having an opening formed by punching overlapping circular contours in the cover.

Figure 17 is a top view of a cover having an opening formed by punching overlapping square contours in the cover.

Figure 18 is a top view of a cover having 30 an opening formed by punching in the cover triangular contours that touch each other.

Figure 19 is a top view of a cover having an opening formed by punching a square contour that touches a triangular contour in the cover.

Figure 20 is a top view of a cover having an opening formed by punching overlapping triangular contours in the cover.

Referring to the drawing, Figures 1 and 2 5 show a cover-diaphragm/gasket assembly 1 comprising a cover 2 sealed in a diaphragm/gasket 4, said diaphragm/gasket 4 having a thin flexible base diaphragm section 6 disposed below opening 8 in the cover and having a central hub opening 7 adapted for 10 receiving the current collector of the cell. opening 8 is formed by punching overlapping circular contours 10 in the cover so as to form or define two cooperating teeth 12 which are shown bent inwardly towards diaphragm section 6 of diaphragm/gasket 4. 15 Figure 3 shows the cover-diaphragm/gasket assembly 1 of Figures 1 and 2 seated in a conventional cell container 14 whereupon the container 14 is radially compressed against the cover-diaphragm/gasket assembly 1 in a conventional manner to seal the 20 cell. Projecting above the central opening 7 in the diaphragm/gasket member 4 is current collector 9.

Figure 4 illustrates what occurs when the flexible diaphragm section 6 of diaphragm/gasket 4 deflects and expands from internal pressure buildup in the cell whereupon it balloons through opening 8 where it becomes secured and restrained by teeth 12. This secures and causes the diaphragm to stretch until it becomes torn open to produce a vent opening 11 for the internal gas in the cell to escape.

Figures 5, 6 and 7 illustrates another embodiment of this invention comprising a cover-diaphragm/gasket assembly 16 composed of a cover 18 and diaphragm/gasket 20. In addition to three openings 22 similar to the openings 8 in

30

Figure 1, the cover has three spaced apart ridges 24, each ridge 24 disposed between adjacent openings 22. These ridges provide stiffness to the cover and in some applications provides an electrical connection to a shorting washer, if employed.

5

10

15

20

25

30

Figure 8, 9 and 10 illustrate another embodiment of this invention comprising a cover-diaphragm/gasket assembly 26 composed of a cover 28 and diaphragm/gasket 30. The diaphragm section 31 of diaphragm/gasket 30 is disposed adjacent the underside of cover 28. The cover 28 has three spaced-apart openings 32. Each opening 32 is formed by punching two overlapping circular contours 34 in the cover 28 so as to form two opposed teeth 36, each of which is disposed substantially in the plane of the edge defining the opening 32. As in the cover 18 of Figure 5, cover 28 has three spaced-apart ridges 38 which are used for the reason discussed above.

Figure 11, 12 and 13 illustrate another embodiment of this invention that is similar to that shown in Figures 8, 9 and 10, except that four spaced-apart openings 40 are formed in the cover 41 of cover-diaphragm/gasket assembly 43. Each opening 40 is formed by punching two overlapping circular contours 42 to form two opposed teeth 44. Each tooth is disposed substantially in the plane of the edge defining the opening 40 and the diaphragm section 39 of diaphragm/gasket 45 is disposed adjacent to the underside of cover 41.

Figure 14 illustrates what occurs when the diaphragm section 39 expands from internal pressure buildup in the cell whereupon it balloons through opening 40 where it becomes secured and restrained

by teeth 44. This stretches the diaphragm section 39 until it becomes torn open to produce a vent opening 47 for the internal gas in the cell to escape.

Figures 15 to 20 illustrate several embodiments of covers for use in this invention having various opening contours forming cooperating teeth. Figure 15 shows a cover 46 having an opening 48 formed by punching two overlapping triangular contours 50, 52 which forms opposing teeth 54.

Figure 16 shows a cover 56 having an opening 58 formed by punching two overlapping circular contours 60, 62 which forms opposing teeth 64.

15 Figure 17 shows a cover 66 having an opening 68 formed by punching two overlapping square contours 70, 72 which forms opposing teeth 74.

Figure 18 shows a cover 76 having an opening 78 formed by punching four touching triangular contours 80, 81, 82, 83 which forms opposing teeth 84.

20

Figure 19 shows a cover 86 having an opening 88 formed by punching a square contour 90 touching the tip of a triangular contour 92 which forms opposing teeth 94.

Figure 20 shows a cover 96 having an opening 98 formed by punching overlapping triangular contours 100, 102 to form tooth 104.

Although the teeth are shown disposed

30 substantially parallel to the surface of the covers
in Figures 15 through 19, they could be bent
inwardly towards the diaphragm section of the
diaphragm/gasket member as is described in the first
embodiment of the invention. The teeth shown in
Figures 15 through 20 are integral with the cover

but they may be formed as a separate part and then welded or otherwise secured to the cover.

The invention will now be further described by reference to the following Examples.

Example 1

5

10

15

20

Several lots of "D" size cylindrical alkaline Mn0₂ cells were assembled using the cover-diaphragm/gasket assembly shown in Figures 11, 12 and 13. The diaphragm/gasket material employed in each cell lot is as shown in Table 1. Some of the diaphragm sections of the diaphragm/gasket member were coated on the underside with asphalt and this information is also shown in Table 1.

The cells in each lot were stored at 71°C and monitored weekly for any leakage and bulging. The data observed are shown in Table 1. As evident from the data shown, the preferred embodiment of the cell would entail the coating of the underside of at least the diaphragm section of the diaphragm/gasket since the leakage that occured in the cells was through the stress induced cracks in the diaphragm of the diaphragm/gasket member.

																						-			
		ω	0	70	70	100	90	100	100	0	48	40	70	50	90	95	90	20	100	100	100	0	0	0	0
	Show	7	0	26	9	100	80	100	100	0	36	35	45	40	8	85	20	10	100	100	100	0	0	0	0
	s Age	9	0	74	45	100	80	100	700	0	10	30	40	40	20	55	45	0	80	92	95	0	0	0	0
	Week	2	0	•	20	100	9	100	100	0	4	20	15	0	10	30	70	0	0	40	ស	0	0	0	0
	eat	4	0	0	70	9	40	70	90	0	0	10	0	0	0	15	0	0	0	0	0	0	0	0	•
	Leakage at Weeks Age Shown	m	0	0	0	25	70	30	30	0	0	0	0	0	0	'n	0	0	0	0	0	•	0	0	0
		7	0	0	0	15	10	10	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ŀ	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0
TABLE 1	Number	of Cells	10	50	20	20	10	70	20	20	50	20	50	70	10	20	20	10	10	20	20	10	70	13	20
77		Coating	None	None	None	None	None	None	None	Asphalt	Asphalt	Asphalt	Asphalt .	Asphalt	Asphalt	Asphalt	Asphalt	None	None	None	None	Asphalt	Asphalt	Asphalt	Asphalt
_	Nylon	Gasket	9-9	- 9-9	9-9	9-9	9-9	9-9	9-9	9-9	9-9	9-9	9-9	9-9	9-9	9-9	9-9	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12
	Ce11	To .	-	~	ო	~	ស	9	7	œ	o	9	11	12	13	14	15	. 16	11	18	19	20	21	22	23

ш
VIINUED
Z
\vdash
\leq
CON
C
Н
ABLE
В
K.

2		æ	16	œ	9	1	œ	ı	ı	•	17	14	20	21	~	Ħ	æ	16		11	1	1	i	12	22	7 6	22
Age Choun		1	15	10	10	1	14	t	ı	•	15	13	19	25	80	13	13	18		77	œ	16	ı	13	19	23	71
at Wooks A		9	14	O	70	1	®	ı	6		14	14	16	20	æ	11	17	16		77	12	16	14	12	15	77	18
4	.001 in	2	13	10	13	7	Q	10	16		13	11	17	19	∞	a	14	13		70	11	15	14	7	12	16	16
Rulde	0.)	4	12	Ø	11	13	o	7	6		12	10	13	16	9	7	77	13		æ	œ	13	14	#	2	1	15
Z T		6	0	8	12	15	7	9	0		o,	O	7	.16	Ŋ	ഹ	10	7	٠	7	7	12	11	o	æ	77	12
Average Net		7	1	ø	თ	12	7	9	8			7	11	13	4	ß	O	0	•	1 .	7	7	20	10	&	# :	11
A		-	ì	₹	~	13	4	m	9		ı	ผ	o	13	~	ო	4	7		m	m	7	91	7	9	9	O)
																									-		
	Cell	Lot	-	7	m	4	Ŋ	ဖ	7		œ	, o	T0	1	12	13	14	12		. 16	11	18	13	70	21	22	23

Example 2

Twenty-two lots of "C" size cylindrical alkaline MnO2 cells were assembled using the cover-diaphragm/gasket assembly shown in Figure 5 or Figure 8. Cell Lots 1 through 7 employed a 6-6 5 nylon diaphragm/gasket while in cell Lots 8 through 22, a 6-12 nylon diaphragm/gasket was employed. Cell Lots 1 through 3 and 8 through 13 the teeth in the cover were as shown in Figure 8. In Cell Lots 4, 6, 15 and 17 through 19 the teeth in the cover 10 were as shown in Figure 5 with the tips of the teetn flush with the flange of the cover. Cell Lots 5, 7, 14, 16 and 20 through 22 employed a cover-diaphragm/gasket assembly as shown in Figure 5 except the tips of the teeth extended 0.005 inch 15 below the flange of the cover. Some of the diaphragm/gaskets in the Cell Lots were coated with a material as shown in Table 2.

The cells in each lot were stored at 71°C

and monitored weekly for any leakage and bulging.

The percent leakage and average net bottom bulge of the cells in each Lot are shown in Table 2. A small number of cells in Cell Lots 8 through 22 were

static-pressure tested to determine when the diaphragm will tear to form a vent opening. The data obtained are shown in Table 2.

																								~	
Vent Pressure	(p.s.1.)	•				•				299	683	617	617	009	650	750	700	733	009	167	717	. 002	200	683	•
lge	(Inch)	8	•10.	.021		.020	.021	1	1	.019	•016	ı	•016	.014	.018	.019	.023	•019	.020	.019	.018	•018			
Average Net Bulge	Shown (inch	9	.019	.018	1	.020	.020	t		.018	.017	1	•016	.015	.018	.019	.020	.019	.021	.018	.018	.018	.021	.020	1
rade 1	Weeks	4	.018	.019	i	.018	.021	1	.011	.018	.017	.016	.017	•016	.018	.019	.019	.018	.020	.019	.018	.017	.021	.021	1
Ave	at	7	.014	.015	.010	.014	.017	.015	•008	.014	.013	.017	.012	.014	.015	.016	.015	.014	.018	.012	.012	.014	.015	.014	;
•	-	ω	45	35	700	15	20	. 001	100	0	0	100	85	80	07	0		ស	S	Ŋ	0	01			
	Shown	7	45	35	100	15	20	100	100	0	0	100	82	80	10	G	•	0	ស	ĸ	0	70	•		
	Weeks	او	20	30	100	10	15	100	100	0	0	700	82	80	10	c	0	0	0	0	0	10	0	0	>
Table 2	a	4	70	5	100	70	10	100	700	0	0	100	70	52	0	•	0	0	0	0	0	27	0	C	,
Tab	Leakage	m	10	5	700	0	07	100	8	0	0	85	20	40	0		•	0	0	0	0	2	0	C	>
	#	2	0	0	100	0	10	80	65	0	0	25	10	ເດ	0	C	0	0	0	0	0	22	•	C	>
		-		0	55	0	0	S	0	. 0	0	0	0	0	0	· c	• •	0	0	0	0	0		C	>
	Number	of Cells	. 50	20	20	20	20	20	20	20	20	20	20	20	20	90	20 20	20	70	70	20	. 20	14	ď	1
	No. of	Coats	-	74		-	۱ ۸	1	1	ı		. 1	-	74	T		1 0	: 1	ı	•~	1 74	-4	. 1	-	4
	Gasket	Coating	Asphalt	Asphalt	None	Asphalt	Agobalt	None	None	Asphalt	Asphalt	None	*	##	***	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Agnhalt	euck None	None	*	*	* * *	None	Acohalt	Aspnare
	Cell	5	٦	8	m	4	יני	s ve	7	œ	σ.	10	1	12	13	7	• <u>•</u>	<u>.</u>	17	<u> </u>	6.	20.		1 6	77

*Microcrystalline Wax **Halocarbon Wax ***Swift's polyamide hot melt

Example 3

A large number of "C" size cylindrical alkaline MnO₂ cells were assembled either using the cover-diaphragm/gasket assembly of Fig. 5 or Fig. 8 as shown in Table 3. The cells in each Cell Lot were charged at 500 ma for 4 hours (abusive charge test) and any venting through the diaphragm of the diaphragm/gasket of the cells was observed. The data observed are reported in Table 3.

5

10			Table 3		
	Cell Lot	Cover- Diaphragm/ Gasket Assembly	Diaphragm/ Gasket <u>Material</u>	Number of Cells	Number of cell venting
15	1	Figure 5	Nylon 6-6	1152	1152
	2	Figure 5	Nylon 6-12	924	921
	3 .	Figure 8	Nylon 6-12	392	392

Example 4

Seven lots of cover-diaphragm/gasket assemblies for "D" size cells were made. Lots 1 and 20 2 used the cover-diaphragm/gasket assembly of Figure 11: Lots 3 and 4 used the same cover-diaphragm/gasket assembly of Lots 1 and 2 except the four inside teeth were removed; Lots 5 25 and 6 used the cover-diaphragm/gasket assembly of Figure 11 except only two openings were punched in the cover; and Lot 7 used the cover-diaphragm/gasket assembly of Lots 5 and 6 except the two inside teeth were removed. Several cover-diaphragm/gasket assemblies from each lot were assembled with a 30 collector rod and then secured to the open end of a

container. Nitrogen gas pressure buildup within the container was continued until the diaphragm section tore producing a vent opening in the cover-diaphragm/gasket assembly. The vent pressure in which the diaphragm section tore in each Lot was observed. The maximum and minimum vent pressures noted for each diaphragm section to tear in each Lot along with the average vent pressure calculated for the tearing of the diaphragm sections in each Lot are shown in Table 4.

Several additional cover-diaphragm/gasket assemblies were assembled in "D" size cylindrical alkaline MnO₂ cells and the hydraulic pressure required to tear an opening in the diaphragm of each cell was observed. The maximum and minimum vent pressures for the cells in each Lot along with average vent pressure calculated in the tearing of the diaphragm sections for the cells in each Lot are shown in Table 4. As evident from the data, the pressure at which the cells are to vent can be varied depending on the particular cover-diaphragm/gasket assembly employed.

15

20

Although preferred embodiments of this

invention have been described in detail, it is

contemplated that modifications and changes to the
preferred embodiments of the invention herein shown
and described can be made without departing from the
spirit and scope of the invention.

TABLE 4

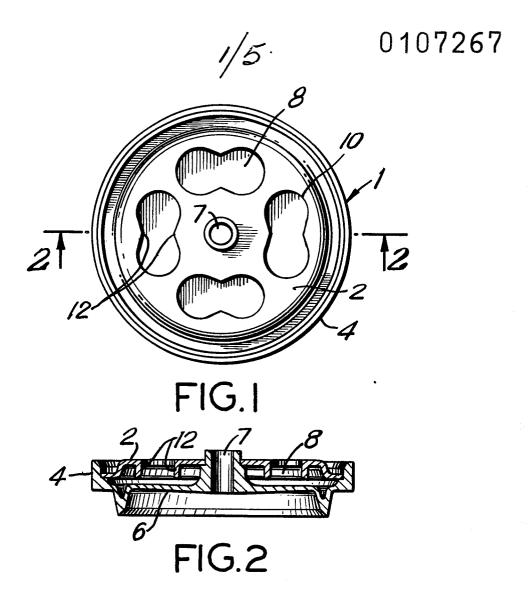
Cell	Nylon		Number of Assemblies	Nitroge	en Test.with Vent Pressure	Collectors
<u>Lot</u>	Gasket	Coating	Each Test	Average	Maximum	Minimum
1	6-6	No	10	410	450	350
2	6-6	Asphalt	10	420	500	325
3	6-6	Ю	5	455	5 50	375
4	6-6 .	Asphalt	. 5	450	500	325
5	6-6	No	. 5	470	550	350
6	6-6	Asphalt	5	580	625	525
7	6-6	No	5	525	550	450

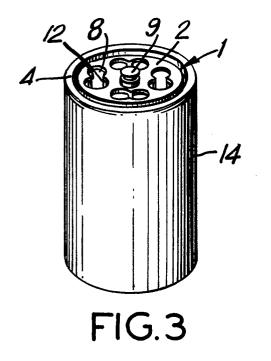
TABLE 4 CONTINUED

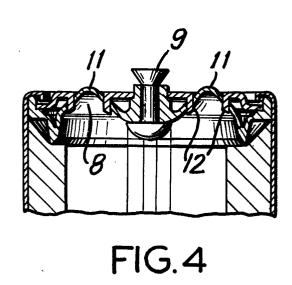
		aulic Test with Ra	
Cell	V	ent Pressure - ps:	L
Lot	Average	Maximum	Minimum
1	441	520	400
2	473	530	370
3	472	510	440
4	482	530	450
5	512	560	460
6	616	630	600
7	546	570	520

CLAIMS

- A galvanic cell comprising a container (14) having an open end and an inner disposed active anode, an active cathode and an electrolyte within said container; a diaphragm/gasket member (4,16) 5 disposed over the anode and the cathode; and a cover (2,18) secured over and insulated from the open end of the container; characterised in that said cover (2,18) has at least one opening (8,22) with at least two cooperating teeth (12) extending therefrom and 10 which teeth (12) are bent inwardly towards the diaphragm section .(6) of the diaphragm/gasket member (4,16) and said diaphragm/gasket (4,16) being in cooperative relation to the teeth (12) so that upon a predetermined level of internal gas pressure buildup 15 within the cell, the diaphragm section (6) will be forced against the sharp end of the teeth (12) thereby securing, puncturing and tearing the diaphragm section (6) to form a vent opening for the gas to escape.
- 2. A cell as claimed in claim 1, characterised in that the at least one opening (8) is formed by overlapping circular contours (10).
 - 3. A cell as claimed in claim 1, characterised in that the at least one opening is formed by overlapping square contours.
 - 4. A cell as claimed in claim 1, characterised in that the at least one opening is formed by overlapping triangular contours.


25


5. A cell as claimed in any one of the preceding claims, characterised in that at least the undersurface of the diaphragm/gakset (4) is coated with a protective material.


A galvanic cell comprising a container having an open end and an inner disposed active anode, an active cathode and an electrolyte within said container; a diaphragm/gakset member. (30) disposed over the anode and the cathode; and a cover 5 (28,41) secured over and insulated from the open end of the container; characterised in that said cover (28) has at least one opening (32,40) which defines at least one tooth (36,44) disposed substantially parallel to the plane of the edge defining said 10 opening (32,40) and said diaphragm/gasket member (20) being in cooperative relation to the at least one tooth (32,44) so that upon a predetermined level of internal gas pressure buildup within the cell, the diaphragm section (31,39) of the diaphragm/gasket 15 member (30) will be forced against the sharp end of the tooth (36,44) where it will be restrained and sheared thereby forming a vent opening for the gas to escape.

- 7. A galvanic cell as claimed in claim 6, characterised in that the at least one opening is formed by overlapping circular contours (34).
 - 8. A galvanic cell as claimed in claim 6, characterised in that the at least one opening is formed by overlapping square contours.
 - 9. A galvanic cell as claimed in claim 6, characterised in that the at least one opening is formed by overlapping triangular contours.
- 10. A glavanic cell as claimed in claim
 30 6, 7, 8 or 9, characterised in that at least the
 underside of the diaphragm/gasket is coated with a
 protective material.

25

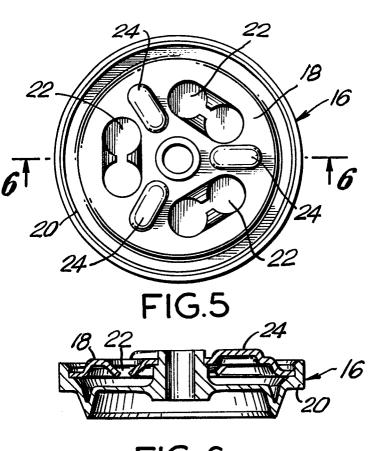
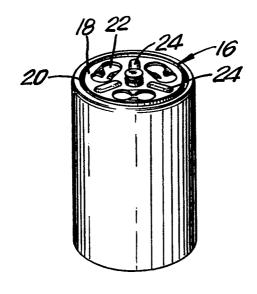
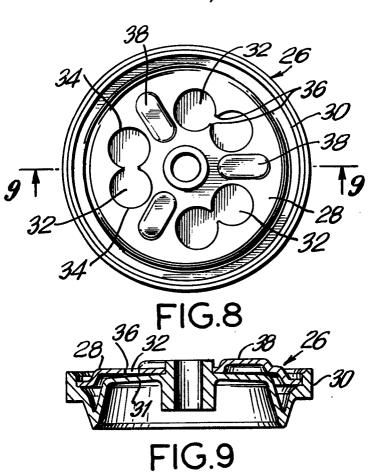
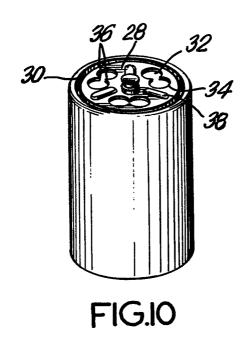
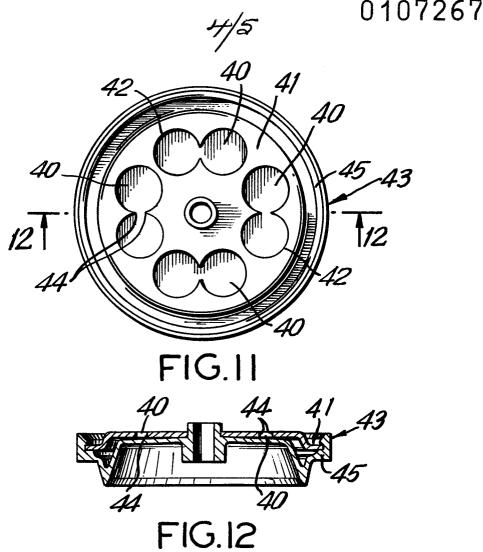
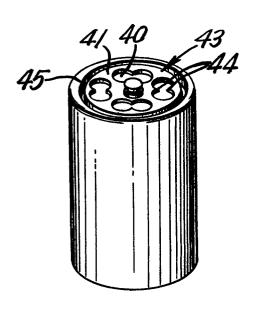


FIG.6


FIG.7

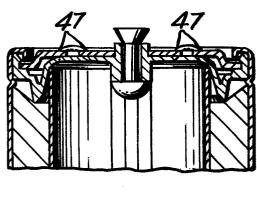
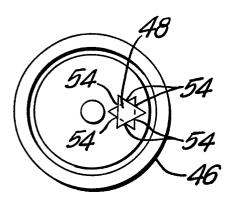
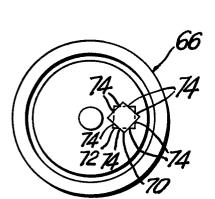
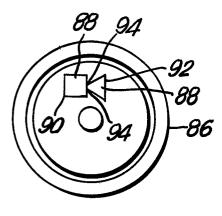


FIG.14

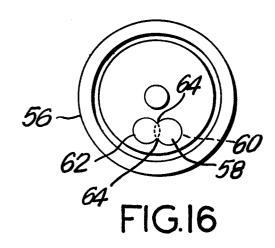

FIG.15

FIG.17

FIG.19

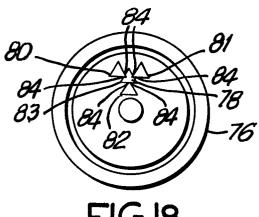


FIG.18

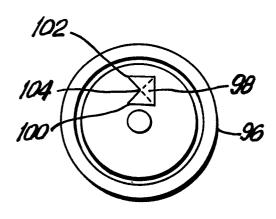


FIG.20

EUROPEAN SEARCH REPORT

Application number

EP 83 30 3671

	DOCUMENTS CONS	IDERED TO BE RELEVAN	I T	
Category		h indication, where appropriate, ant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. ³)
A	US-A-2 380 964 * Figures 6,7; column, lines 53	page 2, left-hand	6,7	H 01 M 2/12
D,A	US-A-3 062 910	(R.L. SCHENK)		
D,A	US-A-3 314 824	(F.G. SPANUR)		
A	US-A-1 725 092	(A. LOWY)		
	* Figures 6,7, 80-119 *	; page 2, lines		
A	6, no. 107(E-113	 TS OF JAPAN, vol. 3)(985), 17th		TECHNICAL FIELDS SEARCHED (Int. Cl. ³)
	June 1982 & JP - A - 57 DENKI SANGYO K.I	38563 (MATSUSHITA K.) 03-03-1982		H 01 M 2/12 H 01 G 9/12 B 65 D 51/16
	The present search report has be		<u> </u>	Examiner
	THE HAGUE	Date of completion of the search 05-10-1983	D'HOI	NDT J.W.
Y: pa do A: ted O: no	CATEGORY OF CITED DOCU rticularly relevant if taken alone rticularly relevant if combined w cument of the same category chnological background on-written disclosure termediate document	E : earlier p after the vith another D : docume L : docume	atent document, filing date nt cited in the ap nt cited for othe of the same pat	rlying the invention , but published on, or oplication r reasons ent family, corresponding