(19)
(11) EP 0 108 190 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
16.05.1984  Patentblatt  1984/20

(21) Anmeldenummer: 83106090.0

(22) Anmeldetag:  22.06.1983
(51) Internationale Patentklassifikation (IPC)3A61B 17/22, G01K 11/28
(84) Benannte Vertragsstaaten:
CH DE FR GB IT LI NL

(30) Priorität: 06.11.1982 DE 3241026

(71) Anmelder: DORNIER SYSTEM GmbH
D-7990 Friedrichshafen 1 (DE)

(72) Erfinder:
  • Wess, Othmar, Dr.rer.nat.
    D-7997 Immenstaad (DE)

(74) Vertreter: Landsmann, Ralf, Dipl.-Ing. 
Dornier GmbH FNS 003
88039 Friedrichshafen
88039 Friedrichshafen (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Stosswellenreflektor


    (57) Reflektor zur Fokussierung von Stoßwellen zur berührungslosen Zerkleinerung von Konkrementen in Körpern von
    Lebewesen, bei dem durch geeignete Materialauswahl und Geometrie ein Voreilen einer Transversalwelle im Reflektormaterial vor der Stoßwellenfront im Koppelmedium verhindert wird.


    Beschreibung


    [0001] Die Erfindung betrifft einen Reflektor zur Fokussierung von Stoßwellen zur berührungsfreien Zerkleinerung von Konkrementen in Körpern von Lebewesen gemäß der deutschen Anmeldung P 23 51 247.

    [0002] Der Reflektor besitzt die Form eines Ellipsoids und hat die Aufgabe, Stoßwellen, die an einer Funkenstrecke im ersten Brennpunkt erzeugt werden und sich durch eine Flüssigkeit im Reflektor ausbreiten auf den zweiten Brennpunkt, in dem sich das zu zerstörende Konkrement z.B. ein Nierenstein befindet, zu fokussieren. Der Reflektor soll einen möglichst hohen Anteil der im ersten Brennpunkt erzeugten Wellenenergie möglichst phasenrichtig in den zweiten Brennpunkt übertragen.

    [0003] Bekannt sind Reflektoren aus Messing mit einem Umschliessungswinkel von ca. 250°, wobei der volle Raumwinkel (4 π) zu etwa 90% ausgenutzt wird und einem Achsverhältnis a:b von ungefähr 2:1 (E. Schmiedt: Beiträge zur Urologie, Bd. 2, Seite 8-13, München 1980). Die Materialauswahl erfolgt aufgrund eines möglichst hohen Sprunges in der Schallimpedanz z = § · c (§ = Dichte; c = Schallgeschwindigkeit) zwischen Flüssigkeit und Reflektormaterial, um einen hohen Reflexionskoeffizienten zu erhalten. Die weiteren Randbedingungen wie Stabilität und leichte Bearbeitbarkeit haben bisher zur Verwendung von Messing geführt.

    [0004] Der Erfindung liegt die Aufgabe zugrunde, einen Reflektor zu schaffen, der Stoßwellen mit einem höheren Wirkungsgrad als die aus dem Stand der Technik bekannten Reflektoren fokussiert.

    [0005] Gelöst wird diese Aufgabe von einem Reflektor mit den im Anspruch 1 genannten Merkmalen.

    [0006] Ausbildungen der Erfindung sind Gegenstände von Unteransprüchen.

    [0007] Der Erfindung liegt die Erkenntnis zugrunde, dass nicht der Sprung im Schallwellenwiderstand § · c allein die entscheidende Grösse für eine gute Fokussierung ist, sondern dass die Geschwindigkeiten der Schallwelle im Reflektormaterial und in der Flüssigkeit aufeinander abgestimmt sein müssen. Die auf die Oberfläche des Reflektors treffenden Wellen regen diesen u.a. zu Transversalschwingungen an, die sich mit charakteristischen Ausbreitungsgeschwindigkeiten im Reflektormaterial und an dessen Oberfläche ausbreiten. Zu Störungen der reflektierten Wellenfront kommt es, wenn aufgrund von Laufzeitunterschieden die Reflexionsfläche bereits in Richtung der Flächennormalen schwingt, wenn die Primärwellenfront einläuft.

    [0008] Eine phasenrichtige Fokussierung in den zweiten Brennpunkt wird dann erreicht, wenn sich die Welle in der Flüssigkeit schneller als im Reflektor ausbreitet. Die Wellenfront trifft dann stets auf eine ruhende Reflektoroberfläche.

    [0009] Genäß der Erfindung können jedoch auch Materialien verwendet werden, deren transversale Oberflächengeschwindigkeit grösser als die Schallgeschwindigkeit im Koppelmedium z.B. Wasser ist, wenn nur die Voreilung der Oberflächenwelle durch die Geometrie des Reflektors durch Einhalten der im Anspruch 1 genannten Bedingung verhindert wird. Die reflektierte Nutzwelle bleibt dann selbst ungestört und behält die ursprüngliche Flankensteilheit der Primärwelle bei. Alle übrigen Störungen - die z.B. durch die nachhinkende Oberflächenwelle erzeugt werden - folgen der Nutzwelle zeitlich verzögert und können den Fokussierungsvorgang nicht beeinträchtigen.

    [0010] Erfindungsgemässe Reflektoren realisieren eine wesentlich bessere Fokussierung als bisher, da alle Wellenanteile sich phasenrichtig überlagern. Die Flankensteilheit des Druckanstiegs, die für eine Zerkleinerung wesentlich ist, bleibt hoch. Die Zerkleinerungsleistung steigt, es sind weniger Applikationen als bisher notwendig, wodurch der Patient entlastet wird und die Standzeit der Funkenstrecke erhöht wird.

    [0011] Ein Ausführungsbeispiel der Erfindung wird anhand der einzigen Figur erklärt:

    Die Figur zeigt schematisch einen menschlichen Körper 1 mit einem Nierenstein 6 in einer wassergefüllten Wanne 2. An der Unterseite der Wanne 2 ist ein ellipsoidförmiger Reflektor 3 mit den beiden Brennpunkten 4 und 5 befestigt, der ebenfalls mit Wasser gefüllt ist. Im Brennpunkt 4 im Inneren des Reflektors 3 befindet sich eine Funkenstrecke (nicht gezeigt), die durch Unterwasserentladung Stosswellen erzeugen kann. Im zweiten Brennpunkt 5, ausserhalb des Reflektors, liegt das zu zerstörende Konkrement, z.B. der Nierenstein 6. Durch die Reflektorgeometrie ist der Grenz- winkel ϕmax definiert. Wenn im Brennpunkt 4 eine Unterwasserentladung gezündet wird, entsteht eine Stosswellenfront 7, die sich kugelförmig ausbreitet und vom Reflektor 3 als reflektierte Stosswellenfront 9 auf den Nierenstein geleitet wird. Durch die hohen Druck- und Zugamplituden werden Teile des Nierensteins zum Abplatzen gebracht. Eingezeichnet ist die Stosswellenfront 7, die gerade an den Punkten 8 die Reflektoroberfläche erreicht. Sie trifft momentan unter einem Winkel lp auf die Reflektoroberfläche. Die auftretende Stosswellenfront 7 wird zum grössten Teil reflektiert (Front 9), erzeugt aber auch eine transversale Oberflächenwelle 10 (nicht maßstäblich gezeichnet), die sich in der Reflektoroberfläche ausbreitet (Pfeil). Bei erfindungsgemässer Material- und Geometrieauswahl läuft die Primärwelle 7 schneller über die Reflektoroberfläche als die störende Transversalwelle 10. Die Primärwelle 7 trifft daher immer auf ruhendes Oberflächenmaterial, sie wird ungestört reflektiert. Die reflektierte Wellenfront 9 behält die ursprüngliche Flankensteilheit im Druckanstieg. Alle reflektierten Anteile überlagern sich phasenrichtig. Für die Zerkleinerung des Steins 6 geht kaum Energie verloren. Werden die erfindungsgemässen Bedingungen nicht eingehalten, so trifft die Primärwelle 7 auf schon von. der Oberflächenwelle 10 angeregte Teile des Reflektors. Durch Wechselwirkung der Primärwelle 7 mit der Oberflächenwelle 10 wird die reflektierte Welle 9 in Amplitude und Phase gestört. Die Folge ist, dass Energie für die Zerkleinerung des Konkrements fehlt oder dass der Druckanstieg am Ort des Konkrements durch die nicht phasenrichtige Überlagerung der einzelnen Anteile zu langsam erfolgt,



    [0012] 

    1. Die Bedingung cTO < cS wird erfüllt, wenn als Reflektormaterial Blei und als Koppelflüssigkeit Wasser verwendet wird. Da die transversale Schallgeschwindigkeit in Blei mit 710 m/sec kleiner als die Schallgeschwindigkeit in Wasser mit 1480 m/sec ist, ist die sich ausbreitende Primärwelle 7 immer schneller als die Oberflächenwelle 10. Die Bedingung ist daher unabhängig von der Reflektorgeometrie immer erfüllt. Ein kritischer Winkel K tritt nicht auf. Es ist nicht notwendig, dass der ganze Reflektorkörper aus Blei hergestellt wird. Es reicht, wenn die innere Oberfläche des Reflektors aus einer Bleischicht besteht.

    2. Die erfindungsgemässe Bedingung kann auch von Reflektoren aus einem Material erfüllt werden, dessen cTO > cS ist. Ein wassergefüllter Reflektor aus Zinn (cT0 = 1670 m/sec) mit den Halbachsen a = 12,5 cm und b = 7,5 cm erfüllt die erfindungsgemässe Bedingung, wenn der maximal auftretende Einfallswinkel ϕmax kleiner als der kritische Winkel ϕK = 62,4° ist.

    3. Der zum Stand der Technik gehörende Messingreflektor (cTO = 2120 m/sec) besitzt bei Wasserfüllung einen kritischen Winkel von 44,8°, jedoch einen maximalen Einfallswinkel von 53,1°. Er erfüllt die erfindungsgemässe Bedingung nicht, eine optimale Fokussierung ist nicht gegeben. Die Fokussierung kann bei gleichem Material verbessert werden durch Wahl des Achsenverhältnisses des Ellipsoids näher an 1 oder durch Verzicht auf Randzonen (kleinerer Umschliessungswinkel). Die Randzonen sind aber für die Übertragung äusserst wichtig und sollten nicht weggelassen werden.



    [0013] In Analogie zur Schallmauer ergibt sich beim kritischen Winkel ϕK die Situation, dass die Quelle der Oberflächenschwingung (die einlaufende Primärfront) sich auf der Re- flektorfläche mit der Ausbreitungsgeschwindigkeit cTO der Oberflächenwelle selbst ausbreitet und damit phasenrichtig Energie in die Oberflächenwelle einkoppelt. Erst wenn nach 'einer gewissen gemeinsamen zurückgelegten Strecke sich aufgrund der veränderten Reflektorgeometrie der Einfallswinkel f vergrössert, kann die jetzt energiereiche Oberflächenwelle der einfallenden Stoßwellenfront vorauseilen und ihre Energie nach Art des Mach'schen Kegels (modifiziert durch die gekrümmte Reflektorfläche) ausstrahlen und u.a. teilweise noch vor der eigentlichen Nutzwelle in den Fokusbereich einbringen.


    Ansprüche

    1. Reflektor zur Fokussierung von Stoßwellen in einer Koppelflüssigkeit, z.B. Wasser, zur berührungslosen Zerkleinerung von Konkrementen in Körpern von Lebewesen, dadurch gekennzeichnet, dass die Ausbreitungsgeschwindigkeit cTO einer transversalen Oberflächenwelle im reflektierenden Material kleiner ist als die Schallgeschwindigkeit cS in der den Reflektor füllenden Koppelflüssigkeit, oder dass die Geometrie und die Auswahl des reflektierenden Materials folgender Ungleichung genügen:

    wobei ϕmax = maximal auftretender Einfallswinkel


     




    Zeichnung