11) Publication number:

0 112 182

A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 83307673.0

(51) Int. Ci.3: A 61 J 3/07

(22) Date of filing: 16.12.83

30 Priority: 20.12.82 US 451576

43 Date of publication of application: 27.06.84 Bulletin 84/26

Ø4 Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

(1) Applicant: WARNER-LAMBERT COMPANY 201 Tabor Road Morris Plains New Jersey 07950(US)

72) Inventor: Wittwer, Fritz Bündtenstrasse 11 CH-4411 Lupsingen(CH)

(74) Representative: Jones, Michael Raymond et al, HASELTINE LAKE & CO. 28 Southampton Buildings Chancery Lane London WC2A 1AT(GB)

(54) Apparatus for continuously forming and affixing labels to capsules.

5) There is disclosed a method of, and apparatus for, continuously forming and affixing labels to capsules, the apparatus (10) comprises:

a combined mould and conveyor means (12) defining a plurality of spaced-apart mould cavities (30) for forming the labels (18) therein;

a dispenser means (14) communicating with the combined mould and conveyor means (12) and adapted to discharge into one or more of the mould cavities (30) a quantity of flowable film-forming material (16) for forming one or more label;

a curing means (20) for curing the film-forming material (16) in one or more of the cavities (30), communicating with the mould and conveyor means (12), downstream of the dispenser means (14), to convert the film-forming material (16) into one or more label (18); and

a capule transport means (22) defining a plurality of spaced-apart capsule-holding regions, the transport means (22) communicating with the combined mould and conveyor means (12) downstream of the curing means (20), and being adapted to move in registry with the combined mould and conveyor means (12) in a manner such that, in use, a label (18) in a cavity (30) is brought opposite to, and transferred to, a capsule (24) in a holding region.

A capsule produced by the method and/or apparatus will have substantially improved tamper-resistant and tamper-evident capabilities over capsules listed in the prior art.

112 182 A2

APPARATUS FOR CONTINUOUSLY FORMING AND AFFIXING LABELS TO CAPSULES

The present invention relates to an apparatus for continuously forming and affixing labels to capsules, a method for continuously forming and affixing labels to capsules, and to capsules whenever produced by the apparatus or method of the present invention.

5

20

Edible capsules comprising cap and body

parts which are telescopically joined, have
been in use in the pharmaceutical and food industries
for many years. Such capsules are generally
prepared from hydrophilic substances such as
gelatin, and are thus adapted to dissolve in

the intestines after ingestion.

A variety of capsule sealing techniques and means have been developed over the years, for the purpose of reducing the incidence of accidental disengagement of the cap and body parts, and the resulting premature release and contamination of the contents. This problem was considered in U.S. Patent No. 1,861,047,

which proposed to utilise a circular band of hardened gelatin to cover the seam that exists between the body portion and the cap portion, for the purpose of sealing the seam and for indicating when the respective parts have become separated. This patent dealt not only with the accidental disengagement of the body part and cap parts, but also with the deliberate disengagement of the parts, usually for unauthorised purposes, to alter or modify the capsule contents.

10

15

20

25

30

35

The problem of capsule tampering and adulteration has become critical in view of the recent, well publicised cases, in which cyanide was substituted for the capsule contents, and various methods and means have been considered in an effort to provide an effective seal and tamper indicator. In addition to the approach taken in the above mentioned U.S. patent, it has been proposed to modify the dimensions of the cap part of the capsule, so that it extends virtually to the end of the body part when the body part is fully inserted, so that the would be tamperer is unable to grasp the body part to pull it away from the cap part.

Attention has also been directed to the approach of applying an external seal that additionally functions as a tamper indicator. In our co-pending European patent application of even date we propose to apply adhesively an edible label to the capsule wall so as to overlap the seam between the cap part and the body part. Such a seal serves to maintain the engagement of the cap part and the body part to each other, and, by its frangibility, offers evidence of tampering by disintegration along the line of the capsule seam.

In the development of the aforementioned

invention, it became evident that commercial scale implementation of this method would require new techniques and correspondingly new apparatus. Thus, in the instance where the label is initially formed and must thereafter be applied to the capsule, apparatus and corresponding techniques were not available efficiently to accomplish this task.

5

20

25

30

35

A variety of label manufacturing techniques

and corresponding apparatus do exist, which
are capable of dispersing a plurality of labels
for appropriate adhesive coating. Likewise,
capsule handling apparatus is known which, for
example, can advance capsules in consecutive

order through, for example, printing operations
and packaging operations. There is, however,
no apparatus or corresponding methodology for
continuoulsy and efficiently preparing the labels,
and for affixing such labels to the capsules.

According to a first aspect of the present invention, there is provided an apparatus for continuously forming and affixing labels to capsules, which apparatus comprises:

a combined mould and conveyor means defining a plurality of spaced-apart mould cavities for forming the labels therein;

a dispenser means communicating with the combined mould and conveyor means and adapted to discharge into one or more of the mould cavities a quantity of flowable film-forming material for forming one or more label;

a curing means for curing the film-forming material in one or more of the cavities, communicating with the mould and conveyor means, downstream of the dispenser means, to convert the film-forming material into one or more label; and

a capsule transport means defining a plurality

of spaced-apart capsule-holding regions, the transport means communicating with the combined mould and conveyor means downstream of the curing means, and being adapted to move in registry with the combined mould and conveyor means in a manner such that, in use, a label in a cavity is brought opposite to, and transferred to, a capsule in a holding region.

Preferably, the combined mould and conveyor means is rotatable about a single axis or about a plurality of generally parallel axes.

10

15

20

25

In the instance of a single axis of rotation, the combined mould and conveyor means comprises a circular drum with the cavities disposed at intervals along its outer circumferential surface. In the instance of a plurality of generally parallel axes the combined mould and conveyor means may comprise an endless conveyor belt rotatable about spaced-apart conveyor rollers, the endless conveyor having an upper surface with the cavities defined therein.

The dispensing means may be chosen from:

means comprising a feed hopper which is

disposed over the combined mould and conveyor

means, the feed hopper having an opening adapted

for alignment with, in turn, each of the succession

of cavities to enable direct discharge thereinto

of the film-forming material;

a roller system; and

means comprising a spray assembly with a spray nozzle having an orifice positioned to discharge the film-forming material directly into, in turn, each of the succession of cavities.

The curing means is positioned for communication with a plurality of consecutive cavities.

Preferably, the curing means is chosen from:

means comprising a source of polymerizationinitiating radiation;

means comprising a source of circulating air;

means comprising a provision for heating;
and

means comprising juxtaposed curing units, each unit directly in communication with a broad surface of the combined mould and conveyor means.

Heaters may be useful in the instance where
the film material is a solution, emulsion or
the like, to help volatization of the carrying
phase. The curing means may also, or alternatively,
emit curing stimuli, for example, radio frequency
transmissions or actinic radiation, depending
upon the composition of the film forming material.
The apparatus may use cool circulating air as
a curing means in the instance where the film
forming material is a liquid at elevated temperature.

In the first aspect of the present invention the capsule transport means may make synchronous tangential contact with the combined mould and convenyor means, to enable a label to transfer to a capsule.

25 The capsule transport means is preferably chosen from:

20

35

means comprising a conveyor rotatable about a plurality of generally parallel axes; and

30 means comprising a carousel rotatable about a single axis.

Thus, consecutive capsules may travel in a position which facilitates alignment with the combined mould and convenyor means, so that prompt contact and transfer of one or more label in a cavity, to one or more capsule may be accomplished.

Preferably, the apparatus further includes

at least one rotating roller located for tangential contact and rotation against each consecutive capsule after transfer of the label to the capsule, the roller being positioned with its axis of rotation parallel to the longitudinal axis of the capsule, and the roller being adapted to ensure full adhesive contact between the label and the capsule.

5

10

15

20

25

30

35

Optionally, the apparatus may further include an adhesive applicator, located for communication with the labels in the mould cavities and positioned between the curing means and the capsule transport means, to dispense a quantity of adhesive fromulation upon the broad surface of the labels that are to be applied against the capsules. This unit is optional, and its inclusion would depend upon the composition and state of the labels being applied.

The apparatus may be employed in the preparation of self-adhesive labels, including labels that do not require an adhesive coating. In such an instance, the curing means may comprise a dryer which is preset to produce a dried label which, nonetheless, has a slightly tacky upper surface enabling the label to be affixed to a capsule.

Alternatively, a self-adhesive label may be activated by the impingement, on the exposed surface of the label, of a blast of hot water vapour or steam. In such an instance, the hot water vapour or steam serves as an adhesive; nonetheless, the label treated in this manner can be considered self-adhesive.

According to the second aspect of the present invention, there is provided a method for continuously forming and affixing labels to capsules, which method comprises:

intermittently casting predetermined quantities

(L)

of a flowable film-forming material into consecutive, advancing mould cavities;

successively moving the mould cavities such that the cavities, filled with the film-forming material, move past a curing means to substantially solidify the film-forming material, thereby to form the labels;

thereafter moving the mould cavitites such that each cavity bearing a label is brought consecutively into alignment and contact with one of the consecutive, advancing capsules; and

transferring and affixing the label to the capsule.

15 Preferably, the film-forming material is chosen from:

10

20

25

30

35

a liquid form, preferably selected from a dispersion, an emulsion and a solution; and a composition comprising a hot melt.

The labels formed in the curing step are self-adhesive.

Alternatively, the method may further include applying a quantity of an adhesive to the exposed surface of a label within a cavity after the cavity has moved past the curing means, wherein the adhesive is preferably pressure-sensitive, and preferably the adhesive is applied by spraying.

According to a third aspect of the present invention, there is provided a capsule, bearing a label, whenever produced by a method of the present invention, or whenever produced by an apparatus according to the present invention.

The apparatus and corresponding method of the present invention are particularly well suited for automatically applying and affixing tamper indicating labels across the seams of edible capsules, to make the capsules tamper-

resistant and tamper-evident. Suitable filmforming materials and adhesive formulations may be selected from those disclosed in our co-pending European patent application of even date.

5

10

15

20

25

30

35

The present invention provides an apparatus and corresponding method for automatically preparing and affixing labels to edible capsules. The present invention further provides an apparatus as aforesaid that offers commercial quality and uniformity of product at higher speeds of continuous operation, than have been previously available.

For a better understanding of the present invention, and to show how the same may be carried into effect, reference will now be made, by way of example, to the following drawings in which:

Figure 1 is a schematic plan view of one embodiment of an apparatus in accordance with the present invention;

Figure 2 is a fragmentary perspective of a mould cavity in the combined mould and conveyor means in the apparatus of Figure 1;

Figure 3 is a schematic plan view showing an alternative embodiment of an apparatus in accordance with the present invention;

Figure 4 is a fragmentary schematic plan view showing one embodiment of a curing means used in the apparatus of Figure 3;

Figure 5 is a fragmentary schematic view showing an embodiment of a capsule transport means, different from that shown in Figures 1 and 3; and

Figure 6 is a flow diagram of the basic stages of a method of continuously forming and affixing labels to capsules, in accordance with the present invention.

Referring first to Figure 1, a representative assembly 10 is shown therein, which comprises a combined mould and a conveyor means 12, a dispenser means 14 shown communicating with the combined mould and convenyor means 12 to discharge a 5 quantity of flowable film forming material schematically illustrated as a spray 16. Spray 16, a film-forming material, subsequently cures to form labels e.g. 18 with the assistance of a curing means 20, located downstream of dispenser 10 means 14 and in communication with the combined mould and conveyor means 12. A capsule transport means 22 is located downstream of the curing means 20 and is adapted for tangential aligned 15 · contact with the combined mould and conveyor means 12, to enable the labels 18 to transfer to a capsule 24.

as illustrated comprises a hollow cylinder or
drum 26 which has an outer circumferential surface
28 having defined therein a plurality of regularly
spaced mould cavitites 30 for (a) the reception
of the film-forming material of the spray 16,
and (b) the transport of the later formed labels
18.

Referring now to Figure 2, a mould cavity 30 is shown in fragmentary perspective. The mould cavity 30 defines an essentially flat floor surface 32 which defines the eventual outer surface of the label 18. The mould cavity 30 includes a rim 34 which as illustrated herein is rectangular. It is to be understood, however, that the present invention is not limited to the shape of the cavity 30 as illustrated, but also encompasses square, rectangular and round label shapes.

30

35

Referring again to Figure 1, the drum 26

is adapted to rotate about a single axis 36, and the drum passes from the dispenser means 14, comprising as illustrated a spray nozzle, to the curing means 20 which comprises a schematic representation of complementary juxtaposed dryers 38. The dryers 38 may utilize heating means, air circulating means or both, depending upon the nature of the film-forming material in its uncured state and the appropriate treatment needed to effect curing.

5

10

15

20

25

30

35

For example, in the instance where filmforming material 16 comprises a radiationpolymerizable synthetic resin, the curing means 20 (of Figure 1) may appear as illustrated in Figure 4, wherein a radiation-emitting unit 40 utilizes, for example, a plurality of lamps 42 to provide the necessary level of radiation to encourage initiation of polymerization of the film-forming material. This type of unit is useful in the instance where the film-forming material cures by a free-radical mechanism. The intensity and duration of the radiation can determine the extent to which polymerization or curing takes place, so that one can control the extent of polymerization.

Alternatively, the curing means 20 may utilize paired, juxtaposed units similar to the unit 40, however, with heat lamps or other heat radiating means (not shown), to cause a curing or hardening of the film-forming material deposited, for example, as an emulsion. Thus, the exposure to heat will cause the solvents or carriers, to volatise, leaving the hardened film in the form of the label 18.

The curing means 20 may also comprise a single chamber, or paired, juxtaposed chambers, having an air-circulation means (not shown),

for the purpose of hardening those film-forming materials that are liquid at elevated temperatures. Thus, in the instance where the film-forming material is deposited as a hot-melt, the exposure to a current of air, even at room temperature, will accelerate the hardening of the film-forming material into the final label.

Yet further, the curing means 20 may comprise a combination of air-circulation and heat, to enhance evaporation and volatisation in the instance where the film-forming material contains a substantial solvent component.

10

15

20

25

30

35

The exact curing apparatus is thus seen to vary with the choice of film-forming material employed in the present invention, and the curing means 20 is thus intended to encompass all such variations in curing technique within its scope. As the particular elements of a given curing means are otherwise known in the art, further detail and diagrams thereof are not believed necessary herein.

Referring again to Figure 1, the capsule transport means 22 is disposed for tangential contact with the combined mould and convenyor means 12 as shown, to enable the labels 18 to transfer to the outer surface of the capsules 24. In particular, the capsule transport means 22, as illustrated, comprises a carousel rotating about a single axis that rotates synchronously with the drum 26, to permit the capsules 24 to register into alignment and contact with the cavities 30 as shown.

Referring briefly to Figure 5, an alternative capsule transport means 44 is shown which comprises an endless belt 46 adapted for the regularly spaced support and transfer of capsules 18 as shown. The belt 46 rotates about pulleys or

wheels 48 and co-acts with the combined mould and conveyor means 12 illustrated fragmentarily.

In similar fashion, the combined mould and convenyor means 12 may rotate about a plurality of generally parallel axes, as shown in Figure 5 3. Thus, the comboned mould and conveyor means 12 comprises an endless belt 50 adapted to rotate about conveyor rollers 52 and 54 as shown. It can this be visualised that the transport means 44 and the conveyor-type combined mould 10 and conveyor means 12, could operate almost parallel to each other, however at a sufficient angle to permit the aligned synchronous tangential contact necessary to permit the labels 18 to 15 transfer efficiently to the surfaces of the capsules 24. Naturally, the exact positioning of the combined mould and conveyor means 12 with respect to the capsule transport means, whether constructed as in 22, or as in 44, is 20 discretionary and may vary in accordance with the specific needs and applications of the particular assembly under consideration.

With further reference to Figure 3, an alternative dispenser means 56 is shown, which comprises a hopper containing a quantity of flowable film-forming material 58. While illustrated schematically in contact with the upper surface of conveyor belt 50, it is to be understood that hopper 56 is appropriately positioned with an orifice (not shown), positioned in alignment with consecutive mould cavities to facilitate the discharge of predetermined quantities of the film-forming material 58 thereinto.

25

30

In similar fashion the curing means may

vary depending upon the installation or assembly contemplated. The curing means 60, while perhaps varying as to is operative components, is visually

different from the curing means 20 in Figure

1, by its linear passageway for the mould cavities

30. The curing means 60 may thus comprise
a radiation source, a heater, an air blower,
or any combination thereof appropriate for the
curing of a particular film-forming material.
The exact combination of equipment within the
curing means, as mentioned earlier, is not critical
and may vary within the scope of the present
invention.

5

10

35

Referring again to Figures 1 and 3, the capsules 24, after receiving labels 18 may then pass in tangential contact with rotating rolls The rolls 62 are positioned with their axes of rotation parallel to the longitudinal 15 axis of the capsules 24, and are adpated to cause the rotation of the capsules 24 while supported on the capsule transport means 22 for the purpose of assuring that the label 18 is in uniform adhesive contact with the outer 20 wall of the capsule. Thus, as illustrtaed by the motion arrows in Figure 1, rolls 62 cause the rotation of consecutive capsules 24 after they have received labels 18, as a last posttreating step thereof. While the presence 25 of rolls 62 and the correpsonding treatment step are contemplated, they may be optional, as full transfer and adhesion of label 18 may be achieved at the initial contact with capsule 30 24 at the tangent point between the combined mould and conveyor means 12 and the capsule transport means 22.

In some instances, label 18 is desirably coated with an adhesive prior to being transferred to capsule 24. Accordingly, an optional unit may be included in the assembly 10 to facilitate the continuous and automated application of

the adhesive as part of the preparation of the label 18. Referring again to Figure 1, an adhesive applicator 64 is shown which in this illustration comprises a spray nozzle. The exact type of applicator may vary, and as shown in Figure 3, may comprise a combined reservoir and brush unit 66. In either case, a predetermined quantity of adhesive may be dispensed upon the upper surface of the label 18, to enhance its adhesive affinity for the capsule 24.

5

10

15

20

25

30

The application of adhesive naturally varies with the type of adhesives and the type of film-forming materials utilised in the present invention. Generally, film-forming materials may include most hydrophilic polymers, capable of dissolving after ingestion. Similarly, the adhesive is desirably hydrophilic, and suitable adhesives should be accordingly selected.

Exemplary film-forming materials include natural proteins, cellulose and its derivatives, carbohydrates, vinyl polymers, acrylic polymer, natural gums and mixtures. Adhesives may be chosen from a broad group of materials as well, ranging from water and steam, to aqueous acidic buffer solutions, aqueous solutions of lower alcohols, aqueous alkaline solutions of natural proteins, cellulose derivatives, carbohydrates and synthetic polymers, the foregoing are merely representative examples. A more complete listing of adhesives can be gained from a review of our co-pending European Patent Application No. 83305331.7 and our co-pending European patent application of even date (PD-3076).

With respect to the adhesives, it is to

be noted that certain film-forming materials

may be prepared into labels that may be characterized

as self-adehsive, as known in the art. Such

labels may be prepared with a pressure-sensitive adhesive, which may be applied as shown herein and which will offer an adhesive affinity to the outer surface of the capsule. Similarly,

5 the labels may have a surface thereof sensitised to offer the same adhesive affinity, whereby the label may be said to be self-adehsive, as well. Sensitisation of this latter label may be accomplished, for example, by the exposure

10 of a surface of the label to steam, to render that surface tacky and thereby adhesively receptive. Naturally, the present invention contemplates all types of adhesive labels within its scope.

The present invention also relates to a method of continuously preparing and affixing 15 of the labels to the capsules. The method is set forth in the block diagram of Figure 6. Referring thereto; the method commences with the casting of a predetermined quantity of the film-forming material into consecutively 20 advancing mould cavities of the combined mould Thereafter, the mould and conveyor means. cavities bearing the film-forming material are transferred to the curing means where the filmforming material is appropriately cured to form 25 the labels. The next step in the method comprises moving the mould cavities holding the labels as formed into alignment and contact with consecutively advancing capsules, in the manner illustrated in Figures 1 and 3 herein, where such capsules 30 are conveyed by a capsule transport means. At this point, the labels transfer from the mould cavities to the surface of the capsules and, in most respects, the affixation of the 35 labels is then complete. As mentioned earlier, a further optional step in the present method

may comprise the rotation of the capsules against

rollers such as rollers 62, in Figure 1, to secure the labels in position on the capsule walls.

Figure 6 indicates that an optional step in the present method comprises the application of adhesive to the labels after curing and before they are transferred to the capsules. As mentioned above, the employment of this step in the present method will depend upon the composition and operation of the film-forming materials comprising the labels.

it can be seen from the foregoing discussion that the present apparatus and corresponding method offer an efficient, integrated scheme

15 for the affixation of labels to capsules, which possesses great commercial value. The present apparatus and corresponding method are particualrly relevant and valuable, in view of the desire to place indicator labels upon edible capsules,

20 to render such capsules tamper-resistant and tamper-evident.

25

5

10

30

CLAIMS:

5

10

15

20

25

30

35

1. An apparatus for continuously forming and affixing labels to capsules, which apparatus comprises:

a combined mould and conveyor means defining a plurality of spaced-apart mould cavities for forming the labels therein;

a dispenser means communicating with the combined mould and conveyor means and adapted to discharge into one or more of the mould cavities a quantity of flowable film-forming material for forming one or more label;

a curing means for curing the film-forming material in one or more of the cavities, communicating with the mould and conveyor means, downstream of the dispenser means, to convert the film-forming material into one or more label; and

a capsule transport means defining a plurality of spaced-apart capsule-holding regions, the transport means communicating with the combined mould and conveyor means downstream of the curing means, and being adapted to move in registry with the combined mould and conveyor means in a manner such that, in use, a label in a cavity is brought opposite to, and transferred to, a capsule in a holding region.

- 2. An apparatus according to Claim 1, wherein the combined mould and conveyor means is rotatable about a single axis or about a plurality of generally parallel axes.
- 3. An assembly according to Claim 1 or2, wherein the combined mould and conveyor means is chosen from:

means comprising a circular drum with the cavities disposed at intervals along its outer circumferential surface: and

means comprising an endless conveyor belt

rotatable about spaced -apart conveyor rollers, the endless conveyor belt having an upper surface with the cavities defined therein.

4. An apparatus assembly according to Claim 1, 2 or 3, wherein the dispenser means is chosen fom:

means comprising a feed hopper which is disposed over the combined mould and conveyor means, the feed hopper having an opening adapted for alignment with, in turn, each of the succession of cavities to enable direct discharge thereinto of the film-forming material;

a roller system; and

10

20

25

means comprising a spray assembly with

15 a spray nozzle having an orifice positioned
to discharge the film-forming material directly
into, in turn, each of the succession of cavities.

- 5. An apparatus according to any preceding claim, wherein the curing means is positioned for communication with a plurality of consecutive cavities.
- 6. An apparatus according to any preceding claim, wherein the curing means is chosen from:

means comprising a source of polymerizationinitiating radiation;

means comprising a source of circulating
air;

means comprising a provision for heating;
and

- means comprising juxtaposed curing units, each unit directly in communication with a broad surface of the combined mould and conveyor means.
- 7. An apparatus according to any preceding claim, wherein the capsule transport means makes synchronous tangential contact with the combined mould and convenyor means, to enable a label to transfer to a capsule.

8. An apparatus according to any preceding claim, wherein the capsule transport means is chosen from:

means comprising a conveyor: rotatable

about a plurality of generally parallel axes;

and

means comprising a carousel rotatable about a single axis.

- 9. An apparatus according to any preceding claim, further including at least one rotating roller located for tangential contact and rotation against each consecutive capsule after transfer of the label to the capsule, the roller being positioned with its axis of rotation parallel to the longitudinal axis of the capsule, and the roller being adapted to ensure full adhesive contact between the label and the capsule.
 - 10. An apparatus according to any preceding claim, further including an adhesive applicator located for communication with the labels in the mould cavities, and positioned between the curing means and the capsule transport means.
 - 11. A method for continuously forming and affixing labels to capsules, which method comprises:

20

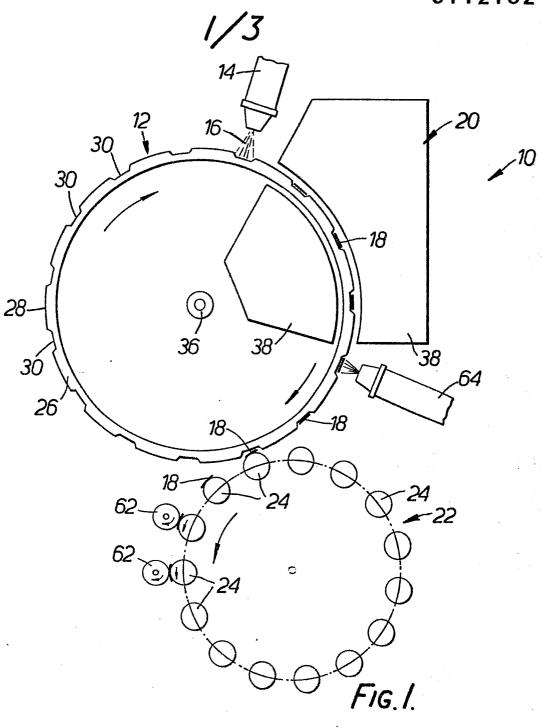
25

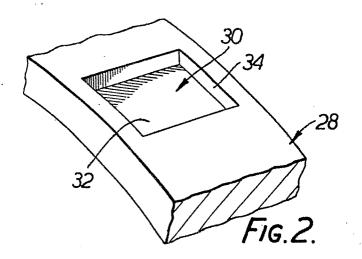
intermittently casting predetermined quantities of a flowable film-forming material into consecutive, advancing mould cavities;

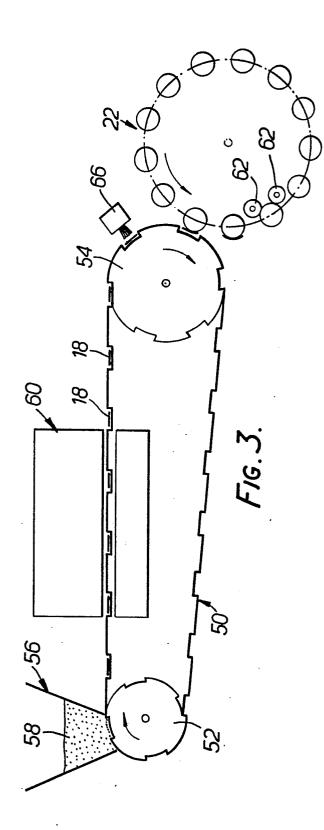
successively moving the mould cavities

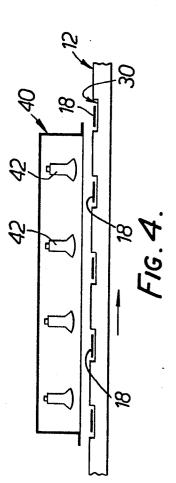
30 such that the cavities, filled with the filmforming material, move past a curing means to
substantially solidify the film-forming material,
thereby to form the labels;

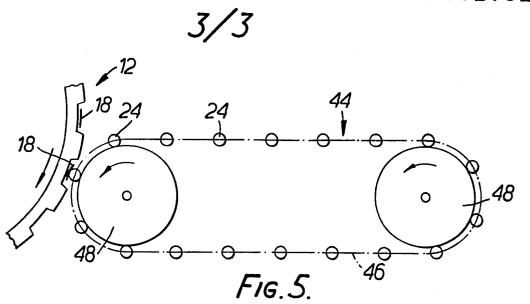
thereafter moving the mould cavitites such that each cavity bearing a label is brought consecutively into alignment and contact with one of the consecutive, advancing capsules; and


5


transferring and affixing the label to the capsule.


- 12. A method according to Claim 11, wherein the film-forming material is chosen from:
 - a liquid form, preferably selected from a dispersion, an emulsion and a solution; and a composition comprising a hot melt.
- 13. A method according to Claim 11 or10 12, wherein the labels formed in the curing step are self-adhesive.
- 14. A method according to Claim 11 or 12, further including applying a quantity of an adhesive to the exposed surface of a label within a cavity after the cavity has moved past the curing means, wherein the adhesive is preferably pressure-sensitive, and preferably the adhesive is applied by spraying.
- 15. A capsule bearing a label, whenever 20 produced by a method according to any one of Claims 11 to 14, or whenever produced by an apparatus according to any one of Claims 1 to 10.


25


30

