(1) Publication number:

0 114 584

A2

EUROPEAN PATENT APPLICATION

Europäisches Patentamt

European Patent Office

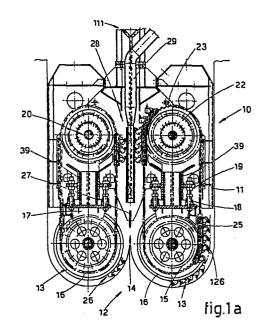
Office européen des brevets

(5) Int. Cl.³: **E 02 F 5/20** E 21 B 11/06

(43) Date of publication of application:

84) Designated Contracting States: BE DE FR GB

(71) Applicant: CASAGRANDE SpA Viale Venezia, 97 I-33074 Fontanafredda (PN)(IT)


(72) Inventor: Casagrande, Bruno Via Malignani 3 I-33074 Fontanafredda (PN)(IT)

(74) Representative: Petraz, Gilberto G.L.P. S.a.s. di Gilberto Petraz P.le Cavedalis 6/2 I-33100 Udine(IT)

(54) Chain cutter excavator.

57) This invention concerns a cutter bucket (10) able to work in any kind of ground and to make ditches, trenches, wells, excavations for partition walls, etc. which comprises:

- excavation means (12) consisting of two pairs of rotatable tools (13) having their axes parallel to each other and substantially parallel to the excavation face (24), such tools (13) being provided peripherally with means (26) to attack the earth, the means (26) to attack the earth of one pair of tools passing near the means (26) to attack the earth of the
- hydraulic motor means (20) arranged above the excavation means (12),
- chain means (25) driven by the hydraulic motor means (20) and driving the excavation means (12) by an inner gear wheel (15), the chain means (25) being provided with independent means (26) to attack the ground, and
- pneumatic means (28) to withdraw debris, in which cutter bucket (10) the hydraulic motor means (20) comprise on their outer periphery ring gear means (23) to drive the chain means (25), and the means (26) to attack the ground, being supported by the chain means (25) and by the rotatable tools (13), form a substantially continuous excavation face (24) stretching at least to the periphery of the cutter bucket (10).

급

E02F 5/16

JITLE MODIFIED

see front page

"CUTTER BUCKET"

2	This invention concerns a cutter bucket. To be more exact, t	the
3	invention concerns a cutter bucket able to dig ditche	es,
4	trenches, wells, excavations for partition walls or other	ner
5	kinds of excavations; moreover, the bucket of the invent:	ion
6	can work on and in any kind of ground, thereby augmenting	its
7	versatility.	., .
8	Cutter buckets are known which have tools rotatable with	ı a
9	vertical axis. These types of buckets entail many drawbac	cks
10	such as:	• ;
11	- considerable sideways bulk,	
12	- limited capacity and speed of penetration,	!
13	- considerable wear of their parts and	
14	- complex maintenance.	
15	Cutter buckets are also known which have tools rotatal	ble
16	with a horizontal axis.	

US 3,710,878, for instance, is known and describes accutter bucket equipped with tools rotatable with a horizontal axis, the tools being lodged at the end of a box-shaped head. rotatable tools are powered with chain means having two consecutive branches. These chain means take their motion from

21

as many synchronized motor means through a transmission of 22

gear wheels. 23

17

; 18

19

20

24

The final branch of each chain means has means to attack

- 1 the earth, such as teeth or other means, which cooperate with
- 2 like means provided on the periphery of the rotatable tools.
- 3 Pneumatic means to remove debris are also included.
- 4 The aforesaid mechanical synchronization does not permit
- 5 adaptation of the speeds of the individual tools and therefore
- 6 does not enable the vertical nature of the excavation to be
- 7 corrected.
- 8 Another and greater shortcoming of this US patent 3,718,878
- 9 lies in the fact that the excavation face is not continuous.
- 10 In fact, in the space between the two rotatable tools there is
- 11 a dead zone in which the ground is attacked by a wedge means
- or blade means without any action in that zone by the means
- 13 for attacking the ground.
- 14 The invention lends itself, therefore, to excavation in
- 15 friable earth or not very consistent ground but is not
- suitable for employment in rocky and compact ground.
- Moreover, the rotatable tools do not work laterally to the
- head, and blade means to improve the excavation which are able
- 19 to be lowered with jacks are provided so as to trim the walls
- of the excavation itself. In rocky or compact ground these
- 21 blade means provide just a fancy demonstration without any
- 22 practical benefit, so that, as soon as compact or rocky ground
- 23 is reached, the excavation cannot progress because these
- 24 blades form a hindrance.
- Moreover, means are not provided for resilient suspension
- of the rotatable tools, such suspension means being able to
 - 27 compensate for variations of load on the individual tools
- owing to variability in local consistency of the ground.
 - 29 A further drawback of this invention lies in the difficulty
 - 30 encountered in adjusting and setting the chain means, which
 - 31 are embodied in two successive sections.
 - Patent US-A-3,894,587 is also known and discloses a cutter
 - 33 bucket with tools rotatable with a horizontal axis. This

- 1 invention envisages a direct drive of the rotatable tools,
- which cooperate as far as their periphery.
- 3 The motors therefore have to be located on the same axis as
- 4 the said rotatable tools.
- 5 Such a lay-out arranges for the cutter tools to be
- 6 supported at one end on the drive axles, and this entails a
- 7 considerable overall size in the direction axial to the motors
- 8 and a dangerous mechanical stress on the supports (referenced
- 9 with 6 in this patent) and on the motors themselves.
- Moreover, owing to the presence of these supports there is
- the difficulty, or impossibility, of obtaining a continuous
- 12 excavation face since there is a dead space corresponding with
- 13 the support of each motor, and this dead space cannot be
- 14 reduced beyond a given limit depending on the mechanical
- 15 strength of such supports.
- 16 Also known are the methods of attacking ground comprising
- 17 rocky strata, the use of scoop or shovel buckets being
- 18 alternated for the soft strata and cutter tools being used for
- 19 the rocky strata.
- 20 This involves the need to make use of different machines
- 21 when the ground changes, and also the need to remove separat-
- 22 ely the hard material crushed by the cutter tools.
- Working, therefore, takes a long time and is not economical
- 24 and in any event is costly.
- Our invention has the purpose of providing a cutter bucket
- 26' able to eliminate the foregoing drawbacks and shortcomings,
 - 27 which are all inherent in the known art.
 - One purpose of the invention is to provide a cutter bucket
 - of a modest overall size and suitable for attacking the ground
 - 30 and for working along the whole width of the excavation face,
 - 31 thereby making possible very great forward movements in depth.
 - 32 in ground of any nature and consistency.
 - 33 A further purpose of the invention is to provide a bucket

- equipped with means for continuous withdrawal of debris as the digging goes forward.
- Yet another purpose of the invention is to provide motor

 means having a high motive torque and high power but to keep

 the overall size of the bucket very small.

 $\dot{\mathbf{e}}$

7

S

Ģ

10

23

24

25

27

28

29

- It is also wished to obtain by means of the invention an optimum distribution of load among the various cutter tools when more than one in number if any lack of uniformity in the consistency of the areas of ground attacked by the various tools is found.
- These purposes and others which will become clear from the description and examples given are achieved according to the invention by envisaging a head equipped with excavation means consisting of one or more tools rotatable around a horizontal axis.
- Said tools are driven indirectly by hydraulic motors located above the tools.
- The invention envisages advantageously a chain transmission between each motor and the relative tool. Said chain bears on its outer side suitable means for attacking the ground.
- Like attacking means are solidly fixed on the periphery of said rotatable tools driven by the chain.
 - The kind of lay-out adopted for the rotatable means and, in particular, the drive of the rotatable tools by a chain which itself is equipped with means to attack the ground, enables said means attacking the ground to be arranged advantageously in such a way as to form a continuous excavation face free of dead spaces and having a size the same as or slightly greater than the overall thickness of the bucket.
- 30 This enables material to be removed regularly and parti-31 cularly efficiently.
- The attacking means may consist of a plurality of suitably arranged and oriented teeth or projections. The teeth will be

- predisposed advantageously so that they can be replaced when
- 2 broken or worn.
- 3 According to the invention the hydraulic motors have an
- 4 immovable axle and a rotatable casing. A toothed ring which
- 5 actuates the relative chain together with the attacking means
- 6 is fixed solidly to the casing of each motor.
- 7 This particular construction enables a very small thickness
- 8 of the head of the cutter bucket to be obtained; it also makes
- 9 it possible to lessen advantageously the number of movable
- 10 parts and also to obtain a particularly strong assemblage.
- 11 The invention envisages advantageously that the toothed
- wheels at the end are fitted in an elastic, damped manner. In
- this way an excellent distribution of the load can be achieved
- 14 when the bucket comprises more than one rotatable tool.
- 15 Indeed, when diverse tools are attacking zones of material
- of differing compactness, the tool which attacks the most
- 17 compact material meets with a greater resistance to its for-
- 18 ward movement and loads the elastic means positioned between
- 19 itself and the head.
- As a result, by means of said elastic means the greater
- 21 part of the vertical load weighs on the tool which needs it
- 22 most, namely the tool which is working on the most compact
- 23 material.
- 24 The tool which is biting into the least compact material
- 25 continues to advance without rotating in an empty space,
- · 26 whereas the other tool makes up the difference in forward
 - 27 movement owing to the effect of the greater load applied to
 - 28 it.
 - 29 Furthermore, the elastic means, with the help of the damp-
 - 30 ing means, absorb at least partially the stresses coming from
 - 31 the rotatable tools and loading the remainder of the
 - 32 structure.
 - 33 The invention also envisages pneumatic means which withdraw

- continuously the debris being produced.
- The whole assemblage is installed in a working head of a
- 3 much reduced thickness.
- 4 The invention is therefore embodied with a cutter bucket
- 5 able to work in any kind of ground and to make ditches,
- 6 trenches, wells, excavations for partition walls, etc., which
- 7 comprises:
- 8 excavation means consisting of two pairs of rotatable tools
- 9 having their axes parallel to each other and substantially
- parallel to the excavation face, such tools being provided
- peripherally with means to attack the earth, the means to
- 12 attack the earth of one pair of tools passing near the means
- 13 to attack the earth of the other pair,
- hydraulic motor means arranged above the excavation means,
- chain means driven by the hydraulic motor means and driving
- the excavation means by an inner gear wheel, the chain means
- being provided with independent means to attack the ground,
- 18 and
- pneumatic means to withdraw debris,
- 20 the cutter bucket being such that the hydraulic motor means
- 21 comprise on their outer periphery ring gear means to drive the
- 22 chain means, and that the means to attack the ground, being
- 23 supported by the chain means and by the rotatable tools, form
- 24 a substantially continuous excavation face stretching at least
- 25 to the periphery of the cutter bucket.
- We shall describe hereinafter, as a non-restrictive examp-
- le, a preferred embodiment of the invention with the help of
- the attached tables, wherein:-
- Figs.1 give two partly cutaway views of the bucket of the
- 30 invention;
- 31 Figs.2 show two views of the pneumatic system to withdraw
- 32 debris;
- 33 Figs. 3 show a detail of said system.

Comment was

- / -

In the figures the cutter bucket of the invention bears the reference number 10. Said bucket 10 comprises a head 11 with an outer shape substantially like a box without a bottom from the lower side of which the excavation means 12 jut out.

The head 11 has the task of bearing and protecting the inside parts and is connected at its upper end to a shaft 111, which can be, for instance, telescopic and be borne by a self-propelled means, which is not shown here.

The methods of suspending and thrusting the bucket 10 form part of the prior art.

The excavation means 12 in our example consist of a pair of rotating tools 13, but said tools 13 according to the invention can be included in another number albeit advantageously in contrarotatable pairs. In the example shown the rotatable tools 13 are contrarotatable, the purpose being to obtain not only a symmetry of the forces but also the drawing of the crushed material to a middle aspiration zone 14 located between the tools 13 themselves.

In our example each of the rotatable tools 13 consists of an inner toothed wheel 15 coaxial with and solidly fixed to two outer wheels 16, one on each side. The inner toothed wheel 15 is supported by a fork 17.

The fork 17 is positioned centrally in relation to each pair of rotatable tools 13 and contains in its centre the inner gear wheel 15. Moreover, the fork 17 is fitted resiliently in relation to the head 11, for spring means 18, damper means 19 and means 39 to guide the lengthwise sliding of the fork 17 are interposed.

A hydraulic motor 20 is located above each toothed wheel 15. Said hydraulic motors 20 are advantageously disposed with their motive axle 21 immovable and with their casing 22 rotating. A toothed crown 23 is located on the periphery of the casing 22.

- 1 This particular construction of the motor 20/toothed crown
- 2 23 group makes possible a very small overall axial size of
- 3 said group, as can be seen in Fig.1b.
- 4 The toothed crown 23 draws with a chain 25 the toothed
- 5 wheel 15 and therewith the outer wheels 16 solidly fixed to
- 6 the latter 15.
- Both the wheels 16 and the chain 25 bear on their periphery
- 8 means 26 for attacking the ground, said means 26 consisting of
- 9 a plurality of suitably fixed and oriented teeth 126 in our
- 10 example.
- It remains within the spirit of the invention if toothings
- differentiated to suit the specific usages are envisaged and
 - 13 if the toothing on the chain 25 is envisaged as being differ-
 - 14 ent from that on the wheels 16.
 - Fig.1b shows clearly how the lay-out of the mechanical
 - organs according to the invention and, in particular, the
 - 17 positioning of the motors 20 higher than the rotatable tools
 - 18 13, and the chain transmission 25, which itself bears means
 - 19 to attack the ground, enable an excavation face 24 free of
 - dead spaces to be obtained.
 - 21 The diameter of the wheel 15 as compared to that of the
 - wheels 16 is selected advantageously in such a way as to form
 - 23 an excavation face 24 suitably shaped like an inverted V (see
 - 24 Fig. 1b). This arrangement ensures that the crushed material is
 - drawn towards the centre line of the tool 13 and thereafter
 - towards the aspiration zone 14.
 - Blade means 27 are interposed between the two contrarotat-
 - 28 able tools 13 and contribute to a further crushing of the
 - debris in our example.
 - 30 Means 28 to withdraw debris, being pneumatic means in our
 - 31 example, are comprised in the middle of the head 11. Said
 - means 28 include a withdrawal pipe 29 in this instance.
 - 33 Said pipe 29 (see Figs.2) has a squashed end portion 129

- 1 which terminates in an aspiration intake 30.
- 2 Means 31 to deliver compressed air consist, in our example,
- 3 of two pipes 32 positioned at the sides of the withdrawal pipe
- 4 29. Said pipes 32 are connected above to a supply of compres-
- 5 sed air 33 or of another fluid under pressure.
- 6 Each pipe 32 widens at its lower part 132, which is super-
- 7 imposed at the side of the end portion 129 of the withdrawal
- 8 pipe 29.
- 9 Nozzle means 34 positioned in the end zone of the lower
- part 132 of each pipe 32 near the intake 30 produce a flow of
- 11 air directed upwards within the withdrawal pipe 29. This lay-
- out has the effect of drawing and aspirating the debris within
- said pipe 29, which opens out suitably outside the bucket 10.
- 14 Figs. 3 show a detail of the nozzle means 34 according to
- 15 the invention. Fig. 3a gives a view along the section A-A
- 16 (Fig. 2b) of the end portion 129 with the parts 132 of the
- 17 pipes 32. Fig.3b is a cutaway side view of the nozzle means
- 18 34.
- 19 The air coming from 132 is sent through a plurality of
- 20 holes 35 to as many chambers 36, which comprise a non-return
- valve 37 with a ball 137 and spring 237.
- The air is sent at high speed through an oblique nozzle 38
- from the chamber 36 to the pipe 29 and creates an upward flow.
- The aspiration intake 30 can have a hard metal lining so as
- 25 to lessen wear caused by the passage of debris.

Allen

0114584 1 2 10 - cutter bucket 3 11 - head 4 111 - carrying shaft 5 12 - excavation means 13 - rotatable tools 14 - middle aspiration zone 8 15 - inner toothed wheel 9 16 - outer wheels 10 17 - fork 11 18 - spring means 12 19 - damping means 13 20 - hydraulic motors 21 - drive axle 14 22 - casing 15 16 23 - toothed ring 17 24 - excavation face 18 25 - chain 19 26 - means to attack ground 20 126 - teeth 21 27 - blade means 22 28 - means to withdraw debris

23 29 - withdrawal pipe

24 129 - squashed end portion

25 30 - aspiration intake

.26 31 - means to deliver compressed air

27 32 - pipes

28 132 - lower part of pipes

29 33 - compressed air supply

30 34 - nozzle means

31 35 - holes

32 36 - chambers

33 37 - non-return valve

Citizens a graz

1 137 - ball

2 237 - spring

3 38 - oblique nozzle

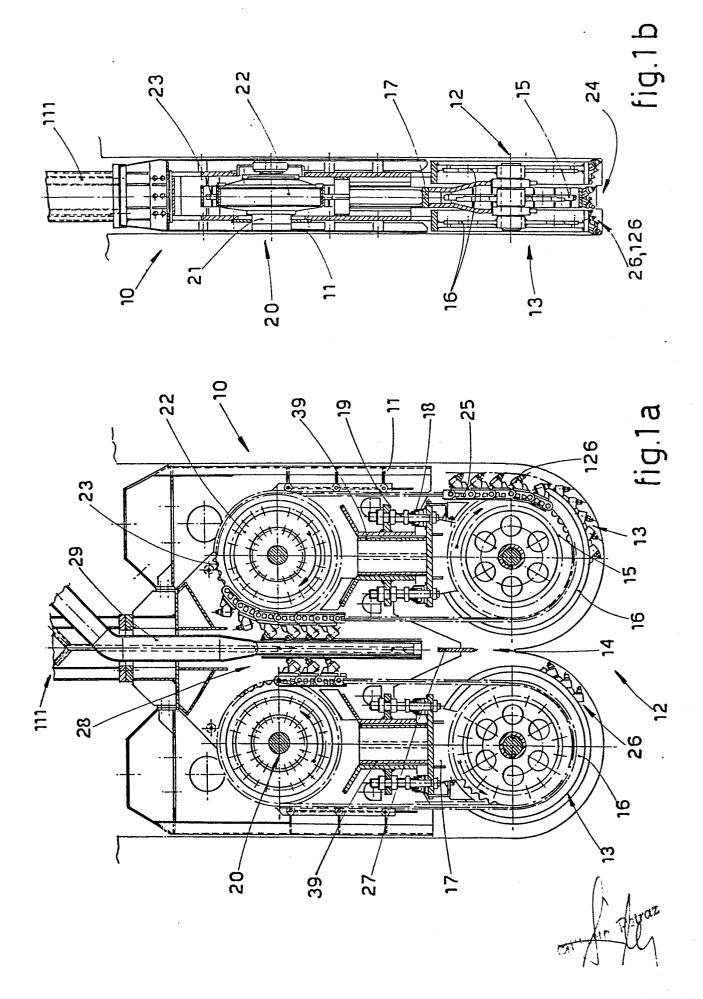
4 39 - guide means

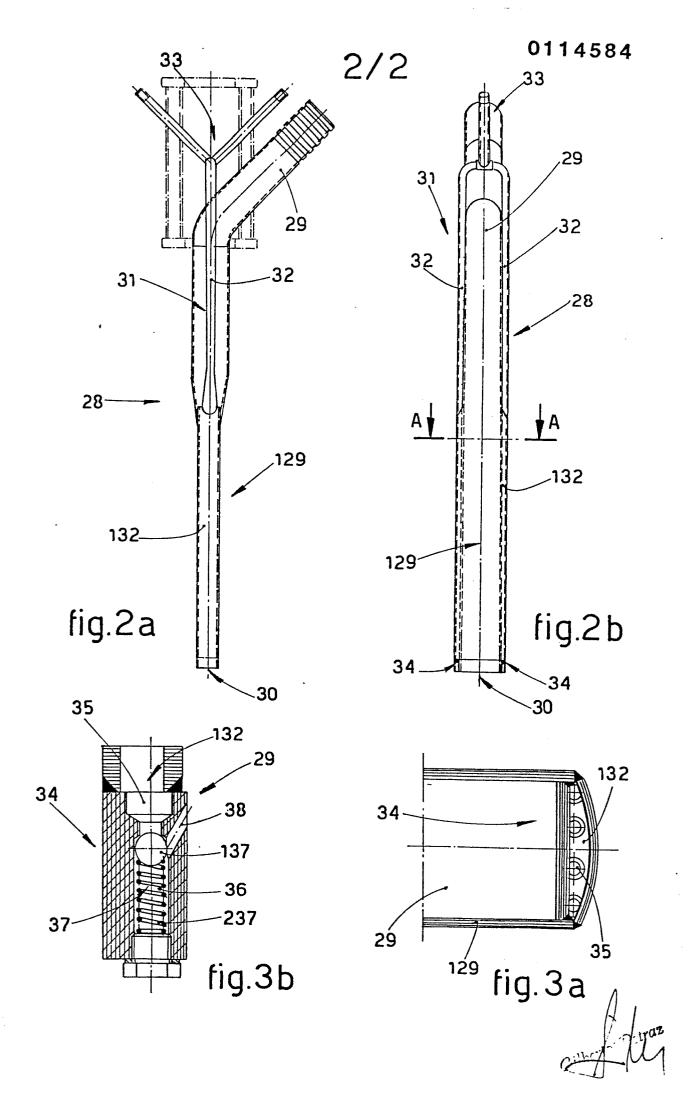
1 <u>CLAIMS</u>

2 1 - Cutter bucket (10) able to work in any kind of ground and

- 3 to make ditches, trenches, wells, excavations for partition
- 4 walls, etc., which comprises:
- 5 excavation means (12) consisting of two pairs of rotatable
- 6 tools (13) having their axes parallel to each other and
- 7 substantially parallel to the excavation face (24), such
- 8 tools (13) being provided peripherally with means (26) to
- 9 attack the earth, the means (26) to attack the earth of one
- pair of tools passing near the means (26) to attack the
- 11 earth of the other pair,
- 12 hydraulic motor means (20) arranged above the excavation
- 13 means (12),

(.


€


- chain means (25) driven by the hydraulic motor means (20)
- and driving the excavation means (12) by an inner gear wheel
- 16 (15), the chain means (25) being provided with independent
- means (26) to attack the ground, and
- pneumatic means (28) to withdraw debris,
- 19 the cutter bucket (10) being such that the hydraulic motor
- 20 means (20) comprise on their outer periphery ring gear means
- 21 (23) to drive the chain means (25), and that the means (26) to
- 22 attack the ground, being supported by the chain means (25) and
- by the rotatable tools (13), form a substantially continuous
- 24 excavation face (24) stretching at least to the periphery of
- 25 the cutter bucket (10).
- 26 2 Cutter bucket (10) as claimed in Claim 1, in which the
- 27 rotatable tools (13) are sustained by fork support means (17)
- positioned centrally within the pairs of rotatable tools (13)
- and containing centrally the inner gear wheel means (15).
- 30 3 Cutter bucket (10) as claimed in Claim 1 or 2, in which
- 31 the fork support means (17) are connected to the head (11) by
- 32 guide means (39) and spring means (18) cooperating with damper

cif-lu

- 1 means (19).
- 2 4 Cutter bucket (10) as claimed in any claim hereinbefore,
- 3 in which the hydraulic motor means (20) are provided with an
- 4 immovable drive axle (21) and a rotatable casing (22), a
- 5 toothed ring (23) which drives a chain means (25) being
- 6 comprised on the periphery of the casing (22).

Cilbridge Caraz

