11) Veröffentlichungsnummer:

0 115 739 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

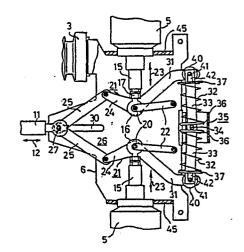
(21) Anmeldenummer: 83730125.8

(f) Int. Cl.3: H 01 H 33/66

2 Anmeldetag: 29.12.83

30 Priorität: 12.01.83 DE 3300979

Anmelder: SIEMENS AKTIENGESELLSCHAFT, Berlin und München Wittelsbacherplatz 2, D-8000 München 2 (DE)


Weröffentlichungstag der Anmeldung: 15.08.84 Patentbiatt 84/33

84 Benannte Vertragsstaaten: DE GB SE

Erfinder: Steinemer, Norbert, Ing. grad., Krämerweg 22, D-1000 Berlin 20 (DE)

(54) Vakuumschalter mit zwei in Reihe geschalteten Schaltröhren je Poi.

57 Ein Vakuumschalter (1) besitzt zwei axial fluchtend angeordnete und elektrisch in Reihe geschaltete Schaltröhren (5). Durch ein Umlenkgetriebe (Kniehebelsystem 26) werden aus einer gemeinsamen Antriebsbewegung einer Schaltstange (11) zwei einander entgegengesetzt gerichtete Bewegungen für die Antriebsstößel (15) der Schaltröhren (5) gewonnen. Die Kontaktkraftfedern (32) beider Schaltröhren (5) stützen sich mittelbar oder unmittelbar an einem gemeinsamen ortsfesten Widerlager (35) ab, das lösbar befestigt und verschiebbar angeordnet ist. Eine gleichzeitige Berührung oder Trennung der Schaltstücke beider Schaltröhren aufgrund des gemeinsamen Antriebes wird dadurch sichergestellt, dass nach dem Lösen der Verbindung mit einer gemeinsamen Antriebsvorrichtung der Lagerbock gelöst und nach dem selbsttätigen Ausgleich einer Kräftedifferenz erneut befestigt wird. Die Erfindung ist für Vakuum-Leistungsschalter im Mittelspannungsbereich, insbesondere in der Bahnstromversorgung geeignet.

SIEMENS AKTIENGESELLSCHAFT Berlin und München Unser Zeichen VPA 83 P4 0 0 1 =

Vakuumschalter mit zwei in Reihe geschalteten Schaltröhren je Pol

Die Erfindung betrifft einen Vakuumschalter mit zwei elektrisch in Reihe geschalteten und etwa gleichachsig angeordneten Schaltröhren je Pol und einer für beide Schaltröhren gemeinsamen Antriebsvorrichtung zum Ein- und Ausschalten sowie mit

- a) einem Umlenkgetriebe zur Gewinnung zweier einander entgegengesetzter Bewegungen aus einer einheitlichen An-
- 15 triebsbewegung
 - b) einer jeder Schaltröhre zugeordneten Kontaktkraftfeder.

Ein Vakuumschalter dieser Art ist beispielsweise in der Zeitschrift Electrical Review 13 April 1973, Seiten 531 bis 533 und der Zeitschrift Elektrische Bahnen 78 (1980), Heft 8, Seiten 198 bis 202 bekanntgeworden. Weitere Beispiele von Vakuumschaltern der genannten Art sind dem Katalog GB64/1949 über Vakuumschalter Modell VT-123 der Fa. Meidensha sowie der US-PS 3 597 556 zu entnehmen.

25

30

35

Bei Vakuumschaltern mit in Reihe geschalteten und gleichachsig angeordneten Schaltröhren muß ein gleichzeitiges
Schließen und Öffnen der Kontakte sichergestellt sein,
weil andernfalls mit einer Überlastung einer der beiden
Schaltröhren durch die Schaltströme zu rechnen ist. Dies
kann durch die Einstellung der Koppelglieder erreicht
werden, die üblicherweise an den Antriebsstößelnuder
Schaltröhren vorgesehen sind. Dieser Vorgang ist jedoch
umständlich und nur mit Schwierigkeiten fehlerfrei durchzuführen. Hiervon ausgehend liegt der Erfindung die Aufgabe

_ 2 _ VPA 83 P4001E

zugrunde, eine einfach zu handhabende und möglichst fehlerfrei wirkende Einstellanordnung für die Schaltröhren zu schaffen.

- 5 Gemäß der Erfindung wird diese Aufgabe bei einem Vakuumschalter der eingangs genannten Art durch folgende Merkmale gelöst:
 - c) beide Kontaktkraftfedern besitzen ein gemeinsames, in ihrer Wirkungsrichtung verschiebbar befestigtes Wider-
- 10 lager und
 - d) zur Übertragung der Federkraft auf den Antriebsstößel jeder Schaltröhre dient ein mit dem freien Ende jeder Kontaktkraftfeder und mit dem Umlenkgetriebe verbundenes Hebelwerk.

15

20

25

30

35

gleichzeitig.

Diese Anordnung ermöglicht einen selbsttätigen Ausgleich fertigungsbedingter oder durch Abnutzung hervorgerufener Fehler bei der gleichzeitigen Betätigung der Schaltröhren. Um diesen Ausgleich durchzuführen, ist es nur erforderlich, die Befestigungselemente des gemeinsamen Widerlagers der Kontaktkraftfedern zu lösen und das Hebelwerk von der Antriebsvorrichtung zu trennen. Beide Schaltröhren nehmen dann unter dem Einfluß des umgebenden Luftdruckes die Schließlage ein, wobei das Widerlager in die korrekte Mittellage verschoben wird. Anschließend wird das Widerlager in der nun gefundenen neutralen Stellung erneut befestigt und die Verbindung des Hebelwerkes mit der Antriebsvorrichtung wird wieder hergestellt. Beide Schaltröhren schliessen und öffnen nun bei den Schaltvorgängen

Die Erfindung ist insbesondere vorteilhaft anwendbar bei einem Vakuumschalter der eingangs genannten Art, bei dem das Umlenkgetriebe ein Kniehebelsystem umfaßt, mit dessen Kniegelenk eine in ihrer Längsrichtung geführte Antriebs-

BAD STEDLING

VPA 83 P4 0 01 E

stange verbunden ist und dessen Kniehebel die Bewegung der Antriebsstange unter etwa rechtwinkliger Umlenkung der Bewegungsrichtung auf die einander zugewandten Antriebsstößel der Schaltröhren übertragen. Bei einem solchen Vakuumschalter ist es vorteilhaft, wenn das Hebelwerk für jede Schaltröhre einen zweiarmigen Hebel umfaßt, dessen zwischen den Enden liegender Drehpunkt an dem Antriebsstößel der Schaltröhre angeordnet ist und dessen Enden mit dem Umlenkgetriebe bzw. mit dem Widerlager mittelbar oder unmittelbar gelenkig verbunden sind. Auf diese Weise wird die Anordnung des gemeinsamen Widerlagers der Kontaktkraftfedern an einer qut zugänglichen Stelle des Vakuumschalters ermöglicht. Ferner kann auf diese Weise eine Anordnung mit ruhender oder mit bewegter Kontaktkraftfeder gewählt werden.

5

10

15

25

30

Bei einer Bauform eines Vakuumschalters der eingangs genannten Art, bei dem das Umlenkgetriebe an einem die antriebsseitigen Enden der Schaltröhren abstützenden Pol-20 kopf gelagert ist, empfiehlt sich eine Ausgestaltung, bei der das Widerlager gleichfalls an dem Polkopf befestigt ist und sich in der Wirkungsrichtung der Kontaktkraftfedern erstreckende Langlöcher zum Durchtritt von Befestigungselementen besitzt und daß die Kontaktkraftfedern zwischen den der Antriebsstange abgewandten Enden der zweiarmigen Hebel etwa gleichachsig in Reihe liegend angeordnet sind, wobei sich das Widerlager zwischen den Kontaktkraftfedern befindet. Durch die Trennung der Kontaktkraftfedern von den Antriebsstößeln der Schaltröhren wird eine Platzersparnis in axialer Richtung erzielt. Dies bedeutet, daß die Schaltröhren mit geringerem Abstand zueinander angebracht werden können.

Die Erfindung ist auch anwendbar bei einem Vakuumschalter, 35 bei dem die Kontaktkraftfedern in das Umlenkgetriebe eingefügt sind, wie dies der US-PS 3 597 556 zu entnehmen ist.

- 4 - VPA 83 P4001 E

Hierbei können die Kontaktkraftfedern mit ihrem einen Ende an dem der Antriebsstange zugewandten Ende der zweiarmigen Hebel angreifen und die der Antriebsstange abgewandten Enden der zweiarmigen Hebel können an gesonderten Lagerstellen des Widerlagers gelenkig abgestützt sein.
Die Einstellung des Gleichlaufes der Schaltröhren geschieht auch hierbei durch Lösen der Antriebsstange und des Widerlagers und erneute Befestigung dieser Teile.

5

Eine raumsparende Anordnung der Vakuumschaltröhren mit 10 relativ geringem gegenseitigen Abstand läßt sich dadurch erreichen, daß die zweiarmigen Hebel bezüglich der an den Antriebsstößeln befindlichen Drehpunkte gegensinnig abgekröpft sind. Bei der Ausführungsform mit in das Umlenkgetriebe eingefügten Kontaktkraftfedern können ferner 15 die dem Widerlager zugewandten Hebelarme der zweiarmigen Hebel als Lenkhebel benutzt werden, indem die Lagerpunkte so gewählt werden, daß die Verbindungslinie der an dem Widerlager und an dem Antriebsstößel befindlichen 20 Drehpunkte von der rechtwinkligen Stellung zu der Betätigungsrichtung der Schaltröhren beim Ein- und Ausschalten nur geringfügig abweicht.

Die Erfindung wird im folgenden anhand der in den Figuren 25 dargestellten Ausführungsbeispiel näher erläutert.

Die Fig. 1 zeigt einen Vakuum-Leistungsschalter für den Mittelspannungsbereich in einer Seitenansicht.

In den Fig. 2 und 3 sind Einzelheiten des Antriebes der .
Schaltröhren und der Kontaktkraftfedern in einer Seitenansicht dargestellt. Dabei zeigt die Fig. 2 die Ausschaltstellung und die Fig. 3 die Einschaltstellung.

- 5 - VPA 83P4001E

Die Fig. 4 zeigt die Antriebsteile in einer Frontansicht mit der Befestigung des Widerlagers der Kontaktkraftfedern.

In den Fig. 5 und 6 ist ein weiteres Ausführungsbeispiel in einer den Fig. 2 und 3 entsprechenden Darstellung gezeigt. Dabei stellt Fig. 5 die Ausschaltstellung und die Fig. 6 die Einschaltstellung dar.

Der in der Fig. 1 dargestellte Vakuum-Leistungsschalter 1 ist für den Bereich der Mittelspannung vorgesehen und 10 dient insbesondere zur Versorgung elektrischer Bahnen mit Einphasenwechselstrom von 16 2/3 Hz. An einem vertikalen Träger 2 sind insgesamt drei Stützisolatoren 3 befestigt, von denen der obere und der untere Stützisolator je ein Kopfstück 4 trägt, an dem jeweils eine Schaltröhre 15 5 mit ihrem feststehenden Änschlußbolzen eingespannt ist. Die beiden Schaltröhren 5 sind miteinander fluchtend anqeordnet, wobei sich zwischen ihnen ein Polkopf 6 befindet, der über den dritten Stützisolator 3 gegenüber dem Träger 20 2 abgestützt ist. Auf seiner den Stützisolatoren abgewandten Seite ist an dem Träger 2 ein Antriebskasten 7 befestigt, der alle zur Bereitstellung und Freigabe der Antriebsenergie benötigten Teile enthält. Der Aufbau der Antriebsvorrichtung 7 im einzelnen wird im folgenden nicht näher erläutert, 25 da solche Antriebsvorrichtungen in verschiedenen Ausführungen bekannt sind. Beispielsweise ist eine für Vakuumschalter vorgesehene Antriebsvorrichtung in der DE-AS 27 17 958 (entspricht US-PS 4 152 562) beschrieben.

Zum Verständnis der Wirkungsweise sei nur erwähnt, daß die Antriebsvorrichtung 7 eine Handkurbel 10 aufweist, um einen Kraftspeicher aufladen zu können, der dann durch einen Auslösebefehl zum Einschalten freigegeben wir. Eine isolierende Schaltstange 11 führt dann eine auf den Polkopf 6 gerichtete im wesentlichen geradlinige Bewegung aus, während sie beim Ausschalten in der entgegen-

gesetzten Richtung, d. h. in Richtung der Antriebsvorrichtung 7 ausführt (Doppelpfeil 12). Wie die Fig. 1 ferner zeigt, sind jeweils zwischen dem Polkopf 6 und den Kopfstücken 4 Isolierstreben 13 angeordnet, die zusätzlich zu den Stützisolatoren 3 einen Teil der beim Ein- und Ausschalten auftretenden Kräfte aufnehmen.

5

10

15

20

25

()

()

In der Fig. 2 ist der Polkopf 6 mit den daran angrenzenden Teilen der Schaltröhren 5 im ausgeschalteten Zustand dargestellt. Jede der Schaltröhren 5 besitzt einen in axialer Richtung verschiebbaren Antriebsstößel 15, in den eine Ösenschraube 16 eingesetzt und durch eine Mutter 17 befestigt ist. An einem den Kopf jeder Ösenschraube 16 durchsetzenden Lagerbolzen 20 ist auf der einen Seite ein zweifach abgewinkelter Hebel 21 und auf der anderen Seite ein Lenkhebel 22 gelagert. Die Lenkhebel sorgen bei der zum E≴n- und Ausschalten erforderlichen Verschiebung der Antriebsstößel 15 in Richtung des Doppelpfeiles 23 für eine derartige Führung, daß eine Beanspruchung der in der Fig. 2 nicht sichtbaren Führungslager der Antriebsstößel 15 durch Querkräfte möglichst gering bleibt. Der kürzere Hebelarm 24 jedes zweiarmigen Hebels 21 ist gelenkig mit einem Hebel 25 eines Kniehebelsystems 26 verbunden, an dessen Kniegelenkbolzen 27 die Antriebsstange 11 angreift. Eine geradlinige Führung der Antriebsstange 11 und des Kniegelenkbolzens 27 wird durch eine Langlochführung 30 in Wandungsteilen des Polkopfes 6 erreicht.

Der längere Hebelarm 31 jedes zweiarmigen Hebels 21 wirkt mit je einer Kontaktkraftfeder 32 zusammen. Die Kontaktkraftfeder 32 zusammen. Die Kontaktkraftfedern 32 sind als Schraubendruckfedern ausgebildet und umschließen mit ihren Windungen je eine Führungsstange 33, die an ihren inneren Enden auf einem gemeinsamen Lagerbolzen 34 sitzen. Dieser ist Bestandteil eines Widerlagers 35, das etwa die Gestalt eines etwa U-förmigen

- 7 - VPA 83P4001E

Bügels mit nach außen abgewinkelten Schenkelenden 38 aufweist (Fig. 4). Zur Abstützung der inneren Enden der Kontaktkraftfedern 32 dient je eine Scheibe 36, die an dem
Bolzen 34 anliegt. Für die äußeren Enden der Kontaktkraftfedern 32 ist je eine weitere Scheibe 37 vorgesehen, welche
die Federkraft über je eine Rolle 40 und einen diese durchsetzenden Gelenkbolzen 41 auf den Hebelarm 31 des zweiarmigen Hebels 21 überträgt. Jeder der Gelenkbolzen 41
durchsetzt ein in dem äußeren Ende jeder Führungsstange
33 befindliches Langloch 42.

10

15

20

25

30

Die Schenkelenden 38 des Widerlagers 35 sind mit zu den Rändern hin offenen Langlöchern 43 versehen, durch die sich Schrauben 44 erstrecken. Als Auflagefläche für die Schenkelenden 38 des Widerlagers 35 dienen Abwinklungen 45 des Polkopfes 6. Wie man erkennt, erstrecken sich die Langlöcher 43 parallel zur Längsachse der Kontaktkraft-federn 32 (Fig.4). Nach dem Lösen der Befestigungsschrauben 44 verschiebt sich somit das Widerlager 35 unter dem Einfluß einer Kräftedifferenz in eine neutrale Stellung.

In der Ausschaltstellung des Vakuumschalters gemäß der Fig. 2 nehmen die Kontaktkraftfedern 32 mit ihren Führungsstangen 33 eine von der geradlinig fluchtenden Lage nur gering abweichende winklige Stellung ein. Der Kniegelenkbolzen 27 des Kniehebelsystems 26 steht dabei nahe dem linken Ende des Langloches 30. Wird hiervon ausgehend die Antriebsstange 11 durch die in Fig. 1 gezeigte Antriebsvorrichtung 7 nach rechts verschoben, so arbeitet das Kniehebelsystem 26 als Umlenkgetriebe und bewirkt eine gleichzeitige Verschiebung beider Antriebsstößel 15 im Sinne des Einschaltens. Diese Bewegungen verlaufen etwa senkrecht zur Längsrichtung und zur Bewegungsrichtung der Antriebsstange 11. Hierbei ist das aus den zweiten

_ 8 _ VPA 83P4001E

armigen Hebeln 21 und den Lenkhebeln 22 bestehende Hebelwerk wirksam, das einerseits die Antriebsbewegung auf
die Antriebsstößel 15 überträgt und andererseits mittels
der Kontaktkraftfedern 32 eine definierte Kontaktkraft
entstehen läßt. Es ergibt sich dann die in der Fig. 3
gezeigte Einschaltstellung, in der sich die Kniehebel
25 stark der Strecklage genähert haben und der Kniegelenkbolzen 20 dementsprechend nahe dem rechten Ende des
Langloches 30 steht. Die Kontaktkraftfedern 32 sind zusammengedrückt und infolge der Verschwenkung der zweiarmigen
Hebel 21 sind ihre Achsen zueinander gegenüber der Fig. 2
in der entgegengesetzten Richtung leicht zueinander
geneigt.

. 10

Die für die Funktion des Vakuumschalters 1 wesentliche 15 gleichzeitige Berührung und Trennung der Schaltstücke der Schaltröhren 5 bei den Schaltvorgängen wird auf folgende Weise erreicht: Zunächst wird das Kniehebelsystem 26 von der Antriebsvorrichtung 7 getrennt, z. B. durch Lösen der Antriebsstange 11 an der Antriebsvorrichtung 20 7 oder an dem Kniegelenkbolzen 27. Ferner werden die Schrauben 44 des Widerlagers 35 gelöst. Die Schaltröhren 5 gelangen nun unter dem Einfluß des umgebenden Luftdruckes in die Einschaltstellung. Das Widerlager 35 verschiebt 25 sich nun unter dem Einfluß einer etwa bestehenden Kräftedifferenz in eine neutrale Stellung, die der Einschaltstellung beider Schaltröhren 5 entspricht. Werden nun die Befestigungsschrauben 44 wieder angezogen, so ist sichergestellt, daß bei den folgenden Ein- und Ausschaltugen mittels der Antriebsstange 11 die Schaltstücke 30 beider Schaltröhren 5 gleichzeitig geöffnet und geschlossen werden und sich somit die gleiche mechanische und elektrische Beanspruchung ergibt. Der beschriebene Vorgang ist ohne aufwendige Hilfsmittel oder Meßgeräte durchführbar. Auch ist der Zeitaufwand gering, weil das Widerla-35 ger 35 an der Stirnseite des Polkopfes 6 gut zügänglich

- 9 - VPA 83 P4001 E

ist, wie die Fig. 1 zeigt. Die Entkopplung der Antriebsstange 11 von dem Kniehebelsystem 26 oder der Antriebsvorrichtung 7 ist gleichfalls auf einfache Weise durchführbar.

5

10

15

20

25

30

35

In dem vorstehend beschriebenen Ausführungsbeispiel sind die zweiarmigen Hebel 21 mit dem Umlenkgetriebe (Knie-hebelsystem 26) unmittelbar gelenkig verbunden, während die Kontaktkraftfedern 32 gleichfalls unmittelbar an dem Widerlager 35 bzw. einem Bolzen 34 abgestützt sind.

Im folgenden wird anhand der Fig. 5 (Ausschaltstellung) und der Fig. 6 (Einschaltstellung) ein weiteres Ausführungsbeispiel beschrieben, bei dem die Kontaktkraftfedern mittelbar, und zwar unter Zwischenschaltung den zweiarmigen Hebeln 21 ähnlicher Hebel an dem Widerlager abgestützt sind, während die zweiarmigen Hebel ihrerseits mit dem Umlenkgetriebe mittelbar, und zwar unter Zwischenschaltung der Kontaktkraftfedern, verbunden sind. Für die übereinstimmenden Teile sind dabei die gleichen Bezugszeichen verwendet, um den Vergleich zu erleichtern. Hierbei handelt es sich insbesondere um die Schaltröhren 5, den Polkopf 6 und den Stützisolator 3 sowie die Antriebsstange 11, die Stößel 15 mit den Ringschrauben 16 und den Muttern 17.

Die Kontaktkraftfedern 50 sind Druckfedern, die sich in dem mit der Antriebsstange 11 verbundenen Kniehebelsystem 51 befinden. Jede Kontaktkraftfeder 51 sitzt auf einem Kniehebel 52 und stützt sich an diesem über eine Scheibe 53 ab. Die gegenüberliegenden Enden der Kontaktkraftfedern 50 liegen an je einer Scheibe 54 an, welche ihrerseits die Federkraft über je eine Rolle auf einen zweiarmigen Hebel 55 überträgt. Hierzu sind die Kniehebel 52 mit je einem Langloch 56 versehen, in die ein Lager-

- 10 - VPA 83 P4 0 01E

bolzen 57 an dem einen Ende jedes zweiarmigen Hebels 55 eingreift. Wie bei einem Vergleich der Fig. 5 und 6 zu erkennen ist, werden die Kontaktkraftfedern 50 beim Einschalten zusammengedrückt, wobei sich die Stellung des Lagerbolzens 57 innerhalb des Langloches 56 ändert.

Die zweiarmigen Hebel 55 sind ähnlich wie die Hebel 21 in den Fig. 2 und 3 ausgebildet und übertragen demgemäß die Bewegung der Antriebsstange 11 auf die Schaltröhren 5. Im Unterschied zu dem ersten Ausführungsbeispiel sind die zweiarmigen Hebel 55 jedoch an ihren der Antriebsstange ll abgewandten Ende an einem Widerlager 60 direkt auf gesonderten Lägerbolzen 58 gelagert. Dieses Widerlager ist ähnlich wie das Widerlager 35 in den Fig. 2 bis 4 als Bügel mit beidseitig abgewinkelten Schenkeln ausgebildet und ist an dem Polkopf 6 so angebracht, daß es nach dem Lösen von Befestigungselementen in Richtung des Doppelpfeiles 61 verschiebbar ist und sich in der neuen Stellung wieder befestigen läßt. Der Einstellvorgang ist in analoger Weise durchführbar, wie dies bereits beschrieben wurde. Zunächst wird daher die Antriebsstange 11 von dem Antrieb getrennt, wodurch die Schaltgefäße 5 unter dem Einfluß des umgebenden Luftdruckes in die Schließstellung gelangen. Durch Lösen der Befestigungselemente des Widerlagers 60 wird erreicht, daß sich der gesamte aus Federn und Hebeln bestehende Mechanismus im Gleichgewicht befindet und somit beide Schaltröhren 5 synchron betätigt werden, nachdem das Widerlager 60 in der neutralen Stellung befestigt worden ist.

30

35

5

10

15

20

25

(·

()

In beiden beschriebenen Ausführungsbeispielen sind die zweiarmigen Hebel 21 bzw. 55 bezüglich der an den Antriebsstößeln der Schaltröhren 5 befindlichen Drehpunkte gegensinnig abgekröpft. Den Fig. 2 und 3 ist dabei zu entnehmen, daß die Abkröpfung in der Weise erfolgt, daß beide Hebelenden voneinander einen größeren Abstand als die an den Antriebsstößeln befindlichen Drehpunkte aufweisen. Hier-

- 11 - VPA 83 P4001E

durch wird ein ausreichender Zwischenraum für die Unterbrigung der Kontaktkraftfedern 32 und für den Angriff des Kniehebensystems 26 geschaffen, während andererseits der Abstand zwischen den Antriebsstößeln 15 bzw. den in diese eingesetzten Ösenschrauben 16 recht gering sein kann. Sinngemäß die gleiche Formgebung besitzen die zwei-armigen Hebel 55 gemäß den Fig. 5 und 6, wobei eine stärkere Abkröpfung der Hebel an ihrem dem Widerlager 60 zugewandten Ende nicht erforderlich ist. Vielmehr ist hier die Stellung der Hebelarme 62 der zweiarmigen Hebel 55 so gewählt, daß diese sogleich die Funktion von Lenkhebeln für die Antriebsstößel 15 übernehmen.

- 6 Ansprüche
- 6 Figuren

10

(

Patentansprüche

5

10

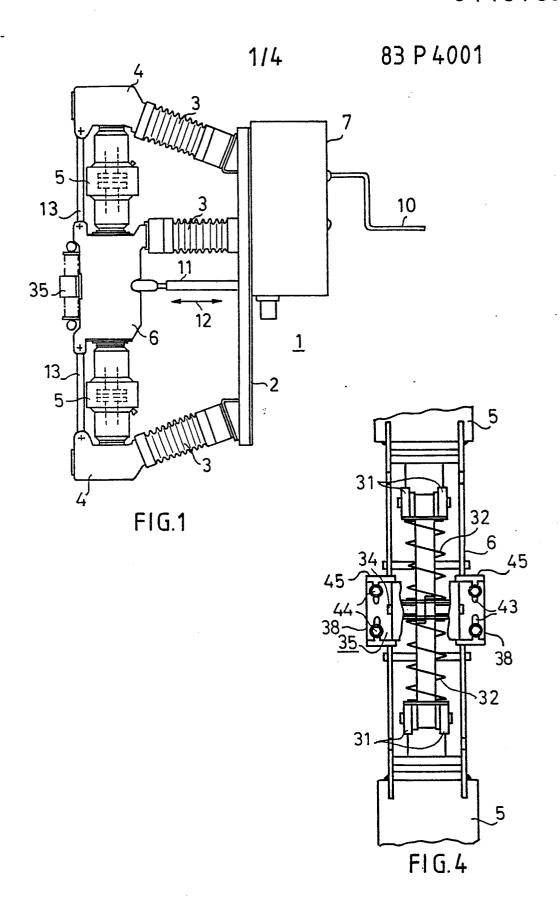
20

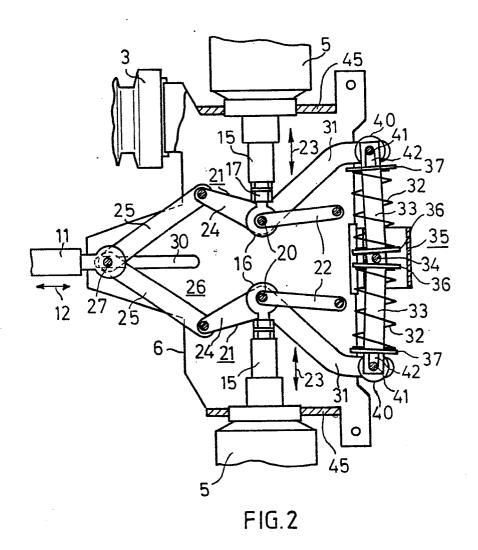
()

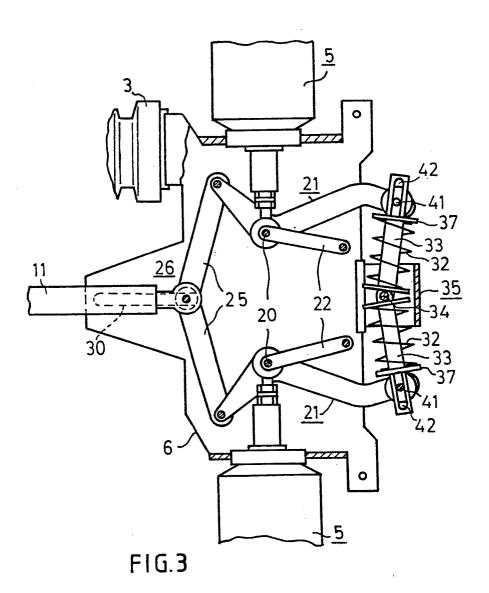
- 1. Vakuumschalter (1) mit zwei elektrisch in Reihe qeschalteten und etwa gleichachsig fluchtend angeordneten Schaltröhren (5) je Pol und einer für beide Schaltröhren (5) gemeinsamen Antriebsvorrichtung (7, 11) zum Ein- und Ausschalten sowie mit
- a) einem Umlenkgetriebe (Kniehebelsystem 26;51) zur Gewinnung zweier einander entgegengesetzter Bewegungen aus einer einheitlichen Antriebsbewegung und
- b) einer jeder Schaltröhre zugeordneten Kontaktkraftfeder (32;50),

qekennzeichnet durch folgende Merkmale:

- c) beide Kontaktkraftfedern (32;50) besitzen ein gemeinsames, in ihrer Wirkungsrichtung verschiebbar befestigtes Widerlager (35;60) und
 - d) zur Übertragung der Fedærkraft auf den Antriebsstößel (15) jeder Schaltröhre (5) dient ein mit dem freien Ende jeder Kontaktkraftfeder (32;50) und mit dem Umlenkgetriebe (26;51) verbundenes Hebelwerk (21;55).
- Vakuumschalter nach Anspruch 1, bei dem das Umlenkgetriebe ein Kniehebelsystem (26) umfaßt, mit dessen Kniegelenk (Kniegelenkbolzen 27) eine in ihrer Längsrichtung
 geführte Antriebsstange (11) verbunden ist und dessen
 Kniehebel (25) die Bewegung der Antriebsstange (11) unter
 etwa rechtwinkliger Umlenkung der Bewegungsrichtung auf
- die einander zugewandten Antriebsstößel (15) der Schaltröhren (5) übertragen, d a d u r c h g e k e n n z e i c h 30 n e t , daß das Hebelwerk für jede Schaltröhre (5) einen
 zweiarmigen Hebel (21;55) umfaßt, dessen zwischen den
 Enden liegender Drehpunkt an dem Antriebsstößel (15) der
 Schaltröhre (5) angeordnet ist und dessen Enden mit dem


Umlenkgetriebe (26;51) bzw. mit dem Widerlager (35;60)


35 mittelbar oder unmittelbar gelenkig verbunden sind.


- 3. Vakuumschalter nach Anspruch 1 oder 2, bei dem das
 Umlenkgetriebe (26) an einem die antriebsseitigen Enden
 der Schaltröhren (5) abstützenden Polkopf (6) gelagert
 ist, d a d u r c h q e k e n n z e i c h n e t , daß

 5 das Widerlager (35) gleichfalls an dem Polkopf (6) befestigt ist und sich in der Wirkungsrichtung der Kontaktkraftfedern (32) erstreckende Langlöcher (43) zum Durchtritt von Befestigungselementen (44) besitzt und daß die
 Kontaktkraftfedern (32) zwischen den der Antriebsstange

 10 (11) abgewandten Enden der zweiarmigen Hebel (21) etwa
 gleichachsig in Reihe liegend angeordnet sind, wobei sich
 das Widerlager (35) zwischen den Kontaktkraftfedern (32)
 befindet.
- 4. Vakuumschalter nach Anspruch 2, bei dem die Kontaktkraftfedern (50) in das Umlenkgetriebe (51) eingefügt
 sind, d a d u r c h g e k e n n z e i c h n e t , daß
 die Kontaktkraftfedern mit ihrem einen Ende an dem der
 Antriebsstange (11) zugewandten Ende der zweiarmigen Hebel
- 20 (55) angreifen und daß die der Antriebsstange (11) abqewandten Enden der zweiarmigen Hebel (55) an gesonderten Lagerstellen (58) des Widerlagers (60) gelenkig abqestützt sind.
- 5. Vakuumschalter nach Anspruch 3 oder 4, d a d u r c h g e k e n n z e i c h n e t , daß die zweiarmigen Hebel (21;55) bezüglich der an den Antriebsstößeln (15) befindlichen Drehpunkte gegensinnig abgekröpft sind.
- 30 6. Vakuumschalter nach den Ansprüchen 4 und 5, d a d u r c h g e k e n n z e i c h n e t , daß die Verbindungslinie der an dem Widerlager (60) und an dem Antriebsstößel (15) befindlichen Drehpunkte (58;20) jedes zweiarmigen Hebels (55) beim Ein- und Ausschalten von der rechtwinkligen
- 35 Stellung zur Bewegungsrichtung jedes Antriebsstößels (15) nur geringfügig abweicht:

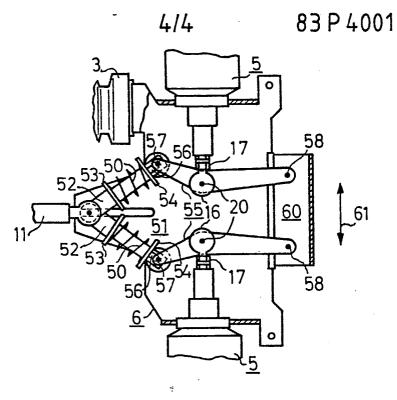
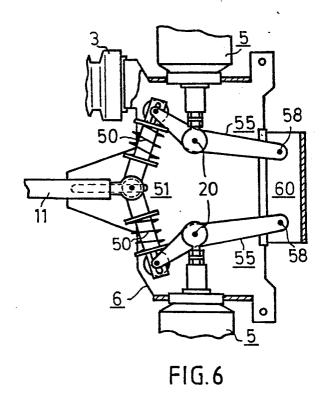



FIG.5

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 83 73 0125

EINSCHLÄGIGE DOKUMENTE				
Kategorie		nts mit Angabe, soweit erforderlich, geblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. ³)
A	CH-A- 477 081 * Spalte 2, Zei Zeile 16 *	(GAROY) ile 29 - Spalte 4,	1	н 01 н 33/66
- A	US-A-3 482 069 * Spalte 3, Zeil		1	
A	US-A-3 852 548 CORP.) * Figur 1 *	(ALLIS-CHALMERS	5	·
D,A	FR-A-2 075 511 * Figur 1 *	(G.E.C.)	1	
A	CH-A- 460 909 ELECTRICAL INDUS * Figur 1 *		1	RECHERCHIERTE SACHGEBIETE (Int. Cl. ³)
A	US-A-3 728 508 * Figur 2 *	(I.T.E.)	1	H 01 H 33/00 H 01 H 3/00
!				
		.		
Dei	vorliegende Recherchenbericht wur Recherchenort DEN HAAG	de für alle Patentansprüche erstellt. Abschlußdatum der Recherche 11-04-1984	JANSS	Prüfer SENS DE VROOM P.

EPA Form 1503. 03.82

KATEGORIE DER GENANNTEN DOKUMENTEN

X: von besonderer Bedeutung allein betrachtet

Y: von besonderer Bedeutung in Verbindung mit einer
anderen Veröffentlichung derselben Kategorie

A: technologischer Hintergrund

O: nichtschriftliche Offenbarung

P: Zwischenliteratur

T: der Erfindung zugrunde liegende Theorien oder Grundsätze

aucrise ratemovamment, uas jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

&: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument