(11) Numéro de publication:

0 115 983 A2

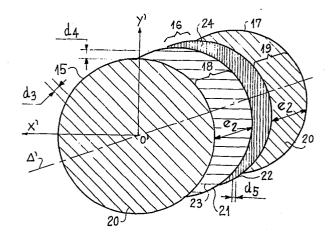
(12)

DEMANDE DE BREVET EUROPEEN

(1) Numéro de dépôt: 84400149.5

(f) Int. Cl.³: **H 01 Q 19/195**, H 01 Q 15/12

22 Date de dépôt: 24.01.84


30 Priorité: 31.01.83 FR 8301451

(7) Demandeur: THOMSON-CSF, 173, Boulevard Haussmann, F-75379 Paris Cedex 08 (FR)

- 43 Date de publication de la demande: 15.08.84 Bulletin 84/33
- (84) Etats contractants désignés: **DE GB**

- Inventeur: Gautier, François, THOMSON-CSF SCPI 173, bld Haussmann, F-75379 Paris Cedex 08 (FR) Inventeur: Bossuet, Patrice, THOMSON-CSF SCPI 173, bld Haussmann, F-75379 Paris Cedex 08 (FR)
- 64 Filtre spatial d'ondes électromagnétiques de polarisation circulaire, et antenne Cassegrain comportant un tel filtre.
- (5) Filtre spatial d'ondes électromagnétiques de polarisation circulaire comprenant trois réseaux conducteurs parallèles (15, 16 et 17), le réseau central (16) étant totalement réfléchissant pour une polarisation rectiligne de direction donnée et présentant un coefficient de réflexion non nul pour une polarisation rectiligne de direction perpendiculaire à la précédente.

Utilisation dans une antenne du type Cassegrain.

FILTRE SPATIAL D'ONDES ELECTROMAGNETIQUES DE POLARISATION CIRCULAIRE ET ANTENNE CASSEGRAIN COMPORTANT UN TEL FILTRE

La présente invention concerne un filtre spatial d'ondes électromagnétiques de polarisation circulaire fonctionnant dans le domaine des hyperfréquences. Une utilisation particulièrement intéressante d'un tel filtre est la réalisation d'une antenne du type Cassegrain avec une source primaire émettant des ondes en polarisation circulaire.

5

10

Un filtre de polarisation circulaire doit avoir par définition les propriétés suivantes : être transparent pour des ondes incidentes transmises avec une polarisation circulaire donnée et être réfléchissant pour des ondes incidentes transmises avec une polarisation circulaire inverse.

Selon une première réalisation existant à l'heure actuelle, un filtre de polarisation circulaire est composé de cinq réseaux de fils, représentés sur la figure 1, dont la description et le principe de fonctionnement vont être expliqués dans ce qui suit.

Le filtre comprend cinq réseaux 1 à 5, parallèles entre eux, centrés sur un même axe Δ et constitués de fils conducteurs parallèles. Les deux premiers réseaux 1 et 2 ainsi que les deux derniers 4 et 5 sont séparés par des âmes diélectriques 8 et 9, d'épaisseur donnée e_1 . Ces âmes diélectriques servent à la fois de support pour les réseaux et de trajet de longueur déterminée pour les ondes transmises entre ces réseaux. Pour ces quatre réseaux 1,2,4 et 5, le pas d_1 est voisin du quart de la longueur d'ondes à la fréquence centrale de la bande de fonctionnement. Par rapport à un système référentiel définissant l'angle d'incidence et la polarisation de l'onde incidente et constitué par deux axes OX et OY orthogonaux dont l'origine O est située sur l'axe Δ et perpendiculaires à ce dernier, les fils 6 de ces quatre réseaux sont parallèles à une

même direction faisant un angle de 45° avec la direction des fils du réseau 3. Ces réseaux présentent un coefficient de réflexion selfique pour la composante du champ parallèle aux fils :

$$r_1 = \frac{1}{2}$$
 (j-1),

20

25

30

j étant le nombre imaginaire tel que $j^2 = -1$ et $r_1 = 0$ pour la composante du champ perpendiculaire aux fils.

Dans le cas particulier de la représentation graphique de la figure 1, les fils 6 sont parallèles à une direction faisant un angle de 45° avec les axes OX et OY.

Le troisième réseau 3 est parallèle aux précédents et situé entre les réseaux 2 et 4. Le pas d₂ des fils métalliques parallèles 7 qui le constituent et qui sont parallèles à la direction de l'axe de référence OY est très inférieur à \(\lambda/4\), de sorte que ce réseau 3 présente un coefficient de réflexion r₂ = -1 pour la composante du champ parallèle aux fils 7 et r₂ = 0 pour la composante du champ perpendiculaire aux fils.

Le premier ensemble constitué des deux premiers réseaux 1 et 2 séparés par l'âme diélectrique 8 joue le rôle d'un polariseur circulaire transformant la polarisation circulaire des ondes incidentes en polarisation rectiligne. Cette polarisation rectiligne est orientée à 45° par rapport aux fils 6. Le réseau central 3 à pas serré joue le rôle de filtre de polarisation rectiligne, transparent pour une polarisation rectiligne perpendiculaire à la direction des fils 7 et totalement réflechissant pour une polarisation rectiligne parallèle à leur direction. Enfin, le deuxième ensemble constitué par les deux derniers réseaux 4 et 5 séparés par l'âme diélectrique 9 sert de polariseur, transformant la polarisation rectiligne des ondes transmises par le filtre précédent en polarisation circulaire.

Le fonctionnement du filtre de polarisation circulaire qui vient d'être décrit est par exemple le suivant.

On obtiendra, en sortie du premier polariseur circulaire, une polarisation rectiligne de direction parallèle à l'axe OY pour une polarisation circulaire gauche incidente par exemple et une polarisation rectiligne de direction parallèle a l'axe OX pour une polarisation circulaire droite incidente. Puis, l'onde incidente dont le sens de polarisation circulaire est tel que le premier polariseur la transforme en une onde à polarisation rectiligne de direction parallèle aux fils 7 du filtre de polarisation rectiligne est totalement réfléchie par lui et traverse en sens inverse le premier polariseur qui la retransforme en onde à polarisation circulaire de même sens. Par contre, l'onde incidente de polarisation circulaire inverse est transmise par le filtre avec une polarisation rectiligne de direction perpendiculaire aux fils 7 du filtre. Elle est enfin transformée à nouveau par le second polariseur en onde à polarisation circulaire droite.

5

10

15

25

30

Ainsi, suivant l'orientation des fils 7 du réseau central 3 à pas serré, le filtre global est transparent uniquement pour une polarisation circulaire gauche ou droite.

Une seconde réalisation actuelle d'un filtre de polarisation circulaire est décrite dans le brevet français déposé le 30 Décembre 1966 au nom de la Demanderesse et publié sous le numéro 1 512 598.

20 Ce filtre, représenté sur la figure 2 est formé d'un réseau 10 d'éléments résonnants 11, chaque élément étant formé d'un fil métallique coudé en trois tronçons 12, 13 et 14 perpendiculaires entre eux, en forme de "manivelles".

Ces deux réalisations présentent l'inconvénient d'être difficiles à réaliser, la première en raison du nombre d'éléments à réaliser et à assembler conduisant à une solution lourde du point de vue mécanique, la seconde en raison du réseau de fils à trois dimensions.

Le filtre de polarisation circulaire, objet de l'invention, vise à résoudre ce problème. Pour cela, il comprend deux réseaux conducteurs parallèles et un troisième réseau conducteur central, parallèle aux deux premiers réseaux placé entre eux et séparé de chacun d'eux par une âme diélectrique totalement réfléchissant pour une polarisation rectiligne de direction dennée et présentant un coefficient de réflexion non nul pour une polarisation rectiligne de direction

perpendiculaire à la précédente.

5

10

20

25

30

Selon une caractéristique de l'invention, le troisième réseau central est composé de deux réseaux de fils conducteurs imbriques, l'un étant constitué de fils parallèles dont la direction fait un angle de 45° avec celle des fils de deux premiers réseaux et dont le pas est voisin du quart de la longueur d'onde à la fréquence centrale de la bande de fonctionnement et l'autre étant constitué de fils parallèles dont la direction est orthogonale à la précédente et dont le pas est très inférieur à $\lambda/4$.

D'autres caractéristiques et avantages de l'invention apparaîtront dans la description qui suit, illustrée par les figures qui outre les figures 1 et 2 déjà décrites représentant deux réalisations de filtre selon l'art antérieur, représentent:

- les figures 3 et 4 : deux variantes de réalisation d'un filtre de polarisation circulaire selon l'invention;
- la figure 5 : une antenne Cassegrain utilisant un filtre de polarisation selon l'invention.

Avant de décrire le filtre de polarisation circulaire selon l'invention il faut revenir au filtre de l'art antérieur, comprenant cinq réseaux conducteurs. On montre mathématiquement que l'ensemble constitué par les trois réseaux du centre, 2, 3 et 4 présente les deux propriétés radioélectriques suivantes:

- il est totalement réfléchissant pour une polarisation rectiligne de direction parallèle aux fils 7 du réseau central 3 à fils serrés,
- il présente un coefficient de réflexion non nul pour une polarisation rectiligne de direction perpendiculaire aux fils 7 du réseau 3. Ce coefficient de réflexion est dû à la présence des réseaux 2 et 4 et égal à r₁.

La solution proposée par l'invention consiste à remplacer l'ensemble de ces trois réseaux conducteurs par un réseau unique ayant les mêmes propriétés radioélectriques.

Selon l'exemple de réalisation représenté sur la figure 3, le filtre de polarisation circulaire selon l'invention comprend trois

réseaux conducteurs parallèles 15, 16 et 17 et deux âmes diélectriques 18 et 19.

Comme précédemment, on définit un système référentiel de trois axes orthogonaux Δ ' et OX' et OY' et d'origine O.

5

Les deux réseaux 15 et 17 sont constitués de fils conducteurs 20 parallèles à une même direction . Le pas de ces réseaux 15 et 17 est voisin de λ /4. Le réseau central 16 est placé entre ces deux réseaux extrêmes et en est séparé de part et d'autre par les deux âmes diélectriques d'épaisseur e2. Ce réseau central, qui a les propriétés radioélectriques précédemment décrites, peut être réalisé par exemple à partir de deux réseaux 21 et 22 imbriqués de fils conducteurs parallèles. L'un d'eux 21 est un réseau de fils parallèles 23 dont le pas d4 est voisin de λ /4 et dont la direction est orthogonale à celle des fils parallèles 24 de l'autre réseau 22. Ce dernier est à pas d5 très sérré, inférieur à λ /4. Les fils 20 des deux réseaux 15 et 17 ont une direction faisant un angle λ de 45° avec celles des fils 23 et 24 des deux réseaux imbriqués respectifs 21 et 22.

En réalité, il est très difficile pratiquement de réaliser un tel réseau central 16 constitué de deux réseaux de fils imbriqués en évitant tout couplage entre eux. Pour pallier cette difficulté, ce réseau central 16 peut être réalisé de façon préférentielle à partir d'un circuit imprimé double face, chacun des deux réseaux 21 et 22 étant déposé sur une des deux faces, opposées l'une à l'autre par photogravure par exemple, leurs fils 23 et 24 respectifs étant perpendiculaires mais sans contact entre eux.

Sur la figure 4 est représentée une variante de réalisation d'un réseau central 16 ayant les deux propriétés radioélectriques décrites auparavant. C'est un réseau conducteur de fentes résonnantes 25 en 30 forme de croix, dont les dimensions et l'espacement sont déterminés pour obtenir ces propriétés. Leurs dimensions sont telles que ces fentes sont équivalentes aux deux réseaux orthogonaux imbriqués de fils parallèles. Les espacements d₆ et d₇ entre les croix 25 adjacentes sont respectivement de l'ordre de λ /2 pour d₆ et très

inférieur à $\lambda/4$ pour d₇.

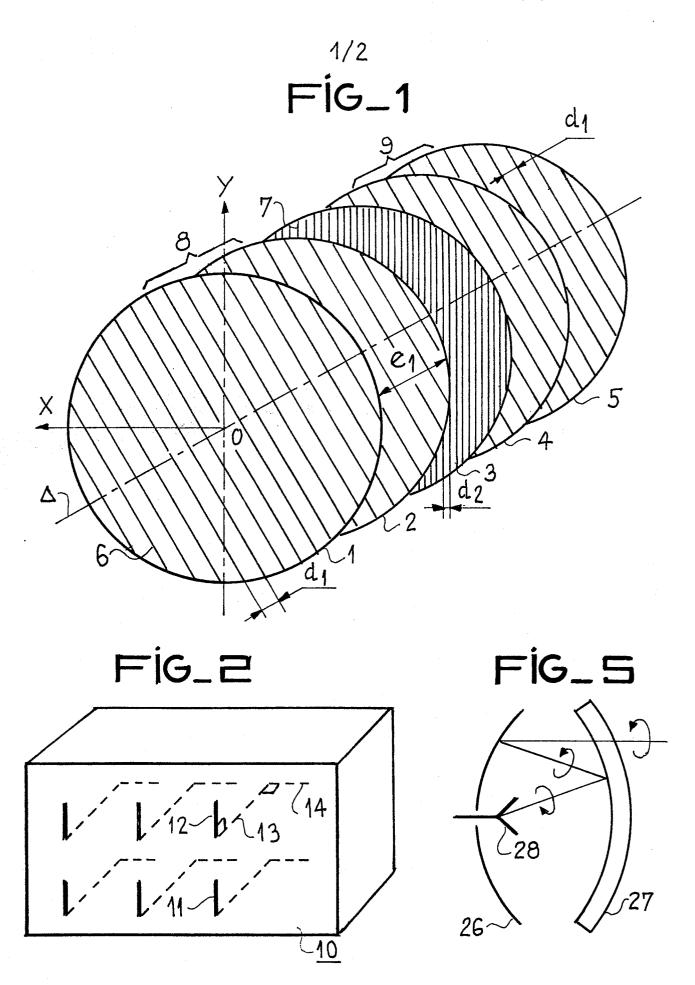
5

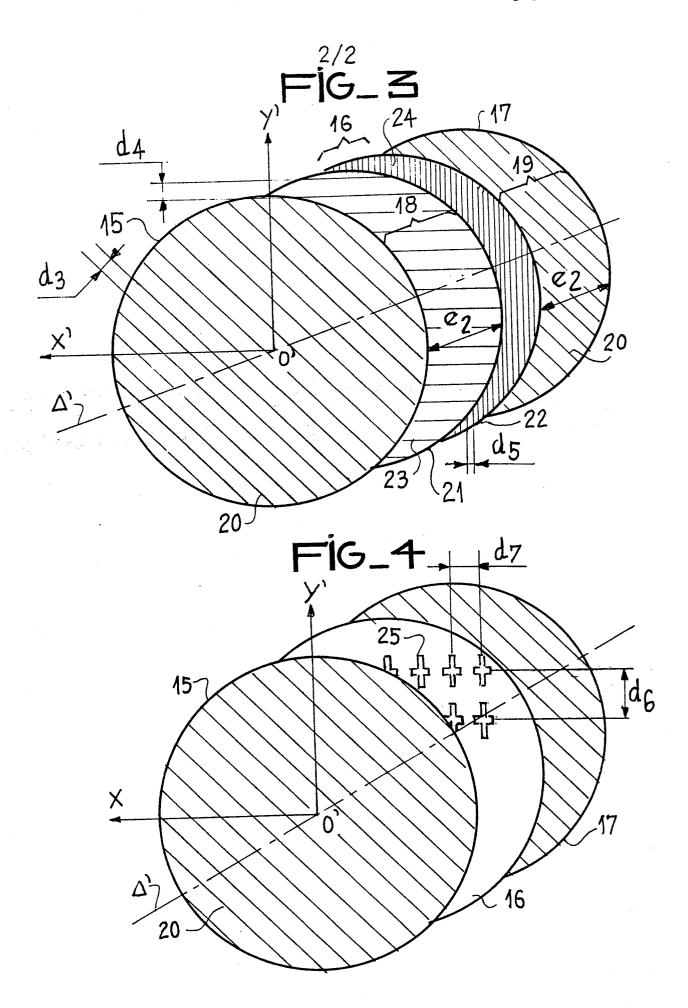
10

Selon une autre variante de réalisation, le réseau central conducteur 16 peut être percé d'antennes de forme particuliere, ayant toujours les mêmes propriétés radioélectriques.

En ce qui concerne les conditions de fonctionnement, ce filtre fonctionne correctement en présence d'ondes planes pour des dimensions d'au moins $5\ \lambda$. Il est sélectif en fréquence – quelques pour cent – et en incidence.

Une application particulièrement intéressante de ce filtre est la réalisation d'une antenne Cassegrain dont la source primaire rayonne des ondes selon une polarisation circulaire. Sur la figure 5 est représentée schématiquement une telle antenne comprenant un réflecteur principal 26, un réflecteur auxiliaire 27 et une source d'ondes en polarisation circulaire 28. Le réflecteur auxiliaire 27 est constitué par un filtre de polarisation circulaire selon l'invention, réfléchissant totalement la polarisation des ondes incidentes émises par la source 28 mais transparent pour la polarisation inverse réfléchie par le réflecteur principal 26.


REVENDICATIONS


- 1. Filtre spatial d'ondes électromagnétiques de polarisation circulaire comprenant deux réseaux conducteurs paralleles (15 et 17), caractérisé en ce qu'il comprend un troisième réseau conducteur central (16), parallèle aux deux premiers réseaux (15 et 17), placé entre eux et séparé de chacun de ces deux réseaux extrêmes par une âme diélectrique (18 et 19), totalement réfléchissant pour une polarisation rectiligne de direction donnée et présentant un coefficient de réflexion non nul pour une polarisation rectiligne de direction perpendiculaire à la précédente.
- 2. Filtre selon la revendication 1, caractérisé en ce que les deux réseaux extrêmes (15 et 17) sont chacun constitués de fils conducteurs (20) parallèles à une même direction et de pas (d₃) voisin du quart de la longueur d'onde \(\lambda\) à la fréquence centrale de la bande de fonctionnement du filtre et en ce que le réseau central (16) est réalisé à partir de deux réseaux (21 et 22) imbriqués de fils conducteurs, l'un d'eux (21) étant constitué de fils parallèles (23) de pas (d₄) voisin de \(\lambda\) /4 et de direction orthogonale à celle des fils parallèles (24) constituant l'autre réseau (22), de pas (d₅) serré inférieur à \(\lambda\)/4, la direction des fils (20) des deux réseaux extrêmes (15 et 17) faisant un angle de 45° avec celles des fils (23 et 24) des deux réseaux imbriqués respectifs (21 et 22)
 - 3. Filtre selon la revendication 2, caractérisé en ce que le réseau central (16) est réalisé à partir d'un circuit imprimé double face, chacun des deux réseaux (21 et 22) le constituant étant déposé sur une des deux faces opposées l'une à l'autre, de ce circuit imprimé.

25

4. Filtre selon la revendication 1, caractérisé en ce que le réseau central (16) est composé de fentes résonnantes (25) en forme de croix de dimensions déterminées et dont les espacements (d_6 et d_7) entre fentes adjacentes sont respectivement de l'ordre de $\lambda/2$ et très inférieur à $\lambda/4$.

5. Antenne du type Cassegrain susceptible d'être éclairée par une source primaire d'ondes électromagnétiques de polarisation circulaire et comprenant un réflecteur principal (26) et un réflecteur auxiliaire (27), caractérisé en ce que le réflecteur auxiliaire (27) est constitué par un filtre d'ondes électromagnétiques selon l'une des revendications 1 à 5.

