(11) Publication number:

0 118 243

A2

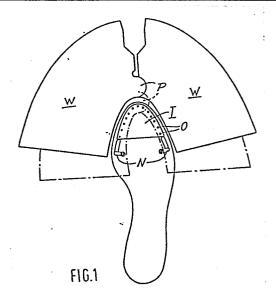
(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 84300994.5

(22) Date of filing: 16.02.84

(5) Int. Cl.³: A 43 D 25/18 A 43 D 25/047, A 43 D 21/16


(30) Priority: 02.03.83 DE 3307388 02.03.83 US 469503

- (43) Date of publication of application: 12.09.84 Bulletin 84/37
- (84) Designated Contracting States: DE FR GB IT
- (71) Applicant: THE BRITISH UNITED SHOE MACHINERY **COMPANY LIMITED Union Works Belgrave Road** Leicester LE4 5BX(GB)
- (84) Designated Contracting States: GB
- (71) Applicant: USM Corporation 426 Colt Highway Farmington Connecticut 06032(US)
- (84) Designated Contracting States: FR IT

- (71) Applicant: **DEUTSCHE VEREINIGTE** SCHUHMASCHINEN GmbH In der Au 18-22 D-6000 Frankfurt/Main-Rodelheim(DE)
- (84) Designated Contracting States: DE
- (72) Inventor: Giebel, Gerhard Hubertusstrasse 12 D-6232 Bad Soden 2(DE)
- (72) Inventor: Simmonds, Robert Charles, Jr. 352 Ipswich Road Boxford, MA(US)
- (72) Inventor: Gilbride, Andrew John 77 Grant Road Swampscott, MA(US)
- (74) Representative: Atkinson, Eric et al, USMC International Limited Patents Department P.O. Box No. 88 Belgrave Road Leicester LE4 5BX(GB)

(54) Lasting shoes using adhesive.

(57) In lasting shoes from the toe end at least over the ball region, adhesive is applied by an imprinter (I;11) and nozzles (N;34), the region in which adhesive is applied by the plate extending from the toe end of the shoe and lying within, but being substantially smaller than, the region inwiped by the toe wiper assembly (W;7). The nozzles (M;34) may be guided by any suitable control, e.g. shoe-edge guidance, template (56) or programmed control. In one embodiment adhesive application takes place with the wiper assembly (W;7) in an intermediate position in which the wipers have just traversed the insole margin, such arresting of wiper assembly causing a "fall-away" signal to be supplied, in response to which the nozzles (N;34) begin their application of adhesive from adjacent the injector plate (I;11) heelwardly. When the nozzles (N;34) have moved out of the region to be wiped by the wiper assembly (W;7), the wiper assembly (W;7) is caused to continue its inwiping movement.

EP

LASTING SHOES USING ADHESIVE

1

5

10

The present invention is concerned with lasting shoes using adhesive, more especially with a method of lasting shoes, using adhesive, from the toe to at least over the ball region thereof, wherein the toe and forepart region of the shoe is inwiped by means of a pair of wiper plates mounted for inwiping movement about a common pivot located at or adjacent the toe end of the shoe, and wherein the adhesive is applied partly by means of an imprinter plate which is pressed against the shoe bottom and partly by nozzles movable along opposite sides of the shoe.

Such a method is described in, for example, U.S. Patent Specification No. 3399411. In carrying out this method, the region to which adhesive is applied by the imprinter plate extends substantially co-extensively with the region inwiped by the pair of wiper plates. Furthermore, for any change of wiper plates e.g. for changes in the style of the shoe or indeed in some circumstances for changes in size, it is considered 20 necessary to change also the imprinter plate in order to ensure that the wiper plates properly co-operate with the imprinter plate, and for example to avoid any risk of collision as the wiper plates move into engagement with the This is especially desirable, but not exclusively 25 so, where the wiper plates are first brought into an intermediate position, while the insole continues to be pressed against the last bottom, as described e.g. in U.S. Patent No. 3579691.

of shoes fall within a relatively small number of what may be termed "generic" styles, e.g. rounded pointed, square. What is more, in most cases within each generic style, the toe region i.e. the region closely adjacent the toe end of the shoe end extending only a relatively short distance

therefrom, does not vary significantly between individual 1 styles.

5

As mentioned above, the present invention is regarded as especially desirable, but not exclusively so, in the case of an apparatus of the type described in U.S. Patent No. 3579691, which apparatus comprising a wiper assembly which lays the lasting margin over the insole which has been pressed against the last before the lasting by an adhesive injector plate, and a control by which the movement of the wiper assembly is arrested in an intermediate position in which the wiper assembly has just traversed the margin of the insole, the control also comprising a signalling device which supplies a "fall away" signal which effects the falling away of the injector plate 15 from the insole when the wiper assembly is arrested.

In this apparatus, by stopping the wiper assembly in the intermediate position the result is achieved that the injector plate presses the insole to the last bottom as long as possible, namely until, in the 20 intermediate position reached by the wiper assembly, the latter holds the margin of the insole and thus has taken it In this way any bending of the insole as the wiper assembly moves inwardly is avoided with certainty, such bending being especially possible otherwise when flexible insoles are being used. Since upon reaching the 25 intermediate position the wiper assembly has already reached significant proximity to the injector plate, the falling away of the injector plate prior to the continued movement of the wiper assembly is ensured by the arresting of the wiper assembly and the "fall away" signal, so that 30 the wiper assembly cannot collide with the injector plate as it continues its movement.

It is known from German Patent Specification No. 1685424 to provide in addition to an adhesive imjector plate adhesive injector nozzles which are moved in the direction from the heel end towards the toe, so that

- adhesive bands adjacent to one another are applied. In this case, however, the injector plate extends from the toe into the height of the ball region, while the injector nozzles cover the region from the heel end up to the injector plate. In this known apparatus, furthermore, no
- injector plate. In this known apparatus, furthermore, no measures are provided whereby a wiper assembly associated with a lasting region is arrested in an intermediate position, where the lasting region of the assembly corresponds substantially with the area of application of
- the injector plate. Consequently the patent specification contains no reference to the supply of a particular "fall away" signal in order to ensure that the injector plate has fallen away from the insole before the wiper assembly is closed.
- 15 If the adhesive applied by the injector plate extends substantially over the region wiped by the wiper assembly, which region normally extends up to the ball region, then some compromise must be accepted with the injector plate insofar as it has to apply the adhesive for 20 narrow and broad shoes depending upon the shoe size. With wide shoes the adhesive coating necessarily lies further inwardly on the insole than in the case of narrow shoes.

It is an object of the present invention to provide an improved method of lasting shoes, in carrying out which method the region to which adhesive is applied by the imprinter plate is maintained standardised for a generic style, regardless of changes of the area unwiped by the wiper plates for each individual style.

This object is resolved in accordance with the invention in that, in a method as set out in the first paragraph above, the region to which adhesive is applied by means of the imprinter plate extends from the toe end of the shoe and lies within, but is substantially smaller than, the region inwiped by said pair of wiper plates.

It will thus be appreciated that by this method it is possible to use an imprinter plate which, because it

covers only a portion of the region inwiped by the wiper plates, can be used in combination with more than one set of such wiper plates, the nozzles then being used for applying the adhesive in the region no longer covered by the imprinter plate as well as beyond such area.

It has furthermore been found especially advantageous where the region to which adhesive is applied by the imprinter plate extends approximately 50mms (2") measured from the toe of the shoe, along the longitudinal centre line of the toe region of the shoe. Where the 10 imprinter plate is so dimensioned, it is considered to be suitable for use with at least the great majority of individual styles within a generic style, thus rendering it necessary to provide only one such plate for each generic 15 style. What is more, where the imprinter plate also serves to hold the insole against the last bottom during an initial inwiping stage of the wiper plates, an imprinter plate of such size has been found to be nevertheless adequate.

20 Preferably the nozzles apply adhesive starting adjacent the imprinter plate and being moved progressively heelwards therefrom. Furthermore, the method in accordance with the invention has been found especially advantageous where the nozzles apply adhesive along the side portions of the shoe up to the heel breast region thereof.

It will of course be appreciated that, while the imprinter plate can be considered as "standardised", the path of movement of the nozzles in carrying out the method in accordance with the invention has to be controlled according to the individual style of shoe to be lasted. To this end, therefore, preferably the nozzles are guided along the shoe bottom by control means according to a pre-programmed set of parameters appropriate to the style of shoe lasted. More particularly, conveniently the control means comprises a computer which, in accordance with a preselected set of digitized co-ordinate axis values

1 stored in memory means associated with said computer, supplies control signals to n.c. motors (as herein defined) by which the nozzles are moved along the side portion of the shoe.

The term "n.c. motor" where used herein is to be 5 understood as a motor the operation of which is controlled by control pulses supplied thereto in accordance with digitized information appropriate to the desired operation of the motor. Where two motors operate in conjunction with one another, e.g. to move a tool along a desired path, the 10 digitized information is usually in the form of digitized co-ordinate axis values. Examples of such motors are stepping motors and d.c. servomotors.

It is a further object of the present invention 15 to provide an improved footwear lasting apparatus in the operation of which the adhesive coatings may be accommodated to different shoe widths, while however preserving the need for pressing the insole against the last by means of the injector plate and the taking over of 20 the insole by the wiper assembly in the intermediate position thereof, without thereby losing the required certainty that the wiper assembly cannot collide with a component of the apparatus, for which purpose the "fall away" signal mentioned in the introduction is used to effect the falling away of the injector plate from the 25 insole.

This further object is resolved in accordance with the invention, in an apparatus as set out in the fourth paragraph above, in that the "fall away" signal is supplied to a latching member which is controlled by a sensor, which in the region of advance is associated with adhesive injector nozzles movable from adjacent the injector plate away therefrom, in such a manner that as the injector nozzles move, the sensor unlatches the latching 35 member after the nozzles have moved over the region which is wiped by the wiper assembly and when they reach a

position in which the wiper assembly can continue its 1 movement, the latching element initiating the closing of the wiper assembly.

5

Alternatively, the said further object is resolved, also in accordance with the invention, in an apparatus as set out in the fourth paragraph above, that the "fall away" signal is supplied to a timer member which with regard to adhesive injector nozzles movable from adjacent the injector plate away therefrom initiates the 10 closing of the wiper assembly after the nozzles have moved over an area wiped by the wiper assembly and at the earliest when they have reached a position in which the movement of the wiper assembly can be continued.

In both cases the region wiped by the wiper assembly is provided for in respect of the adhesive coating 15 on the one hand by the injector plate (in the toe region of the shoe) and on the other by the adhesive imjector nozzles (in the adjacent region in the direction of the ball region), whereby only that region of the shoe forepart 20 which extends from the toe up to the ball region is left to the injector plate, in which with different shoe sizes the particular width of the shoe is not substantially altered. In the following region, which extends into the ball region and beyond, wherein changes of the shoe size are rendered more strongly noticeable by changes in width, the adhesive coating is achieved by means of the adhesive injector nozzles, which with regard to their guidance can be accommodated in known manner as desired to the particular desired shoe contour, for example by sensing the lasting margin or the insole edge or by template or programmed control. Accordingly, by means of the latching member or the timer member, as the case may be, it is ensured that in this case too the injector nozzles are moved away from the injector plate sufficiently far that the wiper assembly can continue its movement unhindered. In the case of the use 35 of the latching member this is achieved by the feeler which is actuated by the injector nozzles and which unlatches the latching member by means of a signal, while in the case of the use of the timer member this ensures that the "fall away" signal is delayed for a period until the injector nozzles have with certainty reached a position in which they can no longer hinder the continued movement of the wiper assembly.

In the case of the use of the latching member the falling away of the injector plate can be controlled in On the one hand this can take place so 10 different ways. that the "fall away" signal is supplied to the actuating means for the injector plate, bypassing the latching In this case, therefore, a relative early falling away of the injector plate takes place. On the other 15 hand, the control can also ensure that the unlatching of the latching member initiates the falling away of the injector plate. In this case the injector plate presses against the insole for a relatively long period, whereby the adhesive applied by the injector plate is then 20 prevented from cooling at too early a time.

Also in the case of the use of the timer member such a different control can be used. On the one hand the "fall away" signal is supplied to the actuating means for the injector plate, bypassing the timer member. In this case, therefore, similarly as in the previously described case a relatively early falling away of the injector plate takes place. On the other hand, the falling away of the injector plate can be initiated also by the timer member itself. In this case, therefore, the pressing of the injector plate against the insole is maintained for a longer period.

In this connection it is pointed out that in the case of the use of the latching member and the initiation of the falling away of the injector plate by the unlatching of the latching member it is possible to select the position of the sensor so that it is actuated by the

injector nozzles at a point in time wherein the injector nozzles have not yet completely moved out of the region covered by the wiper assembly. In this case the speed of the movement of the wiper assembly and of the movement of the injector nozzles must be determined relative to one another such that in any event in the closed position of the wiper assembly no injector nozzle stands in the way thereof.

An additional degree of security with respect to 10 the prevention of the collision of the wiper assembly against the injector plate is provided in that the initiation of the continuation of the movement of the wiper assembly as compared with the initiation of the falling away of the injector plate is delayed by a delaying member. In this way it is ensured that the continuation of movement 15 of the wiper assembly is initiated only by the time span defined by the delaying member after the initiation of the falling away of the injector plate. This is especially of significance if, in the apparatus in question, the wiper 20 assembly in its intermediate position is already close to the injector plate.

An injector plate length which takes into account both pressing the insole sufficiently against the last and also the difference in shoe width depending upon different shoe sizes is obtained when the start of the path of the injector nozzles, being adjacent the end of the injector plate facing the ball region, is disposed substantially at the middle of the forepart of the shoe, extending from the toe of the shoe to the ball region. In this case the 30 injector plate extends also up to the middle of the shoe forepart portion, so that it can perform its pressure function in respect of half the length of the shoe forepart, which has generally shown itself to be In the middle of the shoe forepart portion sufficient. 35 changes of shoe size do not have an especially strong influence on a particular width of shoe, so that with such

a shape of the injector plate and the guidance of the 1 injector nozzles a large number of shoe shapes and sizes are accommodated with a single injector plate. way there arises a certain standardisation for the injector plate, which leads to a significant cheapening of the tools 5 necessary for the lasting operation. In order that, in the transitional region from the injector plate to the path of the injector nozzles, no interruption of the adhesive coating arises, the path of the injector nozzles can be so 10 shaped that it overlaps the position of the injector plate when the latter is in pressing condition. In this case the control for the injector nozzles need merely to be so constructed that, before bringing the injector plate against the insole, the nozzles have traversed a short region which is then, after the continuation of the movement of the injector nozzles away from the toe, also embraced by the injector plate, which is brought into contact with the insole only after the continuation of movement of the injector nozzles.

The apparatus, furthermore, reveals the advantage 20 of the use of different adhesives for the region catered for by the injector plate and the region traversed by the injector nozzles. This is of important because especially the ball region is subjected to substantially stronger 25 flexing movements when the shoe in question is being worn than is the case for the toe region. For this purpose the injector plate and the injector nozzles are connected to separate adhesive supplies each with different adhesive, an adhesive which remains elastic being supplied to the 30 injector nozzles, while the injector plate has an adhesive which hardens off more strongly. The latter adhesive normally has the property that it hardens off more quickly, which is of special significance for rapid and reliable bonding in the toe region.

There now follows a detailed description, to be read with reference to the accompanying drawings, of one

1 method of lasting shoes and one apparatus for lasting shoes, said method and apparatus being in accordance with the present invention. It will of course be appreciated that this method and this apparatus have been selected for description by way of non-limiting example only.

In the accompanying drawings:-

10

20

25

35

Figure 1 is a schematic view of a shoe bottom, indicating the regions thereof to which adhesive is applied respectively by an imprinter plate and by nozzles and also the region inwiped by a pair of wiper plates;

Figure 2 is a diagrammatic representation of the apparatus in accordance with the invention, said apparatus utilising a latching member;

Figure 3 is a diagrammatic representation of an apparatus otherwise generally similar to that of Figure 2, but showing a timer member to replace the latching member; and

Figure 4 is a side view of the apparatus in accordance with the invention, showing various constructional details thereof.

The method in accordance with the invention now to be described is a method of lasting shoes, more especially of lasting toe, forepart and side regions of shoes. Conventionally the toe and forepart regions of shoes are today lasted by so-called pulling over and toe lasting machines, while the side portions are thereafter lasted by so-called side lasting machines. However, it has been proposed to combine these operations in a single apparatus: see e.g. European Patent Application No.

30 81305977.1 (Publication No. 0055107). It is intended that the present invention may be carried out in such a combined machine suitably modified for the purpose.

Thus in carrying out this method in accordance with the present invention, the shoe to be lasted, comprising a shoe upper on a last and an insole on the last bottom, is placed, bottom down, on a shoe support and the

margin of the upper is located in a plurality of grippers arranged around the shoe support in conventional manner. The upper is then tensioned over its last, again as is conventional, and a pair of wiper plates W, mounted for inwiping movement about a common pivot P located at or adjacent the toe end of the shoe, are brought into an intermediate position in which they trap the upper against the margin of the insole, the grippers at the same time releasing their grip and also a toe band being applied to press the upper against the last immediately above the wiper plates. Again such a method is described in the aforementioned European Patent Application.

In this position two nozzles N are brought into engagement with the shoe bottom and also an imprinter plate I. The imprinter plate I extends from the toe of the shoe heelwardly approximately 50 mm (2"), as measured along the longitudinal centre line of the toe region of the shoe; that is to say, the plate I, and thus the region of the insole covered thereby, is substantially smaller than the region to be inwiped subsequently by the wiper plates W.

15

20

The nozzles N are caused to move heelwardly, from a position adjacent the imprinter plate I, along opposite sides of the shoe bottom, in a manner substantially as described in the aforementioned European Patent

25 Application; that is to say, the nozzles N are guided e.g. by computer control means supplying drive signals to suitable n.c. motors (as herein defined), in accordance with a set of digitized co-ordinate axis values stored in suitable memory means associated with the computer, such set being selected according to the style of shoe being operated upon and modified according to the size of such shoe. (This size may conveniently be measured by the movement of the heel rest against the shoe, as described in

In carrying out the method in accordance with the invention, as soon as the nozzles N have passed beyond the

the aforementioned European Patent Application).

region to be inwiped by the wiper plates W, the latter are caused to continue their inwiping movement. Such further movement is controlled by the computer control means, which is also effective to ensure that the imprinter plate I is moved out of engagement with the insole so as to avoid any rise of collision of the wiper plates W with the imprinter plate I, as described in the aforementioned U.S. Patent No. 3579691.

The side lasting of the shoe can take place, in carrying out the method in accordance with the invention, using any suitable conventional means. For example, as in the machine described in European Patent Application, lasting rolls may be used. Alternatively conventional lasting fingers or lasting bands may be used, in which case, side lasting can take place only after the nozzles N have completed their movement. Again within the scope of the present invention is included a method in which a shoe is lasted from the toe over the ball region only; in carrying out such a method conventional ball wipers linked to the wiper plates may be used.

Although in carrying out the method described above the wiper plates are arrested in an intermediate position, whereafter the application of adhesive takes place, it is to be understood that in carrying out other methods in accordance with the invention the application of adhesive can take place before any inwiping movement of the wiper plates is initiated.

Further details of the present invention are now to be described with reference to the apparatus shown in 30 Figures 2 to 4. It will be appreciated that, unlike the machine described in the aforementioned European Patent Application, this apparatus is suitable for lasting shoes from the toe end over the ball region up to the shank region only.

In Fig. 2 is shown a lasted shoe 9 which is held in its position (see also Fig. 4) by means only partially

shown in Fig. 2. Against the insole 8 of the shoe 9 is 1 disposed a shoe support 10 which is so small that it remains in position even when the wiper assembly is moved Furthermore pressed against the insole 8 is the injector plate 11 which substantially surrounds the shoe 5 The injector plate 11 has channels 16 which serve for the supply of adhesive. In front of the shoe is disposed the wiper assembly 7 which is journalled in the mounting 5. The wiper assembly 7 is actuated by means of 10 the ram head 17, which applies pressure to the mounting 5. The ram head 17 is positioned at the end of the ram 18, which serves as the advancing arrangement for the wiper assembly and which is journalled in the piston 4. piston 4 is moved to-and-fro in the cylinder 19 by means of 15 hydraulic or pneumatic forces. The ram 18 extends through the piston 4 towards the other side and terminates in the abutment 1. When the piston 4 is advanced towards the right the abutment 1 of the ram 18 moves therewith until the abutment 1 reaches the chain-dot position in which it 20 engages the wedge 2. The wedge 2 is supported on the actuator mechanism 3 which enables the wedge 2 to be withdrawn.

The injector plate 11 is mounted on actuating means comprising the ram 20 and the piston 21, the latter 25 being moved hydraulically or pneumatically to-and-fro in the cylinder 22.

When this apparatus is actuated the following detailed steps take place:

In response to an appropriate initiation, e.g.

30 actuation of the apparatus by an operator by depressing a treadle, the piston 4 is hydraulically or pneumatically actuated. The piston 4 is thus moved to the right, moving both the wiper assembly 7 therewith, through the ram head 17, and also the abutment 1, through the ram 18. This advancing movement takes place until the abutment 1 engages the wedge 2, whereupon the wiper assembly assumes the

chain-dot position in which it has just traversed the lasting margin 25. The continuation of movement of the piston 4 of the wiper assembly 7 is prevented first by the engagement of the abutment 1 with the wedge 2. With the engagement of the abutment 1 with the wedge 2 the valve 30, which serves as a signalling device, is actuated, whereby the pressure medium supplied to the source 31 is switched and applies pressure in the line 32, which leads to the latching valve 33, serving as a latching member.

10 By means of an advance control (which is known but not of interest in this connection), furthermore, the adhesive injector nozzle 34 is guided over the insole 8 adjacent the lasting margin, and indeed starting from the injector plate 11 away therefrom, the injector nozzle 34 passing over substantially the ball region of the lasted 15 During this advance of the injector nozzle 34, the latter, by means of its cam 35, engages the plunger of the valve 36, as shown in Fig. 2, so that in the position shown the valve 36 is switched through the injector nozzle 34 and thus the pressure fluid at the source 37 is switched via the line 38 to the latching valve 33. continuation of the movement of the injector nozzle 34 is then maintained, as well as the supply of adhesive; details in this connection are not material.

By switching the pressure fluid through the valve 36 the latching valve 33 is switched, whereupon the pressure fluid at the line 32 is switched through on the one hand to the line 39, which leads to the cylinder 22, and on the other hand through the line 40, from where the fluid pressure is supplied to the auxiliary valve 41. At the cylinder 22 the supplied pressure fluid effects the downward movement of the piston 21 and thus the falling away of the injector plate 11, which finally reaches the chain-dot position. The injector plate thus no longer stands in the way of the continuation of the movement of the wiper assembly 7.

At the source 42 for the auxiliary valve 41 1 pressure fluid is also available, which is switched, when charged via the line 40, so that the pressure is removed from the line 43 and switched to the line 44. actuating mechanism 3 was previously actuated via the line 5 43 and thus had brought the wedge 2 into the position shown With the switching of the pressure from line 43 to line 44 the actuator mechanism 3 is now actuated in reverse direction, so that it withdraws the wedge 2 into the position shown in chain-dot. As a consequence of the inclination of the abutment surfaces 29 this withdrawal of the wedge 2 can take place without difficulties. way, the further path of the piston 4 with the ram 18 is left free, so that the wiper assembly 7 can advance further 15 from its intermediate position shown in chain-dot into its In this movement it is not hindered by the end position. pressure plate 11, since the latter, as already mentioned, has previously fallen away (see chain-dot position). By the actuation of the valve 36, which acts as a sensor, it is also thereby ensured that the injector nozzle 34, and in 20 the same way also the other injector nozzle for the other side of the shoe, not shown in Fig. 2, is moved out of the region which is traversed by the wiper assembly, so that altogether the closing of the wiper assembly 7 is in no way 25 hindered.

The auxiliary valve 41 has not only the object of switching pressure from the line 43 to the line 44 and vice versa, but also exercises the function of a delaying member, since the effect of the pressure fluid switched 30 from the latching valve 33 is delayed in respect of its acting upon the actuator mechanism 3. The pressure fluid supplied via the line 39 in fact acts directly on the cylinder 22 and effects thereby the immediate falling away of the injector plate 11, in comparison with which the further movement of the wiper assembly 7, made possible by the actuator mechanism 3 in withdrawing the wedge 2 is

1 initiated only after the valve 41 has been switched.

Between the actuation of the piston 21 in the cylinder 22
and the actuation of the actuator mechanism 3, therefore,
there is, as a time differential, the switching time of the
auxiliary valve 41. This leads to an enhancement of the
certainty against a collision of the wiper assembly 7
against the injector plate 11 or injector nozzles 34.

In Figure 2 the line 73 shown in dotted branching from the line 32 is drawn in and connects the line 32

directly with the input port 74 of the cylinder 22. If the line 73 is utilised, the line 39 is omitted. In this type of control a direct initiation of the falling away of the injector plate 11 is achieved by the "fall away" signal supplied via the line 32 so that, upon the "fall away" signal signal being supplied when the abutment 1 engages the wedge 2 (actuation of the valve 30), the injector plate 11 immediately falls away. In this case, therefore, the latching valve 33 is bypassed by the "fall away" signal.

In the the exemplary embodiment shown in Fig. 3 it is a matter of a modification vis-a-vis the exemplary 20 embodiment of Fig. 2. The modification consists in that the actuation of the latching valve 33, which serves as a latching member, takes place by means of the timer member 45, so that the cam 35, shown in Fig. 2 and constituting the 25 sensor, together with the valve 36 can be omitted. from this difference the device of Fig.3 operates in the same way as that of Fig. 2, so that in this regard reference can be had to the explanations to Fig. 2. accordance with Fig.3 the pressure fluid switched through by valve 30 is supplied via the line 32 and the timer 30 member 45 to the latching valve 33, so that the latching valve 33, after the expiry of the time span defined by the timer member 45, is switched and thereafter initiates the steps explained with reference to Figure 2, namely first 35 the falling away of the injector plate 11 and, delayed by the auxiliary valve 41, the withdrawal of the wedge 2 and

thereby the continuation of the movement of the wiper assembly 7. The timer member 45 is so adjusted that the switching of the latching valve 33 only takes place when the adhesive injector nozzle 34 has with certainty moved sufficiently far that it can no longer hinder the closing of the wiper assembly. In order to be able in such case to take account of the different advance times of the injector nozzles 34, it is a question with this timer member 45 of an adjustable component, as is customary in the trade.

In Figure 3 is drawn in the line 75 (shown in dotted line) branching from the line 32, and, when it is used, replacing the line 39. The line 75 thus leads directly from the pipe 32 to the input ports 74 of the 15 cylinder 22 so that therefore in this case the timer member 45 and the latching valve 33 is (sic) bypassed. this control given by the line 75, similarly as in connection with the line 73 described with reference to Figure 2, a direct initiation of the falling away of the 20 injector plate 11 takes place in the case of the provision of the "fall away" signal by the valve 30, so that therefore the falling away of the injector plate 11 is initiated already when the wiper assembly reaches its stop position.

25 It is pointed out in this connection that the position of the injector nozzles 34 enabling the wiper assembly 7, to be closed can be achieved in different ways. Firstly it is possible to move the injector nozzles 34 away from the injector plate 11 sufficiently far in the 30 direction of the heel seat that the adhesive nozzles 34 are displaced in this direction sufficiently from the wiper ends 47a and 47b. The adhesive nozzles 34 assume then the position shown in chain-dot line. It is however also possible to raise the adhesive nozzles 34 at the end of their advancing movement over the insole 8 away from the 35 latter sufficiently far that the wiper assembly 7, can move past the adhesive nozzles 34. In this case it is possible to allow the advancing movement of the adhesive nozzles 34 to run from the heel end in the direction of the toe of the shoe and, at the end of this advancing movement, to raise the adhesive nozzles 34 from the insole 8 immediately in front of the injector plate 11, in order to clear the path for the closing of the wiper assembly 7.

In Fig. 4 are shown the mechanical details of the apparatus essential in this connection, those elements of the machine however being omitted for the sake of clarity which are immaterial in this connection and which belong in any event to the state of the art since they are conventional components of an apparatus for lasting footwear.

10

15 The apparatus shown in Fig. 4 comprises the shoe support 10 which supports the last 9, on which an upper is mounted (not shown). The last 9 is held from the heel seat thereof by the heel support 48 which applies to the last 9 from the heel seat a pressure which is accommodated by the shoe abutment 49 which holds the toe. The shoe abutment 49 is connected in known manner with the last support 50, which is carried by the piston 51. By the movement of the piston 51 the last support 50 together with the last 9 is brought into the position desired for lasting, whereupon, after lasting is completed, the last support 50 is again moved away from the last 9 together with the shoe support On the last support 50 furthermore is mounted the 10. injector plate 11 which, as described with reference to Figs. 2 and 3, is movable to-and-fro by means of the piston 21 in the cylinder 22. In Fig. 4 the injector plate 11 is 30 shown in the "fall away" position shown in chain-dot line in Figs. 1 and 2.

In Fig. 4 is also shown a portion of the machine frame 52 on which both the last support 50 and also further elements are secured namely the support 53 for the pincers 54 for pulling the upper over the last 9 (the further

pincers are not drawn in for reasons of clarity) and the holder 55 for a stack of templates 56 which are sensed in known manner by the roll 57, whereby the necessary movement is given to the injector nozzle 54 (and the further injector nozzle (not shown)).

The injector nozzle 34 is mounted on the end of the carrier arm 58 which is connected via the piston rod 59 with the piston 60. The piston 60 is moved to-and-fro in the cylinder 61 by means of pneumatic or hydraulic means, 10 whereby a corresponding movement of the injector nozzle 34 The carrier arm 58 together with the piston rod 59, the piston 60 and the cylinder 61, rests in the swinging arm 62 which is mounted for rotation on the axis The lever 64 is connected with the swinging arm 62 15 and is also connected at its end with the piston rod 65 by to-and-fro movement of which the lever 64 is corresponding swung, since it is also journalled for pivoting movement on By the pivotal movement of the lever 64 the the axis 63. latter moves the swinging arm correspondingly therewith. 20 The swinging arm 62 is, furthermore, rotatably mounted on the axis 66 in such a manner that the swinging arm 62 can be pivoted out of and into the plane of the drawing. being able to be moved as aforesaid any desired advancing movement can be given to the nozzle 34, so that it is 25 possible to accommodate to the shape of the bottom of the last 9 and to move away as necessary out of the closing area of the wiper assembly 7.

Also in Fig. 4 is schematically shown the supply of adhesive to the injector nozzle 34 and to the injector 30 plate 11. The adhesive, in the form of rods 67 and 68, is unwound from the rolls 69, the feed mechanism 70 serving this purpose. The rods 67 and 68 (shown interrupted for reasons of clarity) then arrive at the inlet 71 for the injector nozzle 34 and the inlet 72 for the injector plate 35 11, whereupon they are heated in known manner so that flowable adhesive exits at the injector nozzle 34 and the

injector plate 11. It should in this connection by pointed out that the adhesive rod 68 is present in duplicate since, as shown in Fig. 3, two adhesive nozzles 34 are provided. In the case of the adhesive rods 67 and

5 68, as already mentioned above it can be a question of rods of different adhesive in order to fulfil special flexibility conditions in the lasted shoe.

1 Claims:

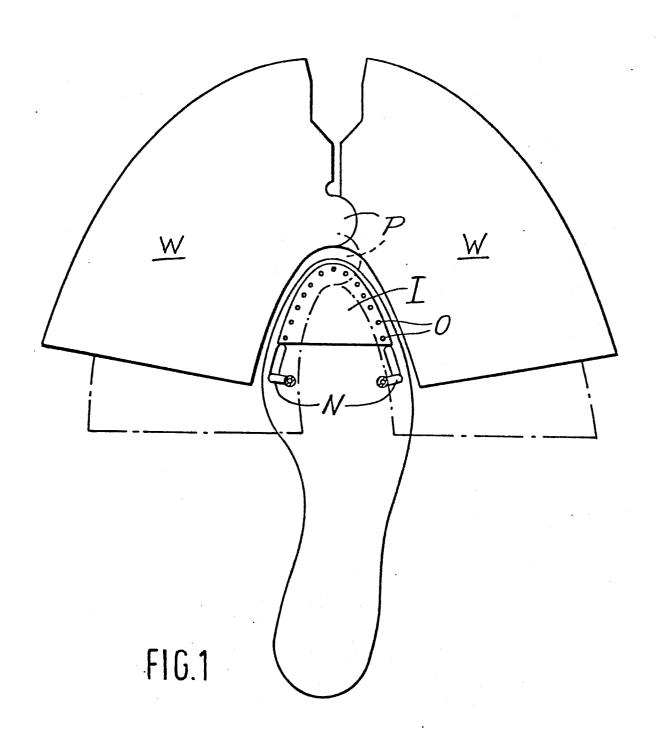
1. Method of lasting shoes, using adhesive, from the toe to at least over the ball region thereof, wherein the toe and forepart region of the shoe is inwiped by means of a pair of wiper plates mounted for inwiping movement about a common pivot located at or adjacent the toe end of the shoe, and wherein the adhesive is applied partly by means of an imprinter plate which is pressed against the shoe bottom and partly by nozzles movable along opposite sides of the shoe, characterised in that the region to which adhesive is applied by means of the imprinter plate extends from the toe end of the shoe and lies within, but is substantially smaller than, the region inwiped by said pair of wiper plates.

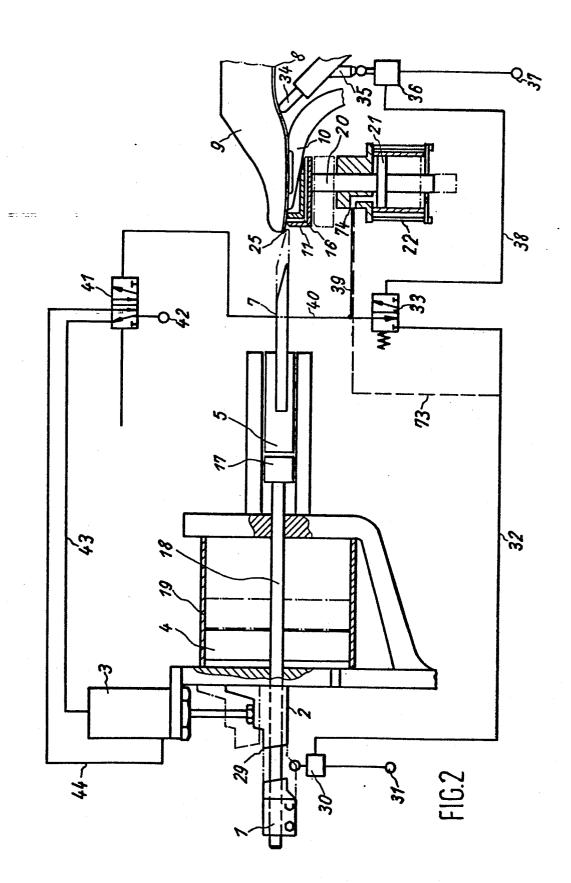
15

20

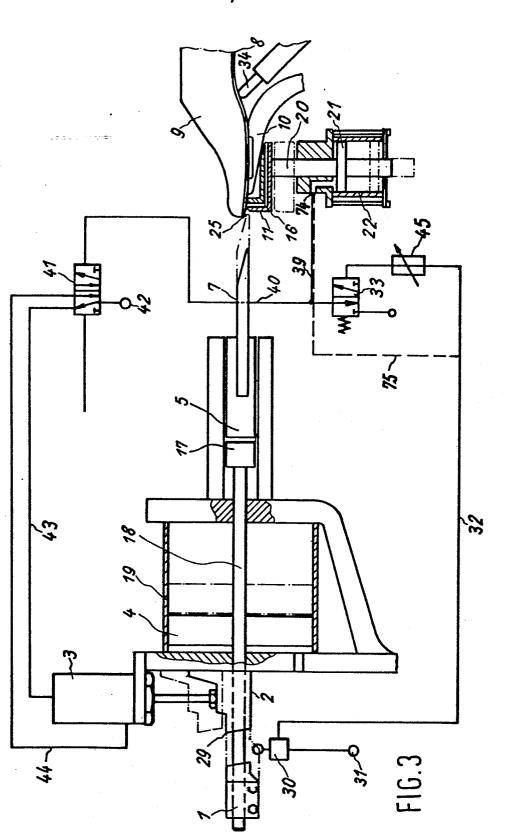
25

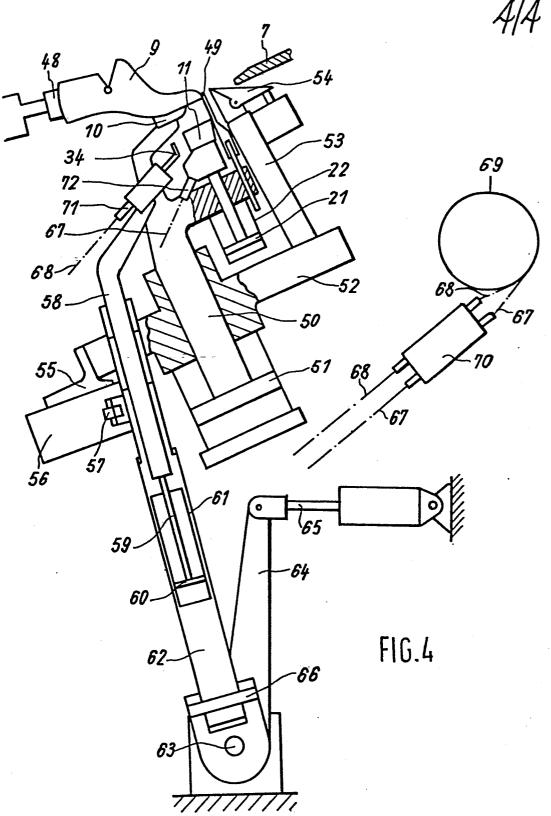
10


- 2. Method according to Claim 1 characterised in that the region to which adhesive is applied by the imprinter plate extends approximately 50mms (2") from the toe of the shoe, measured along the longitudinal centre line of the toe region of the shoe.
- 3. Method according to either one of Claims 1 and 2 characterised in that the nozzles apply adhesive starting adjacent the imprinter plate and being moved progressively heelwards therefrom.
- 4. Apparatus for lasting footwear comprising a wiper assembly (7) which lays the lasting margin over the insole which has been pressed against the last before the lasting by an adhesive injector plate (11), and a control (1,2,30) by which the movement of the wiper assembly (7) is arrested in an intermediate position in which the wiper assembly (7) has just traversed the margin of the insole, the control (1,2,30) also comprising a signalling device (30) which supplies a "fall away" signal which effects the falling away of the injector plate (11) from the insole


- when the wiper assembly (7) is arrested, characterised in that the "fall away" signal is supplied to a latching member (33) which is controlled by a sensor (35), which in the region of advance is associated with adhesive injector nozzles (34) movable from adjacent the injector plate (11) away therefrom, in such a manner that as the injector nozzles (34) move, the sensor (35) unlatches the latching member (33) after the nozzles (34) have moved over the region which is wiped by the wiper assembly (7) and when they reach a position in which the wiper assembly (7) can continue its movement, the latching element (33) initiating the closing of the wiper assembly (7).
- Apparatus for lasting footwear comprising a 5. 15 wiper assembly (7) which lays the lasting margin over the insole which has been pressed against the last before the lasting by an adhesive injector plate (11), and a control (1,2,30) by which the movement of the wiper assembly (7) is arrested in an intermediate position in which the wiper 20 assembly (7) has just traversed the margin of the insole, the control (1,2,30) also comprising a signalling device (30) which supplies a "fall away" signal which effects the falling away of the injector plate (11) from the insole when the wiper assembly (7) is arrested, characterised in 25 that the "fall away" signal is supplied to a timer member (45) which with regard to adhesive injector nozzles (34) movable from adjacent the injector plate (11) away therefrom initiates the closing of the wiper assembly (7) after the nozzles have moved over an area wiped by the wiper assembly (7) and at the earliest when they have reached a position in which the movement of the wiper assembly (7) can be continued.
- 6. Apparatus according to either one of Claims
 35 4 and 5 characterised in that the "fall-away" signal is
 supplied to the actuator device (20, 21, 22) for the

- 1 injector plate (11), by-passing the latching member (33) or timer member (45), as the case may be.
- 7. Apparatus according to either one of Claims
 5 4 and 5 characterised in that the falling away of the
 injector plate (11) is initiated by the unlatching of the
 latching member (33) or the operation of the timer member
 (45), as the case may be.
- 10 8. Apparatus according to any one of Claims 4 to 7 characterised in that the position of the injector plate (11) in its pressed-on condition and the path of the injector nozzles (34) overlap.
- 9. Apparatus according to any one of Claims 4 to 8 characterised in that the injector plate (11) and the injector nozzles (34) are connected to separate adhesive supplies (67,68,69,70) each with different adhesive.


20


25

