Technical field
[0001] This invention relates to fluid sprinkling and more particularly to forming a fluid-tight
seal between a mounting cup and an aerosol container.
Background art
[0002] The aerosol industry has undergone dramatic and substantial changes since the birth
of the industry many decades ago. It has been a constant desire of the aerosol industry
to increase the reliability of the aerosol devices while simultaneously reducing the
manufacturing and the consumer costs of the aerosol device. Each individual part of
the aerosol device has been investigated in an attempt to reduce the part cost as
well as the cost of assembly of the aerosol device. The time required to fabricate
each individual part as well as the time required to fabricate the device, has been
investigated in a continuing attempt to further reduce the cost of aerosol devices.
If a single step in the assembly process can be accomplished in a shorter period of
time, a substantial reduction in overall cost will be realized by the increase in
production.
[0003] Among the most time consuming steps in the fabrication of an aerosol valve is the
application of a sealing gasket material to the aerosol mounting cup for sealing with
the aerosol container. In general, the aerosol mounting cup is fabricated by first
stamping a sheet material through a progressive die to form the mounting cup turret
with a central through aperture and peripheral sealing rim for sealing with an annular
bead disposed on the aerosol container. The stamped mounting cups are oriented for
enabling a solvent based gasket material to be poured into the rim of the mounting
cup. The solvent based gasket material is allowed to set at room temperature for approximately
one hour and is then progressively passed through three curing ovens. The three progressive
ovens are typically set at 150°C, 250°C and 350°C. The mounting cup is placed in each
oven for approximately one hour in order to remove the solvent totally from the solvent
based coating and gasket material and to leave a solvent residue of rubber to effect
the seal between the mounting cup and the aerosol container. The heated mounting cups
are allowed to cool to proper handling temperature prior to assembly with the aerosol
valve and dip tube. Presently this prior art process requires approximately four and
one-half hours of time for each mounting cup to provide a suitable coating for sealing
with the aerosol container. However, since the solvent based coating and gasket material
is allowed to flow into the mounting cup lip, the resultant solid residue of rubber
is irregular in thickness and may result in a defective seal between the mounting
cup and the aerosol container.
[0004] Others in the prior art used a precoated process wherein the mounting cup stock is
unrolled and coated with a gasket material. The sheet stock is punched and formed
to create the aerosol valve mounting cup. Since the sheet stock is coated prior to
forming, substantial stresses are developed within the coating. In addition, the coating
may be damaged during the punching and forming process.
[0005] U.S. Patent 3,417,177 illustrates a sealing gasket for an aerosol mounting cup formed
by positioning a circular band of heat-shrinkable material over a portion of the skirt
of the cup. The mounting cup is then heated to shrink the band of material into frictional
contact with the skirt of the mounting cup.
[0006] U.S. Patent 3,443,006 pertains to a method of making a gasketed closure element by
swelling a band of gasket material and positioning the band of gasket material about
the skirt of the mounting cup. The band of gasket material is then allowed to return
to a normal condition to be in frictional engagement with the mounting cup skirt.
[0007] Others in the prior art have utilized electrostatic spraying of paints on other coatings,
but such processes have not been applied to the application of sealing gaskets.
[0008] Others in the prior art have utilized the immersion of heated items into a vessel
of plastic particles but these patents relate to protective coatings and do not relate
to sealing gaskets and the like.
[0009] US―A―4,000,338 relates to a coating process using a vibratory bowl for producing
a protective coating.
[0010] US―A―3,864,798 discloses a method of encapsulating an end contacted electrical component
with a layer of synthetic resin material by placing the component in a reservoir containing
a suspended synthetic resin powder and heating the component indirectly by inductance
using high frequency current to fuse powder deposited on the component to form the
synthetic resin layer.
[0011] US―A―4,183,974 discloses a method of coating a cylindrical container with a thin,
resinous coating by spraying resin particles into a beverage container. The container
may be sprayed by directing a pulse of a predetermined quantity of resin into the
container to deposit a substantially uniform coating or a continuous flow of resin
at a predetermined rate. The resin particles are caused to adhere to the container
by preheating the container to temperatures above the softening point of the resin.
Post heating of the coated container also takes place.
[0012] US-A-3,503,778, GB-A-1,163,041, DE-A-2,539,880 and US―A―3,197,324 all disclose methods
of coating an article with plastics material by heating the article sufficiently and
applying particulate plastics material which then melts and forms a continuous layer.
[0013] Although many in the prior art have attempted various methods to reduce the time
required to apply a gasket material to an aerosol mounting cup, the prior art has
heretofore failed to provide an inexpensive and reliable method which is a suitable
replacement to the solvent based coating and gasket material which is presently universally
used in the aerosol industry.
[0014] Therefore, this invention seeks to provide an improvement which is a significant
contribution to the advancement of the aerosol art.
[0015] Accordingly, the present invention provides an aerosol valve and mounting cup assembly
for an aerosol container having a container sealing bead disposed about an upper opening
in the aerosol container comprising:
a mounting cup having a mounting cup rim extending about the periphery thereof for
co-operation with the container bead;
a valve assembly disposed in said mounting cup for providing fluid communication between
the interior of the aerosol container and the exterior of the aerosol container, and
a plastics material sealing gasket disposed on the mounting cup to provide a fluid-tight
seal when the mounting cup rim is secured to the aerosol container, characterised
in that the sealing gasket has particles of the plastics material fused to the mounting
cup to provide a resilient sealing gasket when the rim of the mounting cup is secured
to the sealing bead of the aerosol container and to provide a continuous protective
coating for the mounting cup from the interior of the aerosol container.
[0016] The present invention also provides a method of fabricating the aerosol valve and
mounting cup assembly for an aerosol container having a container sealing bead disposed
about an upper opening in the aerosol container comprising:
stamping the mounting cup from a metallic sheet material and characterised by forming
the continuous coating of plastics material on the mounting cup by heating the mounting
cup to a temperature sufficient to melt the plastics material;
applying the particles of the plastic material to the heated mounting cup to fuse
the particles, thereby to provide a resilient sealing gasket when the rim of the mounting
cup is secured to the sealing bead of the aerosol container and to provide the continuous
coating for the mounting cup from the interior of the aerosol container;
cooling the coated mounting cup and securing the aerosol valve to the coated mounting
cup.
[0017] In a preferred embodiment of the invention, the aerosol container includes a container
sealing bead disposed about the periphery of an opening in the aerosol container.
A rim is disposed about the periphery of the mounting cup for cooperation with the
bead of the aerosol container. The sealing gasket is formed by fusing plastic particles
to the heated mounting cup to provide a continuous plastic coating upon the entire
interior and exterior surface of the mounting cup for providing a seal between the
mounting cup and the aerosol container and for protecting the interior and exterior
surface of the mounting cup. The coating provides a uniform coating on the mounting
cup rim and may be colored to provide an integral color code for the mounting cup.
[0018] The invention may also be incorporated into an apparatus and method of coating mounting
cups incorporating a non-metallic vessel for receiving plastic particulate material
therein. The mounting cups are introduced into the vessel and are moved within the
plastic particulate material. An induction heater is disposed adjacent the non-metallic
vessel for heating the mounting cups when the mounting cups are immersed in the plastic
particulate material to form a continuous plastic coating thereon. The coated mounting
cups are then discharged from the vessel and are fused by either induction heating
or conventional convection heating.
Brief description of the drawings
[0019] The present invention is further described hereinafter, by way of example, with reference
to the accompanying drawings, in which:
Fig. 1 is a side sectional view of a conventional mounting cup and aerosol valve assembly;
Fig. 2 is a partial side sectional view showing the fluid-tight seal between a conventional
aerosol valve assembly and an aerosol container;
Fig. 3 is a side sectional view of a mounting cup and aerosol valve assembly in accordance
with the present invention;
Fig. 4 is a partial side sectional view showing the fluid-tight seal between the mounting
cup of Fig. 3 and an aerosol container;
Fig. 5 illustrates a prior art process for fabricating the mounting cup shown in Fig.
1;
Fig. 6 illustrates the improved method of forming the mounting cups as shown in Fig.
3 in accordance with the present invention;
Fig. 7 illustrates a section of a ribbon of mounting cups in the process shown in
Fig. 6;
Fig. 8 is a second improved method of forming the mounting cup shown in Fig. 3;
Fig. 9 is a plan view illustrating the geometry of the vibratory bowl shown in Fig.
8;
Fig. 9A is a sectional view along lines 9A-9A in Fig. 9;
Fig. 10 is a third improved method of forming the mounting cup shown in Fig. 3;
Fig. 11 is an enlarged detailed view of the novel process and apparatus of Fig. 10;
Fig. 12 is a sectional view along line 12-12 of Fig. 11;
Fig. 13 is an enlarged sectional view along line 13-13 of Fig. 11;
Fig. 14 is a sectional view along line 14-14 of Fig. 11;
Fig. 15 is a side sectional view showing a coating utilizing a small particle size
powder; and
Fig. 16 is a side sectional view showing a coating utilizing a larger particle size
powder.
[0020] Similar reference characters refer to similar parts throughout the several views
of the drawings.
Best mode for carrying out the invention
[0021] Fig. 1 illustrates a side sectional view of a prior art aerosol mounting cup and
valve assembly 10 which should be well known to those skilled in the art. The assembly
comprises a mounting cup 12 having a central turret 14 and a mounting rim 16 extending
about the outer periphery thereof. The turret 14 receives an aerosol valve assembly
which may be of various designs to operate between an interior surface 17 and an exterior
surface 18. In this embodiment, a valve body 19 communicates with the interior of
the aerosol container through a dip tube 20. A valve stem 22 is biased by a spring
24 into sealing engagement with a sealing gasket 26 for controlling the flow of product
and propellant through a metering orifice 28 communicating to a valve stem aperture
30.
[0022] The mounting rim 16 is provided with a sealing gasket 32 which is generally a solvent-based
rubber material which forms a seal with a bead 34 of an aerosol container 36 as shown
more fully in Fig. 2. Typically, the mounting cup rim 16 is inserted on the aerosol
container bead 34 with a region 38 of the mounting cup rim being deformed to form
a fluid-tight seal through the coating 32 on the mounting cup rim 16.
[0023] Fig. 3 illustrates a mounting cup and aerosol valve assembly 10A in accordance with
the present invention. Under the practice of this invention the sealing gasket and
coating 32A extends along the entire interior surface 17A of the mounting cup in addition
to the coating 32B extending along the entire exterior surface 18A.
[0024] Fig. 4 illustrates the mounting cup 12A of Fig. 3 forming a seal with the sealing
bead 34 of aerosol container 36 through deformed region 38A in a conventional manner
as shown in Fig. 2.
[0025] Fig. 5 illustrates the steps in the formation of the mounting cup 12 shown in Fig.
1 under a prior art practice. A ribbon of roll stock 41 disposed on a drum 42 is passed
through a series of progressive dies 44 to form the contour of the mounting cup 12
shown in Fig. 1. The formed mounting cups 12 are severed from one another and passed
through an orienter 46 which orients the mounting cups 12 such that the interior surface
17 is face up, enabling an applicator 48 to apply a solvent-based coating and gasket
material 32 to flow into the mounting cup rim 16. After the initial coating of gasket
material 32, the mounting cups 12 are allowed to remain at an ambient temperature
station 50 for a period of approximately one hour. The mounting cups are passed through
progressive ovens 51, 52 and 53 which respectively have temperatures of approximately
150°C, 250°C and 350°C. The mounting cups 12 remain in each individual oven 51-53
for a period of one hour prior to being removed and cooled in position 54. After cooling,
the mounting cups may be fabricated in a conventional manner as should be well known
to those skilled in the art.
[0026] Fig. 6 illustrates the steps in the formation of the mounting cup 12A shown in Fig.
3 under the present invention. In a similar manner, the ribbon of roll stock 41 is
disposed on a drum 42 to be passed through a series of progressive dies 44A to form
the contour of the mounting cups 12A shown in Fig. 3. In this embodiment, the progressive
dies 44A form the contour of the mounting cups 12A but do not sever the mounting cups
12A from one another as shown in Fig. 7. The mounting cups 12A are held together by
tabs 12B in a ribbon 55 eliminating the need for the orienter 46 of Fig. 5.
[0027] The ribbon 55 of formed mounting cups 12A is carried by rollers 56 and 58 through
an oven 60 to heat the mounting cup to a temperature sufficient to melt a selected
plastic particulate material. The selected plastic material 62 is disposed in a vessel
64 having an input 66 and an output 68.
[0028] The plastic material is preferably finely ground powder of virtually any fusible
plastic material capable of forming the desired seal and being able to associate with
the product and propellant within the aerosol container.
[0029] Rollers 58 and 70 move the heated mounting cups 12A on ribbon 55 through vessel 64
enabling the plastic particles 62 to fuse to the internal and external surfaces 17A
and 18A. The temperature of oven 60, the speed of ribbon 55 and the distance between
the input 66 and output 68 of vessel 64 must be interrelated to produce a proper coating
to the mounting cups 12A. The process is also dependent on the type of plastic selected
and the particle size of the plastic powder. However, one skilled in the art could
readily adjust these conditions to provide a proper coating for the specific use of
the invention.
[0030] The ribbon 55 of mounting cups 12A exit vessel 64 through output 68 and are carried
by rollers 70 and 72 through a fusing oven 74. The fusing oven 74, which may be optional
in some applications, creates a unitary coating on the interior and exterior surfaces
17A and 18A of the mounting cups 12A. The mounting cup ribbons 55 are then severed
from one another by a cutter 76 which cuts tabs 12B. The individual mounting cups
12A are ejected from cutter 76 for subsequent assembly with the valve mechanism.
[0031] Fig. 8 is a second method of forming the mounting cup 12A shown in Fig. 3. In this
embodiment, a ribbon of roll stock 41 disposed on a drum 42 is passed through a series
of progressive dies 44A to form the contour of mounting cup 12A shown in Fig. 3. The
formed mounting cups 12A are severed from one another and passed through an oven 80
on a conveyor 82 driven by rollers 84 and 86. The oven 80 is sufficient to heat the
mounting cups to a temperature to melt a preselected plastic material. The heated
mounting cups are carried by a conveyor 88 driven between rollers 86 and 90 to a vibratory
bowl 92 driven by a motor 94 shown more particularly in Fig. 9. The vibratory bowl
92 has a central portion 95 for receiving the mounting cups 12A. A channel 96 is defined
between side walls 98 and 100 enabling the mounting cups 12A to move along the path
to an exit 102 along channel 96. The channel 96 is arranged such that the mounting
cups are preferably disposed at an acute angle, namely that neither the internal or
external surfaces 17A or 18A are disposed facing a vertical direction as shown in
Fig. 9A. The inclined position of the mounting cups 12A eliminates the formation of
bubbles adjacent the interior and exterior surfaces 17A and 18A which will cause a
defective coating. Accordingly, the mounting cups 12A essentially roll as inclined
wheels along channel 96. The interior of the vibratory bowl 92 includes plastic particles
62 enabling a substantially uniform coating to be provided to the interior and exterior
17A and 18A of the mounting cup 12A.
[0032] The coated mounting cups emanating from output 102 are passed to a conveyor 104 driven
by rollers 106 and 108 through a fusing oven 110 which completes the fusing process
of the coating on the mounting cups 12A. The function of the vibratory bowl 92 should
be well known to those skilled in the art.
[0033] Fig. 10 illustrates the steps of forming the mounting cup 12A shown in Fig. 3 under
a third method and apparatus. A ribbon of roll stock 41 disposed on a drum 42 is passed
through a series of progressive dies 44 to form the contour of the mounting cup 12A
shown in Fig. 3. The formed mounting cups 12A are severed from one another and passed
through an orienter 46 which orients the mounting cups 12A into a preferred orientation.
The oriented mounting cups 12A are discharged from orienter 46 into an input 120 of
a vessel 122. The vessel 122 is a non-metallic vessel containing plastic particulate
material 62. The mounting cups 12A pass along a channel 124 and are totally immersed
within the plastic particulate material 62. An induction heating coil 126 is connected
to an induction heating generator 128 shown in Fig. 11 to induce eddy currents within
the metallic mounting cups 12A to heat the mounting cups while the mounting cups are
immersed within the plastic particulate material 62. The heated mounting cups 12A
melt the plastic particulate material 62 adjacent the metallic surfaces thereof and
are coated to form a uniform resilient plastic coating to form a protective coating
and a sealing gasket as shown in Figs. 3 and 4. The coated mounting cups 12A are expelled
from the vessel 122 by a discharge means 130 and are placed on a conveyor 132 driven
by rollers 134 and 136. The conveyor 132 is preferably non-metallic and made of a
material which will inhibit the adhesion of the plastic particulate material 62 coated
on the mounting cups 12A. The coated mounting cups 12A are passed through a second
induction heating coil 138 connected to an induction generator 140 shown in Fig. 11
to induce eddy currents within the mounting cups 12A and thus fuse the plastic particulate
material adhering to the mounting cups into a uniform resilient plastic coating which
is suitable for forming a resilient sealing gasket and a protective coating. The mounting
cups 12A are then discharged from conveyor 132.
[0034] Fig. 11 illustrates a specific example of the vessel 122 shown in Fig. 10 with a
specific means for moving the mounting cups 12A through the vessel 122. The apparatus
includes a frame 142 and a linear vibrator 144 for supporting the vessel 122 through
support arms 145. The linear vibrator 144 causes movement of the mounting cups 12A
from left to right in Fig. 11. The vessel 122 contains the plastic particulate material
62 and includes a flexible coupling 146 connected by conduit 147 to a pump 148. The
pump 148, which may be of various types such as augers, impellers or other pumps suitable
for pumping plastic particulate material, forces the plastic particulate material
through conduit 149 terminating in orifice 150 adjacent an input support surface 152.
The flow of particulate material 62 by pump 148 as illustrated by the arrows within
the conduits 147 and 149 as well as the linear motion due to linear vibrator 144 insures
a linear progression of the mounting cups 12Afrom left to right in Fig. 11. This embodiment
illustrates a particular method and apparatus for moving the mounting cups 12A through
vessel 122.
[0035] The apparatus illustrates input means 120 providing mounting cups 12A to the vessel
122. The plastic particulate material 62 is discharged from orifice 174 onto a support
surface 152 and passed over an edge 154. The free-falling plastic particulate material
62 is aerated by the free-fall from input surface 152. The mounting cups 12A are introduced
into the stream of aerated plastic particulate material by input means 120 at 121.
The kinetic energy developed by the falling mounting cups 12A is of a sufficient level
to insure that each mounting cup is completely immersed within the aerated plastic
particulate material 62 prior to induction heating. The mounting cups 12A move towards
the right through induction heating coil 126 as was heretofore explained.
[0036] Fig. 12 illustrates a sectional view along line 12-12 showing the mounting cup 12A
within a channel 124 formed by vessel 122 and within the induction heating coil 126.
It has been found that when a mounting cup is completely immersed within the plastic
particulate material 62, that the mounting cup will, in many instances, maintain the
given attitude such as the vertical attitude along the channel 124 in vessel 122.
[0037] The coated mounting cups 12A move toward the discharge means 130 shown more specifically
in Fig. 13. The discharge means, which is secured to vessel 122 to vibrate therewith
includes support members 160 and 162 for supporting porous means 164, such as a screen,
enabling the mounting cup 12A to discharge the unmelted plastic particulate material
165 on the exterior surface 18A of the mounting cup in Fig. 13 into the vessel 122
under vibration of the linear vibrator 144. Concomitantly therewith, a vacuum head
166 connected by pipe 168 to a partial vacuum 170 removes any unmelted particulate
material 171 from the interior surface 17A of the mounting cup 12A. Unmelted plastic
particulate material is similarly removed from the interior and exterior surface 17A
and 18A in the event the mounting cup 12A is inverted with respect to Fig. 13. The
plastic particulate material removed by the vacuum head 166 is discharged through
a conduit 172 to be recycled proximate the input support surface 152 by discharge
orifice 174.
[0038] The vibratory motion of the linear vibrator 144 enables the mounting cups 12A to
move up the discharge means 130 to conveyor 132. The conveyor 132 receives the coated
mounting cups 12A enabling the induction heating coil 138 to fuse the plastic particulate
material 62 into a resilient continuous uniform sealing gasket and protective coating.
Fig. 14 illustrates a sectional view along line 14-14 illustrating the conveyor 132,
the mounting cup 12A within the induction heating coil 138.
[0039] It has been found that a high temperature of approximately 315°C (600°F) is required
to properly melt a suitable plastic particulate material such as polyethylene within
the vessel 122 for a sealing gasket and protective coating. In cases where tin coated
steel is used for mounting cups, it has been found that mounting cups disposed in
an oven at 315°C (600°F) for more than three minutes experience discoloration due
to the melting of the tin coating. However, tin coated mounting cups can withstand
a heating of 315°C (600°F) for less than three minutes without discoloration. Accordingly,
the present invention enables the very rapid heating of the mounting cups for proper
coating without the discoloration of any tin coating on the mounting cup. For example,
in the process shown in Figs. 6 and 8, using a polyethylene plastic material, mounting
cups 12A are subjected to a temperature of approximately 315°C (600°F) for a period
of one minute in ovens 60 or 80. Typically the coating process requires less than
twenty seconds. The mounting cups 12A may then be fused in ovens 74 or 110 at a temperature
of approximately 315°C (600°F) for a period of less than one minute. In the embodiment
shown in Figs.1D-14, the mounting cups 12A are typically heated to the required temperature
in a matter of approximately three seconds with the total coating operation taking
less than twenty seconds. Fusing by induction coil 138 normally requires less than
three seconds. It should be understood that the above parameters are by way of example
only and should not be construed to be a limitation on the present invention.
[0040] Preferably, the mounting cups are rapidly heated to approximately 315°C (600°F) with
the induction heating coil for providing the adherence of the plastic particulate
material to the mounting cup. The power required by the induction generator is, in
part, determined by the geometry of the induction heating coil as well as the type
of plastic particulate material, the particle size of the plastic particulate material,
and the speed at which the mounting cups 12A are passed through the induction heating
coil. It should be appreciated by those skilled in the art that these parameters may
be varied depending on the particular application.
[0041] Fig. 10 also illustrates an optional step of rapidly cooling the mounting cups 12A
after discharge from conveyor 132. In this embodiment, the rapid cooling means is
illustrated by a fluid bath including a fluid 180 shown as a liquid within a container
182 for rapidly cooling the mounting cups after proper fusion of the uniform protective
coating and resilient sealing gasket by induction heating coil 138. The cooling bath
further inhibits the discoloration of the mounting cup by rapidly reducing the temperature
of the mounting cup after fusion of the plastic coating. It should be appreciated
that the rapid cooling means shown as a liquid bath may be substituted by various
cooling means and may be incorporated into all of the embodiments shown in the present
application.
[0042] The method and apparatus heretofore described may be utilized with various types
of plastic material which are capable of fusion to a metallic surface. Plastic material
such as polyethylene, polypropylene, vinyl, nylon, acetate or other plastic materials
may be utilized with this invention. It has been found that the most satisfactory
material for use with the present invention is plastic material which is cryogenically
ground to be within 4x10-
4to 7x10-
4 cm (4-7 microns) in particle size as depicted by Figure 15.
[0043] Fig. 15 illustrates a surface 12A of the mounting cup with a plurality of particles
of plastic material 32A disposed thereon. The particles size of the individual particles
62 enables a close spacing and a uniform coating thickness as shown in Fig. 15.
[0044] Fig. 16 illustrates a similar embodiment of a portion of mounting cup 12A with a
coating 32C of particles 62C of larger particle size. Voids 112 within the coating
surface are experienced by plastic particles having a larger particle size.
[0045] The prior art mounting cups typically use a precoated steel having a 0.23 Kg (one-half
pound) of tin plate to 45.5 Kg (100 pounds) of steel. With the use of the invention
set forth herein, reduced tin plate or black plate steel may be utilized in lieu of
normally used tin plated steel, resulting in a substantial savings in material costs.
1. An aerosol valve and mounting cup assembly for an aerosol container having a container
sealing bead disposed about an upper opening in the aerosol container comprising:
a mounting cup (12A) having a mounting cup rim (16) extending about the periphery
thereof for co-operation with the container bead;
a valve assembly disposed in said mounting cup (12A) for providing fluid communication
between the interior of the aerosol container and the exterior of the aerosol container,
and
a plastics material sealing gasket (32A) disposed on the mounting cup (12A) to provide
a fluid-tight seal when the mounting cup rim (16) is secured to the aerosol container,
characterised in that the sealing gasket (32A) has particles of the plastics material
fused to the mounting cup (12A) to provide a resilient sealing gasket when the rim
of the mounting cup is secured to the sealing bead of the aerosol container and to
provide a continuous protective coating for the mounting cup (12A) from the interior
of the aerosol container.
2. An assembly as claimed in Claim 1 in which the mounting cup (12A) has the plastics
material sealing gasket (32A, 32B) on both an interior surface and an exterior surface
of the mounting cup, the sealing gasket (32A, 32B) comprising particles of the plastics
material fused to lock the interior and exterior surfaces of the heated mounting cup
(12A) to provide the resilient sealing gasket when the rim of the mounting cup is
secured to the sealing bead of the aerosol container and to provide a continuous protective
coating on both the interior and exterior surfaces of the mounting cup.
3. An assembly as claimed in Claim 1 or 2 in which the sealing gasket (32A, 32B) is
coloured to provide an integral colour code for said mounting cup (12A).
4. An assembly as claimed in Claim 3 in which the plastics material is coloured to
provide the integral colour code for said mounting cup (12A).
5. A method of fabricating the aerosol valve and mounting cup assembly for an aerosol
container having a container sealing bead disposed about an upper opening in the aerosol
container comprising:
stamping the mounting cup (12A) from a metallic sheet material and characterised by
forming the continuous coating of plastics material on the mounting cup (12A) by heating
the mounting cup to a temperature sufficient to melt the plastics material;
applying the particles of the plastic material to the heated mounting cup (12A) to
fuse the particles, thereby to provide a resilient sealing gasket when the rim of
the mounting cup is secured to the sealing bead of the aerosol container and to provide
the continuous coating for the mounting cup (12A) from the interior of the aerosol
container; cooling the coated mounting cup (12A) and securing the aerosol valve (19)
to the coated mounting cup (12A).
6. The method as claimed in Claim 5 in which the step of applying the plastics particles
comprises immersing the heated mounting cup (12A) in a vessel (92) containing the
plastics particles to form the continuous coating on the mounting cup (12A), and
heating the mounting cup to cure the plastics coating.
7. The method as claimed in Claim 6 in which the step of immersing the heated mounting
cup (12A) in the vessel (92) includes orienting the mounting cup (12A) in a preferred
orientation with the mounting cup disposed in an angular relationship relative to
the vertical.
8. The method as claimed in Claim 6 or 7 in which the step of immersing the heated
mounting cup (12A) in the vessel (92) includes immersing the heated mounting cup in
a vibrating bowl, and
vibrating the vibratory bowl to move the heated mounting cup (12A) therethrough and
to disperse the plastics particles into contact with the heated mounting cup.
9. The method as claimed in Claim 6, 7 or 8 further comprising: filling the aerosol
container with an aerosol product;
securing the mounting cup (12A) to the aerosol container to form a seal therebetween
with the resilient plastics material, and pressurising the aerosol container.
10. The method as claimed in Claim 5 in which the step of forming the continuous coating
on the mounting cup (12A) comprises immersing the mounting cup in a vessel (92) containing
the plastics particles;
heating the mounting cup within the vessel (92) to a temperature sufficient to melt
the plastics particles adjacent the mounting cup (12A) to form the continuous plastics
coating thereon;
removing the plastics coated mounting cup (12A) from the vessel (92);
heating the coated mounting cup (12A) to fuse the plastics coating to the mounting
cup, and
securing the aerosol valve (19) to the mounting cup (12A).
11. The method as claimed in Claim 10 in which the step of heating the mounting cup
(12A) within the vessel (92) includes heating the mounting cup (12A) by induction
heating.
12. The method as claimed in Claim 10 or 11 in which the step of removing the mounting
cup (12A) from the vessel (92) includes removing unmelted plastics particles from
the mounting cup (12A).
13. The method as claimed in Claim 12 in which the step of removing the unmelted plastics
particles from the mounting cup (12A) includes applying suction by vacuum to the plastics
coated mounting cup (12A).
14. The method as claimed in any of Claims 6 to 13 including the step of moving the
mounting cup (12A) through the vessel (92) containing the plastics particles by vibrating
the vessel (92).
1. Aersolventil- und Befestigungskappenanordnung für einen Aersolbehälter mit einem
um eine obere Öffnung in diesem Aerosolbehälter angeordneten dichtenden Behälterrandwulst,
mit einer Befestigungskappe (12A) die einen Befestigungskappenrand (16) aufweist,
der sich zum Zusammenwirken mit dem Behälterrandwulst um deren Umfang herum erstreckt;
mit einer in dieser Befestigungskappe (12A) angeordneten Ventilanordnung zum Bereitstellen
einer Fluidverbindung zwischen dem Inneren und dem Äußeren des Aerosolbehälters, und
mit einer Dichtungsmanschette (32A) aus Kunststoffmaterial, die auf der Befestigungskappe
(12A) angeordnet ist, um eine fluiddichte Abdichtung bereitzustellen, wenn der Befestigungskappenrand
(16) auf dem Aerosolbehälter befestigt ist, dadurch gekennzeichnet,
daß die Dichtungsmanschette (32A) Partikel aus mit der Befestigungskappe (12A) verschmolzenen
Kunststoffmaterial aufweist, um eine federnde Dichtungsmanschette zu bilden, wenn
der Rand der Befestigungskappe an dem dichtenden Behälterrandwulst des Aerosolbehälters
befestigt ist, und um eine kontinuierliche Schutzbeschichtung für die Befestigungskappe
(12A) gegen das Innere des Aerosolbehälters bereitzustellen.
2. Anordnung nach Anspruch 1, wobei die Befestigungskappe (12A) die Dichtungsmanschette
(32A, 32B) aus Kunststoffmaterial sowohl an ihrer inneren Oberfläche als auch an ihrer
äußeren Oberfläche trägt, wobei die Dichtungsmanschette Partikel aus Kunststoffmaterial
aufweist, die geschmolzen sind, um die innere und die äußere Oberfläche der erhitzten
Befestigungskappe (12A) einzuschließen, damit eine federnde Dichtungsmanschette bereitgestellt
wird, wenn der Rand der Befestigungskappe an dem dichtenden Randwulst des Aerosolbehälters
befestigt ist und um eine kontinuierliche Schutzbeschichtung sowohl an der Innen-
als auch an der Außenoberfläche der Befestigungskappe zu bilden.
3. Anordnung nach Anspruch 1 oder 2, wobei die Dichtungsmanschette (32A, 32B) gefärbt
ist, um einen integralen Farbcode für die Befestigungskappe (12A) zu bilden.
4. Anordnung nach Anspruch 3, wobei das Kunststoffmaterial gefärbt ist, um einen integralen
Farbcode für die genannte Befestigungskappe (12A) zu bilden.
5. Verfahren zum Herstellen einer Aerosolventil- und Befestigungskappenanordnung für
einen Aerosolbehälter, mit einem um eine obere Öffnung in diesem Aerosolbehälter angeordneten
dichtenden Behälterrandwulst mit dem Verfahrensschritt:
Ausstanzen der Befestigungskappe (12A) aus einem Metallblechmaterial, gekennzeichnet
durch
-Ausbilden einer kontinuierlichen Beschichtung aus Kunststoffmaterial auf der Befestigungskappe
(12A) durch Erhitzen der Befestigungskappe bis auf eine Temperatur, die ausreicht,
das Kunststoffmaterial zu schmelzen;
-Aufbringen von Partikeln aus Kunststoffmaterial auf die erhitzte Befestigungskappe
(12A), um die Partikel zu schmelzen, um dadurch eine federnde Dichtungsmanschette
bereitzustellen, wenn der Rand der Befestigungskappe auf die Dichtungsmanschette des
Aerosolbehälters befestigt ist und um eine kontinuierliche Beschichtung für die Befestigungskappe
(12A) zum Inneren des Aerosolbehälters hin zu bilden;
-Abkühlen der beschichteten Befestigungskappe (12A) und
- Befestigen des Aerosolventils (19) auf der beschichteten Befestigungskappe (12A).
6. Verfahren nach Anspruch 5, wobei der Verfahrensschritt des Aufbringens von Kunststoffpartikeln
beinhaltet
- Eintauchen der erwärmten Befestigungskappe (12A) in einen Kessel (92), der Kunststoffpartikel
enthält, um die kontinuierliche Beschichtung auf der Befestigungskappe (12A) zu bilden,
und
- Erwärmen der Befestigungskappe, um die Kunststoffbeschichtung zu härten.
7. Verfahren nach Anspruch 6, wobei der Verfahrensschritt des Eintauchens der erwärmten
Befestigungskappe (12A) in den Kessel (92) ein Ausrichten der Befestigungskappe (12A)
in eine bevorzugte Stellung umfaßt, in der die Befestigungskappe sich zur Vertikalen
in einer Winkellage befindet.
8. Verfahren nach Anspruch 6 oder 7, wobei der Verfahrensschritt des Eintauchens der
erwärmten Befestigungskappe (12A) in den Kessel (92) einschließt
- Eintauchen der erwärmten Befestigungskappe in einen Vibrationstiegel, wobei der
Vibrationstiegel in Vibration versetzt wird, um die erwärmte Befestigungskappe (12A)
durch ihn hindurch zu bewegen und die Kunststoffpartikel in Kontakt mit der erwärmten
Befestigungskappe zu verteilen.
9. Verfahren nach Anspruch 6, 7 oder 8, mit den weiteren Verfahrensschritten
- Füllen des Aerosolbehälters mit einem Aerosolprodukt;
- Befestigen der Befestigungskappe (12A) an dem Aerosolbehälter, um eine Dichtung
aus federndem Kunststoffmaterial zwischen den beiden Teilen auszubilden, und
- Druckbeaufschlagen des Aerosolbehälters.
10. Verfahren nach Anspruch 5, wobei der Verfahrensschritt des Ausbildens einer kontinuierlichen
Beschichtung auf der Befestigungskappe (12A) beinhaltet:
- Eintauchen der Befestigungskappe in einen Kunststoffpartikel enthaltenden Kessel
(92);
- Erwärmen der Befestigungskappe in dem Kessel (92) auf eine Temperatur, die ausreicht,
die sich an der Befestigungskappe (12A) befindlichen Kunststoffpartikel zu schmelzen
und auf ihr eine kontinuierliche Kunststoffbeschichtung auszubilden;
- Herausnehmen der kunststoffbeschichteten Befestigungskappe (12A) aus dem Kessel
(92);
- Erwärmen der beschichteten Befestigungskappe (12A), um die Kunststoffbeschichtung
mit der Befestigungskappe schmelzzuverbinden und
- Befestigen des Aerosolventils (19) auf der Befestigungskappe (12A).
11. Verfahren nach Anspruch 10, wobei der Verfahrensschritt des Erwärmens der Befestigungskappe
(12A) in dem Kessel (92) das Aufheizen der Befestigungskappe (12A) durch Induktionserwärmung
beinhaltet.
12. Verfahren nach Anspruch 10 oder 11, wobei der Verfahrensschritt des Herausnehmens
der Befestigungskappe (12A) aus dem Kessel (92) des Entfernen nicht-geschmolzener
Kunststoffpartikel von der Befestigungskappe (12A) einschließt.
13. Verfahren nach Anspruch 12, wobei der Verfahrensschritt des Entfernens nicht-geschmolzener
Kunststoffpartikel von der Befestigungskappe (12A) die Anwendung eines Absaugens durch
Vakuum der kunststoffbeschichteten Befestigungskappe (12A) einschließt.
14. Verfahren nach einem der Ansprüche 6 bis 13, wobei das Bewegen der Befestigungskappe
(12A) durch den Kunststoffpartikel enthaltenden Kessel (92) durch Vibration des Kessels
(92) durchgeführt wird.
1. Ensemble constitué par une soupape à aérosol et une cuvette de montage, destiné
à un récipient à aérosol comportant un bourrelet d'étanchéité du récipient disposé
autour d'une ouverture supérieure du récipient à aérosol, comprenant:
une cuvette de montage (12A) comportant un pourtour de cuvette de montage (16) s'étendant
autour de sa périphérie en vue de coopérer avec le bourrelet du récipient,
un dispositif à soupape disposé dans ladite cuvette de montage (12A) pour permettre
la communication du fluide entre l'intérieur du récipient à aérosol et l'extérieur
du récipient à aérosol, et un joint d'étanchéité en matière plastique (32A) disposé
sur la cuvette de montage (12A) pour constituer un joint étanche au fluide quand le
pourtour (16) de la cuvette de montage est fixé au récipient à aérosol, caractérisé
en ce que le joint d'étanchéité (32A) comprend des particules de matière plastique
adhérant par fusion sur la cuvette de montage (12A) pour constituer un joint d'étanchéité
élastique quand le pourtour de la cuvette de montage est fixé au bourrelet d'étanchéité
du récipient à aérosol et pour constituer un revêtement protecteur continu pour la
cuvette de montage (12A) depuis l'intérieur du récipient à aérosol.
2. Ensemble selon la revendication 1, dans lequel la cuvette de montage (12A) comprend
un joint d'étanchéité (32A, 32B) en matière plastique à la fois sur une surface intérieure
et sur une surface extérieure de la cuvette de montage, le joint d'étanchéité (32A,
32B) comprenant des particules de matière plastique fondues pour recouvrir les surfaces
intérieure et extérieure de la cuvette de montage chauffée (12A) et déterminer le
joint d'étanchéité élastique quand le pourtour de la cuvette de montage est fixé au
bourrelet d'étanchéité du récipient à aérosol et pour déterminer un revêtement protecteur
continu à la fois sur les surfaces intérieure et extérieure de la cuvette de montage.
3. Ensemble selon la revendication 1 ou 2, dans lequel le joint d'étanchéité (32A,
32B) est coloré pour déterminer un code coloré intégré pour ladite cuvette de montage
(12A).
4. Ensemble selon la revendication 3, dans lequel la matière plastique est colorée
pour déterminer le code de couleur intégré pour ladite cuvette de montage (12A).
5. Procédé de fabrication de l'ensemble constitué par une soupape à aérosol et une
cuvette de montage, destiné à un récipient à aérosol comprenant un bourrelet d'étanchéité
du récipient disposé autour d'une ouverture supérieure dans le récipient à aérosol,
comportant:
l'estampage de la cuvette de montage (12A) à partir d'un matériau en feuille métallique
et caractérisé par la formation du revêtement continu de matière plastique sur la
cuvette de montage (12A) par chauffage de la cuvette de montage à une température
suffisant e pour faire fondre la matière plastique;
l'application des particules de matière plastique sur la cuvette de montage (12A)
chauffée pour faire fondre les particules, constituant ainsi un joint d'étanchéité
élastique quand le pourtour de la cuvette de montage est fixé au joint d'étanchéité
du récipient à aérosol, et pour fournir le revêtement continu pour la cuvette de montage
(12A) depuis l'intérieur du récipient à aérosol;
le refroidissement de la cuvette de montage revêtue (12A) et la fixation de la soupape
à aérosol (19) sur la cuvette de montage revêtue (12A).
6. Procédé selon la revendication 5, dans lequel l'étape d'application de particules
de matière plastique comprend l'immersion de la cuvette de montage chauffée (12A)
dans une cuve (92) contenant les particules de matière plastique pour former le revêtement
continu sur la cuvette de montage (12A), et
le chauffage de la cuvette de montage pour polymériser le revêtement de matière plastique.
7. Procédé selon la revendication 6, dans lequel l'étape d'immersion de la cuvette
de montage chauffée (12A) dans la cuve (92) comprend l'orientation de la cuvette de
montage (12A) selon une orientation préférée, ladite cuvette de montage étant disposée
selon une relation angulaire par rapport à la verticale.
8. Procédé selon la revendication 6 ou 7, dans lequel l'étape d'immersion de la cuvette
de montage chauffée (12A) dans la cuve (92) comprend l'immersion de la cuvette de
montage chauffée dans un bol vibratoire, et les vibrations du bol vibratoire pour
déplacer la cuvette de montage chauffée (12A) dans ce dernier et pour disperser les
particules de matière plastique et les amener en contact avec la cuvette de montage
chauffée.
9. Procédé selon la revendication 6, 7 ou 8, comprenant en outre:
le remplissage du récipient à aérosol au moyen de l'aérosol; la fixation de la cuvette
de montage (12A) sur le récipient à aérosol pour former un joint entre eux au moyen
de la matière plastique élastique, et la mise sous pression du récipient à aérosol.
10. Procédé selon la revendication 5, dans lequel l'étape de formation du revêtement
continu sur la cuvette de montage (12A) comprend l'immersion de la cuvette de montage
dans une cuve (92) contenant les particules de matière plastique;
le chauffage de la cuvette de montage dans la cuve (92) à une température suffisante
pour faire fondre les particules de matière plastique qui sont contre la cuvette de
montage (12A) pour former sur elle le revêtement continu de matière plastique;
le retrait de la cuvette de montage revêtue de matière plastique (12A) de la cuve
(92);
le chauffage de la cuvette de montage revêtue (12A) pour faire fondre le revêtement
de matière plastique sur la cuvette de montage; et
la fixation de la soupape à aérosol (19) sur la cuvette de montage (12A).
11. Procédé selon la revendication 10, dans lequel l'étape de chauffage de la cuvette
de montage (12A) dans la cuve (92) comprend le chauffage de la cuvette de montage
(12A) par un chauffage par induction.
12. Procédé selon la revendication 10 ou 11, dans lequel l'étape de retrait de la
cuvette de montage (12A) de la cuve (92) comprend le retrait des particules de matière
plastique non fondues de la cuvette de montage (12A).
13. Procédé selon la revendication 12, dans lequel l'étape d'élimination des particules
de matière plastique non fondues de la cuvette de montage (12A) comprend l'application
d'une aspiration par un vide à la cuvette de montage (12A) revêtue de matière plastique.
14. Procédé selon l'une quelconque des revendications 6 à 13, comprenant l'étape consistant
à déplacer la cuvette de montage (12A) dans la cuve (92) contenant les particules
de matière plastique en faisant vibrer la cuve (92).