

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 125 144
A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 84303141.0

(51) Int. Cl.³: C 10 M 1/46
C 07 F 9/141

(22) Date of filing: 09.05.84

(30) Priority: 10.05.83 US 493398

(72) Inventor: Brecker, Lawrence Robert
1942 New York Avenue
Brooklyn New York(US)

(43) Date of publication of application:
14.11.84 Bulletin 84/46

(72) Inventor: Loeffler, Otto Ernest
73F Woodbridge Terrace
Woodbridge New Jersey(US)

(84) Designated Contracting States:
BE DE FR GB IT NL SE

(72) Inventor: Abramoff, Charles
354 East 74th Street
New York, NY(US)

(71) Applicant: Exxon Research and Engineering Company
P.O.Box 390 180 Park Avenue
Florham Park New Jersey 07932(US)

(72) Inventor: Cleveland, William, Kenneth
231 West 6th Avenue
Roselle New Jersey(US)

(71) Applicant: Argus Chemical Corporation
633 Court Street
Brooklyn New York 11231(US)

(72) Inventor: Wosatka, Susan Jean
2124 Alberta Avenue
Linden New Jersey(US)

(74) Representative: Bawden, Peter Charles et al,
ESSO CHEMICAL LIMITED Esso Chemical Research
Centre PO Box 1
Abingdon Oxfordshire OX13 6BB(GB)

(54) Functional fluids and lubricants having improved water tolerance.

(57) There are disclosed functional fluids and lubricating compositions containing a minor amount of an oil-soluble alkoxypolyethyleneoxy acid phosphite ester additive which provides improved water tolerance properties to the compositions.

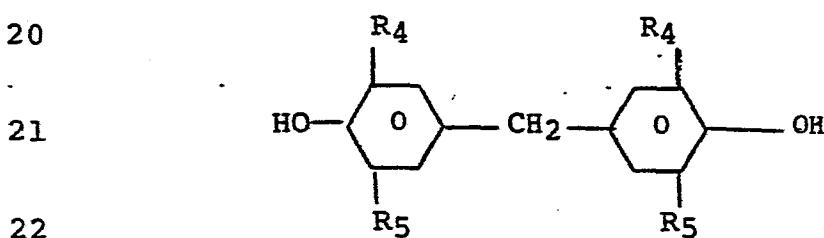
EP 0 125 144 A2

FUNCTIONAL FLUIDS AND LUBRICANTS HAVING IMPROVED WATER
TOLERANCE

1 This invention relates to functional fluids and
2 lubricants which exhibit improved water tolerance pro-
3 perties. More particularly, the invention relates to
4 mineral oil or synthetic oil based functional fluid com-
5 positions which contain effective amounts of certain
6 oil-soluble, alkoxypolyethyleneoxy mono- or di-acid
7 phosphite ester additives, which additives are highly
8 effective in improving the water tolerance properties of
9 such compositions.

10 U.S. Patent No. 2,280,450 describes hydrocarbon
11 oils of improved resistance to corrosion containing a small
12 amount of a substantially stable oil-soluble water-in-
13 soluble reaction product of tricresyl phosphite and octyl
14 phenoxyethanol. The mole ratio of tricresyl phosphite to
15 octyl phenoxyethanol varies from 1:1 to about 1:2.5. The
16 reaction product is described as a complex ester of
17 phosphorous acid, which may or may not contain unreacted
18 octyl phenoxyethanol. The product is not however an acid
19 phosphite, and it is not suggested that the water tolerance
20 of the resulting composition is improved.

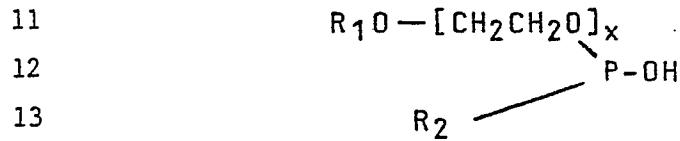
21 U.S. Patent No. 3,583,915 provides industrial
22 fluid compositions and lubricant compositions containing
23 improved load-carrying additives, including a diorgano
24 hydrogen phosphonate in which at least one organic group is
25 an aliphatic group containing at least fourteen carbon
26 atoms in admixture with an active sulfur compound.


27 U.S. Patent No. 3,652,410 provides multifunctional
28 lubricant additive compositions and lubricating oils
29 containing, among other things, an organic acid phosphate
30 or organic phosphite containing at least one alkyl or
31 alkenyl group having from about 12 to about 24 carbon
32 atoms. Also present is a mineral oil soluble or dis-
33 persible basic detergent, a mineral oil antioxidant, a
34 sulfurized fat, or an alkyl sulfide or alkyl polysulfide.

1 U.S. Patent No. 4,346,148 and U.S. Patent No.
2 4,358,509 describe reaction products of alkoxylated alkyl
3 phenol and a phosphorus trihalide which are included in
4 lubricating compositions useful in metal-working opera-
5 tions, imparting corrosion resistance, extreme pressure
6 properties, and protection against wear of working parts.

7 U.S. Patent No. 3,115,465 provides antioxidant
8 combinations for organic materials, including lubricants,
9 comprising an oil-soluble phosphite ester having the
10 formula:

14 wherein R₁ and R₂ are alkyl, alkoxyalkyl, haloalkyl,
15 cycloalkyl, halocycloalkyl, aralkyl, aryl, alkaryl,
16 haloaryl or haloalkaryl radicals and R₃ is hydrogen or one
17 of the aforesaid radicals; and from about 0.01 to about 5,
18 preferably 0.25 to 2%, by weight based on the oil of a
19 methylene bis-phenol having the formula:



23 wherein R₄ is an alkyl group containing 3 to 12 carbon
24 atoms, the group being branched on its alpha carbon atom,
25 and R₅ is an alkyl group of 1 to 12 carbon atoms.

26 None of the foregoing references disclose the
27 improvement in water tolerance properties achieved in
28 accordance with the present invention. Water compatibility
29 is a highly significant property of functional fluids and
30 lubricants, which, under severe conditions, come into
31 contact with water and in the absence of acceptable water
32 tolerance properties the fluid will have its lubricating
33 and power transmission properties substantially reduced.
34 The specifications of many equipment manufacturers require

1 that the fluids and lubricants used therein have certain
2 water tolerance properties, for example, fluids for use in
3 agricultural machinery, such as tractor fluids.

4 In accordance with the present invention there
5 have been discovered improved functional fluids and
6 lubricating compositions comprising a major amount of a
7 synthetic or mineral oil of lubricating viscosity and an
8 amount, effective to improve the water tolerance properties
9 of the composition, of an oil-soluble alkoxypropyleneoxy
10 acid phosphite ester additive of the formula:

14 wherein:

15 R_1 is alkyl or alkenyl and R_2 is OH, alkoxy,
16 oxy-alkenyl, or $\text{R}_1\text{O}[\text{CH}_2\text{CH}_2\text{O}]_x$, in which the total number of
17 carbon atoms in the alkyl, alkenyl, alkoxy or oxyalkenyl
18 groups is about 8 to 36; and x is a number (which can be a
19 whole number or a fractional number) representing the
20 average number of $[\text{CH}_2\text{CH}_2\text{O}]$ groups, and ranges from about 2
21 to about 4. Preferred phosphite additives are those
22 wherein x is 2, 2.5, 3.5 or 4.

23 In R_1 and R_2 , alkyl and alkenyl groups
24 include octyl, 2-ethyl hexyl, iso-octyl, tertiary-octyl,
25 nonyl, isononyl, tertiary-nonyl, secondary-nonyl, decyl,
26 isodecyl, undecyl, dodecyl, tridecyl, palmityl, stearyl,
27 and isostearyl; octenyl, nonenyl, decenyl, dodecenyl,
28 oleyl, linoleyl and linolenyl.

29 Acid phosphites according to the invention
30 include di(octyl di(ethyleneoxy)) phosphite, di(isooctyl
31 tri(ethyleneoxy)) phosphite, di(2-ethylhexyl-tetra(ethy-
32 leneoxy)) phosphite, di(nonyl-di(ethyleneoxy)) phosphite,
33 di(isodecyl-tri(ethyleneoxy)) phosphite, di(palmityl-tetra-
34 (ethyleneoxy)) phosphite, di(stearyl tri(ethyleneoxy))
35 phosphite, octyl di(ethyleneoxy) phosphite, stearyl
36 di(ethyleneoxy) phosphite, and octyl(tri(ethyleneoxy))-

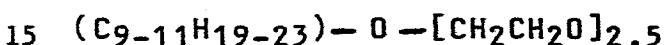
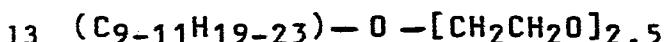
1 nonyl(tetra(ethyleneoxy)) phosphite; octyl di(ethylene-
2 oxy)octyl phosphite, isoctyl tri(ethyleneoxy) oleyl
3 phosphite, 2-ethylhexyl-tetra(ethyleneoxy) decyl phosphite,
4 nonyl-di(ethyleneoxy) nonyl phosphite, isodecyl-tri(ethy-
5 leneoxy) linoleyl phosphite, palmityl-tetra(ethyleneoxy)
6 stearyl phosphite, stearyl-tri(ethyleneoxy) stearyl
7 phosphite, octyl di(ethyleneoxy) stearyl phosphite, stearyl
8 di(ethyleneoxy) oleyl phosphite, and octyl tri(ethyleneoxy)
9 nonyl phosphite.

10 The oil-soluble phosphite ester additive of this
11 invention will provide effective water tolerance properties
12 to a wide variety of functional fluid and lubricating
13 compositions and these include hydraulic fluids, compressor
14 oils, pump oils, tractor fluids and universal tractor fluid
15 compositions, gear oils, hydrostatic transmission oils,
16 power shift transmission fluids and the like. Such
17 functional fluids and lubricating compositions will also
18 contain a number of conventional additives in amounts as
19 required to provide their normal attendant functions. Such
20 additives include viscosity modifiers or viscosity index
21 improvers, corrosion inhibitors, oxidation inhibitors,
22 friction modifiers, dispersants, demulsifiers, anti-foam
23 agents, anti-wear agents, pour point depressants, seal
24 swellants and other special purpose additives.

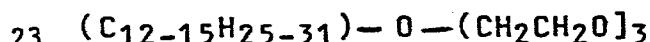
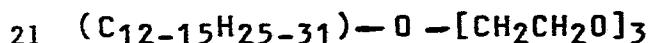
25 Typical viscosity modifiers include polyiso-
26 butylene, ethylene-propylene copolymers, polymethacrylates,
27 styrene-acrylic ester copolymers and vinyl monomer un-
28 saturated dicarboxylic acid (or ester) copolymers.
29 Corrosion inhibitors include zinc dialkyl dithiophosphates
30 and phosphosulfurized hydrocarbons and reaction products
31 thereof with alkaline earth metal oxides or hydroxides,
32 preferably in the presence of alkyl phenols or alkyl phenol
33 thioethers. Oxidation inhibitors are illustrated by
34 alkaline earth metal salts of alkyl (C₅-C₁₂) phenol
35 thioethers.

1 Dispersants are well known in the art and include
2 **oil-soluble alkenyl succinimides**, e.g. the reaction products of
3 polyisobutylene succinic anhydrides with ethylene amines
4 and borated derivatives. Exemplary pour point depressants
5 are C₈-C₁₈ dialkylfumarate/vinyl acetate copolymers,
6 polymethacrylates and wax-naphthalene condensation
7 products. Anti-foam agents are typically polysiloxane
8 materials such as silicone oil and polydimethyl siloxane;
9 anti-wear agents include zinc dialkyl (or diaryl) dithio-
10 phosphates and magnesium sulfonates. Seal swellants are
11 typified by mineral oils that provoke swelling, C₈-C₁₃
12 aliphatic alcohols and C₁₀-C₆₀ hydrocarbon esters having
13 2-4 ester linkages such as dihexylphthalate.

14



15 The oil-soluble phosphite ester additive of this
16 invention will be present in amounts effective to provide
17 acceptable water tolerance properties to the particular
18 composition and the desired amount will vary according to
19 the service conditions but generally the additives of this
20 invention will be present in an amount of about 0.05 to 5%
21 by weight, based on the weight of the total lubricating oil
22 or functional fluid composition and preferably from about
23 0.2 to 2% by weight percent.

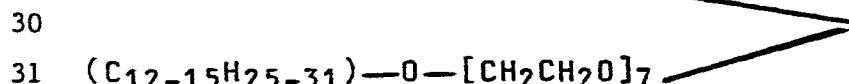
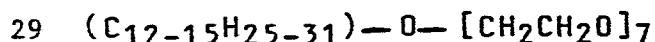
24 Typical base oils for such functional fluids and
25 lubricating compositions include a wide variety of hydro-
26 carbon mineral oils such as naphthene base, paraffin base
27 and mixtures thereof having a lubricating viscosity range
28 of about 34 to 45 Saybolt Universal Seconds (SUS) at 35°C.
29 Examples of synthetic oils useful in the compositions of
30 the present invention include olefin oligomers, alkylated
31 aromatics, polybutene oils, cycloaliphatic compounds,
32 dibasic acid esters, polyol esters, polyglycerol fluids,
33 phosphate esters, silicone oils and halogenated hydrocarbon
34 fluids and mixtures thereof.

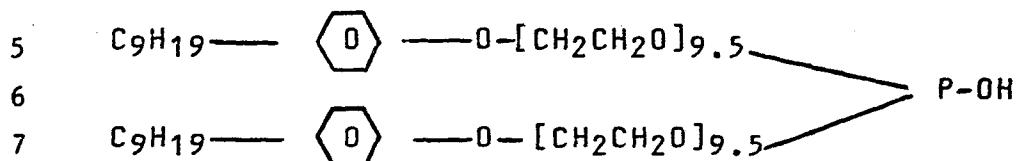


35 The following examples illustrate the preferred
36 embodiments of the oil soluble phosphite ester additives of
37 this invention: (EO refers to ethylene oxide)

1 EXAMPLE I2 Di(C₉-C₁₁ alkyl 2.5 EO) phosphite

3 159.8g of triphenyl phosphite (97%) and 405g of
 4 (mixed alkyl(oxyethylene)_{2.5} alcohols, the alkyl having
 5 from nine to eleven carbon atoms, and 0.6g of K₂CO₃ were
 6 heated at 85°C for three hours. Vacuum was then applied (6
 7 mm) with heating to a maximum temperature of 170°C to
 8 remove phenol. The weight of volatiles collected was
 9 150.9g (theory 145.8). To the transesterified product
 10 15.63g of phosphorous acid was added with agitation and the
 11 mixture heated to 85°C for 5 hours with agitation, giving
 12 clear reaction product having the formula:

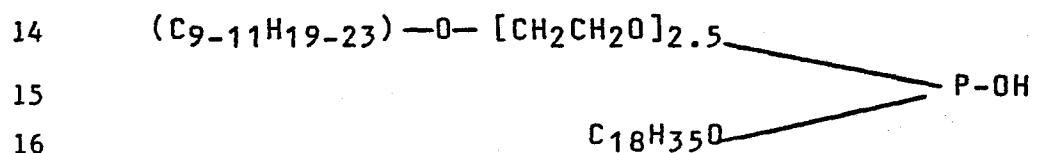
16 EXAMPLE II



17 Di(C₁₂-C₁₅alkyl-3EO) phosphite was prepared from triphenyl
 18 phosphite (97%), and (mixed alkyl(oxyethylene)₃ alcohols,
 19 the alkyl having from eleven to fifteen carbon atoms) using
 20 the procedure of Example I. The compound has the formula:



24

Control A


25 Di(C₁₂- C₁₅ alkyl-7EO) phosphite was prepared from
 26 triphenyl phosphite (97%), and mixed C₁₂-C₁₅ (oxyethylene)₇
 27 alcohols using the procedure of Example I. The compound has
 28 the formula:

EXAMPLE III

9 Mono(C₉₋₁₁ alkyl 2.5EO) mono oleyl phosphite was prepared
10 from triphenyl phosphite ((mixed alkyl oxyethylene)_{2.5}
11 alcohols, the alkyl having from nine to eleven carbon
12 atoms), and oleyl alcohol using the procedure of Example I.
13 The compound has the formula:

17 Typical functional fluids or lubricating com-
18 position of the present invention will contain a number of
19 conventional additives in typical amounts as required to
20 provide their normal attendant functions. Such additive
21 components and their usual ranges are set forth below.

<u>22 Component</u>	<u>Concentration Range (Vol. %)</u>
23 V.I. Improver	1-15
24 Corrosion Inhibitor	0.01-2
25 Oxidation Inhibitor	0.01-2
26 Dispersant	0.2-10
27 Pour Point Depressant	0.01-1
28 Anti-foam Agent	0.001-0.1
29 Anti-wear Agent	0.01-5
30 Seal Swellant	0.01-1
31 Friction Modifier	0.1-5
32 Mineral Oil Base	Balance

1 The foregoing composition is referred to as Base Fluid and
2 a tractor hydraulic fluid corresponding to the Base Fluid
3 was evaluated for water tolerance with various additives as
4 set forth below. The mineral oil used in the Base Fluid
5 had a kinematic viscosity of 69.8 centistokes at 37.8°C
6 and 14.5 centistokes at 98.9°C.

7 The test used was the International Harvester
8 Water Tolerance Test IH BT-7; January, 1980 contained in
9 the International Harvester Engineering Materials Specifi-
10 cation for Combination Hydraulic and Transmission Fluid.

11 The test is described as follows:

12 APPARATUS REQUIRED

13 (1) Mechanical paint shaker, Red Devil No. 30 or equiva-
14 lent.

15 (2) 118 ml bottle with cap.

16 (3) Graduated cylinder, 100 ml.

17 (4) 100 ml centrifuge tube according to ASTM Designation D
18 2273-67.

19 (5) Pipette or syringe capable of delivering 1.0 ml.

20 (6) Stopper to fit centrifuge tube.

21 PROCEDURE

22 (1) Add 1 ml distilled water to 99 ml hydrocarbon oil
23 in the 118 ml bottle.

24 (2) Shake the prepared sample for 5 minutes in the
25 mechanical shaker.

26 (3) Transfer immediately to the 100 ml centrifuge
27 tube.

28 (4) Stopper and let the agitated solutions stand
29 undisturbed in a vertical position for 168 hours (7 days at
30 70 to 80°F, 21 to 27°C), then examine for emulsion, water,
31 clearness and sediment.

32 REPORT

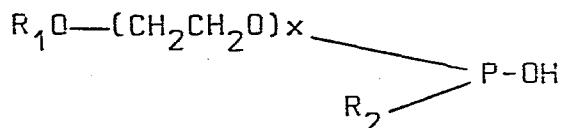
33 (1) Level of emulsion, water and sediment to the
34 nearest 0.1 ml.

35 (2) The clearness or turbidity of the solution.

1 EXAMPLE IV

2 The results of evaluations are tabulated below in
3 the Table. The data include comparisons with Control A,
4 Control B and two commercially available Surfactants A
5 (sorbitan oleate) and B (ethoxylated fatty acid ester of
6 sorbitol anhydride). All additives were employed in the
7 same Base Fluid at concentration of 1% by weight.

8 Table - Water Tolerance Results


<u>Additive</u>									
10	11 Tests	12 Results	None	Ex I	Ex II	Control A	Control B	Sur- fac- tant A	Sur- fac- tant B
13	H ₂ O	0.2	0	0	1-2.5	*	0.45	3.4	
14	Inter- face	0.5	0	0	*	*	0	0	
16	Oil Ap- pearance	Haze	clear	Clear	Haze	Haze	Clear	Clear	Haze

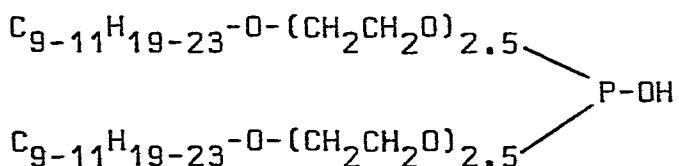
18 * Emulsions, sediment and haze present

19 Note: The test is unsatisfactory if the total ml of H₂O
20 and interface is 0.2 or greater. The oil appearance
21 should be clear and free of haze.

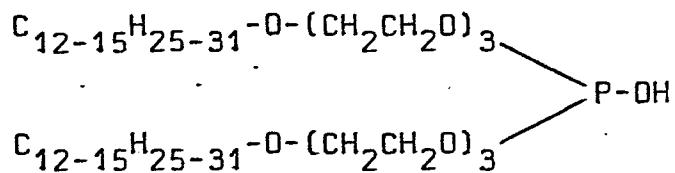
CLAIMS

1. A functional fluid composition comprising a major amount of a synthetic or mineral oil of lubricating viscosity and an amount, effective to improve the water tolerance properties of the composition, of an oil soluble phosphite ester additive of the formula:

wherein:

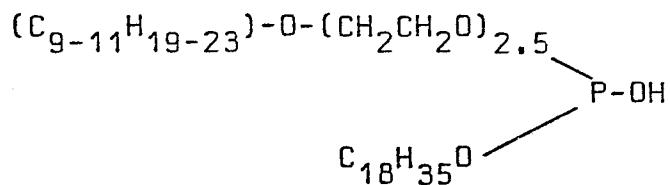

R_1 is alkyl or alkenyl, and R_2 is OH, alkoxy, oxy-alkenyl or $R_1O-(CH_2CH_2O)_x$, in which the total number of carbon atoms in the alkyl, alkenyl, alkoxy or oxyalkenyl groups is from 8 to 36, and x is a number representing the average number of (CH_2CH_2O) groups and is within the range from 2 to 4.

2. A composition according to claim 1 in which x is 2, 2.5, 3, 3.5 or 4.


3. A composition according to claim 1 or claim 2, in which R_1 is alkyl having from nine to eleven carbon atoms.

4. A composition according to claim 1 or claim 2, in which R_1 is alkyl having from twelve to fifteen carbon atoms.

5. A composition according to claim 1 in which the phosphite ester is



6. A composition according to claim 1 in which the phosphite ester is

and the oil is a hydrocarbon mineral oil.

7. A composition according to claim 1 in which the phosphite ester is

8. A composition according to any of claims 1 to 7, for use as a tractor fluid.

9. A composition according to any of claims 1 to 8, in which the amount of the additive is within the range from 0.05 to 5% by weight of the oil.

10. A hydrocarbon oil composition according to any of claims 1 to 9, in which the amount of the additive is within the range of from 0.2 to 2% by weight of the oil.