(19)
(11) EP 0 128 131 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
12.12.1984  Patentblatt  1984/50

(21) Anmeldenummer: 84890076.7

(22) Anmeldetag:  26.04.1984
(51) Internationale Patentklassifikation (IPC)3C21B 13/00
(84) Benannte Vertragsstaaten:
BE DE FR GB IT LU NL SE

(30) Priorität: 04.05.1983 AT 1646/83

(71) Anmelder: VOEST-ALPINE Aktiengesellschaft
A-1011 Wien (AT)

(72) Erfinder:
  • Sulzbacher, Horst, Dipl.-Ing.
    A-8700 Leoben (AT)

(74) Vertreter: Haffner, Thomas M., Dr. et al
Patentanwalt Schottengasse 3a
1014 Wien
1014 Wien (AT)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren zum Entfernen von Schwefel bei der Erschmelzung von Roheisen


    (57) Zur Entfernung von Schwefel beim Erschmelzen von Roheisen in einer Kohlewirbelschicht wird vorgeschlagen, stückiges und/oder körniges Entschwefelungsmittel zumindest in die Kohlewirbelschicht einzubringen. Zusätzlich kann das Entschwefelungsmittel in die Schlacke eingebracht werden, wobei vorzugsweise für die Kohlewirbelschicht Entschwefelungsmittel im Korngrößenbereich von 0,5 - 5 mm und für die Schlackenschicht im Korngrößenbereich von 5 bis 50 mm oberhalb oder seitlich der Kohlewirbelschicht aufgegeben werden. Der Anteil der stückigen Entschwefelungsmittel soll vorzugsweise kleiner als 50 Gew.% der gesamten Menge gewählt werden.


    Beschreibung


    [0001] Die Erfindung bezieht sich auf ein Verfahren zum Entfernen von Schwefel bei der Erschmelzung von Roheisen in einer Kohlewirbelschicht.

    [0002] Für das Schmelzen von zumindest teilweise reduziertem Eisenerz, insbesondere Eisenschwamm, wurden Verfahren vorgeschlagen, welche unter Verwendung eines Einschmelzvergasers arbeiten, in welchem durch eingebrachte Kohle und eingeblasenes sauerstoffhaltiges Gas die zum Schmelzen des reduzierten Materials erforderliche Wärme und ein Reduktionsgas erzeugt werden. Ein derartiges Einschmelzverfahren ist beispielsweise der DE-OS 28 43 303 zu entnehmen. Derartige Reduktionsverfahren wurden vor allen Dingen im Hinblick auf die Verwendung von schlecht oder nicht verkokbaren Kohlenstoffträgern entwickelt, welche sich durch einen relativ hohen Schwefelgehalt auszeichnen. Bei derartigenoVerfahrensweisen wird somit ein hoher Schwefelanteil über die Kohle in das Bad eingebracht und es ist der Schwefelgehalt im Metall üblicherweise wesentlich größer als der Schwefelgehalt im vergleichbaren Hochofenroheisen. Die Reaktion in derartigen Einschmelzvergasern läuft relativ rasch ab, und auf Grund des raschen Materialdurchganges durch das Wirbelbett wird üblicherweise nur ein geringer Siliziumgehalt von unter 0,2 % und ein FeO-Gehalt in der Schlacke erzielt, welcher höher liegt als der FeO-Gehalt in einer Hochofenschlacke. Beide dieser Tatsachen beeinträchtigen die Entschwefelungsreaktion mit Kalk.

    [0003] Eine ausreichende Entschwefelung von mit derartigen Verfahren erschmolzenem Roheisen konnte daher bisher nur in der Pfanne und damit unter zusätzlichem Energieverbrauch sinnvoll erzielt werden.

    [0004] Die Erfindung zielt nun darauf ab, eine derartige gesonderte Entschwefelung der Schmelze zu vermeiden und den Großteil oder die gesamte Entschwefelungsarbeit bereits in dem Schmelzreaktor vorzunehmen. Zur Lösung dieser Aufgabe besteht die Erfindung im wesentlichen darin, daß stückiges und/oder körniges Entschwefelungsmittel in die Kohlewirbelschicht und gegebenenfalls zusätzlich in die Schlackenschicht eingebracht wird. Eine Verwendung von staubförmigen Feinkalk in Form von Kalkhydrat oder gebranntem Kalk hat sich als nachteilig herausgestellt, da staubförmiger Feinkalk zum Großteil mit dem eingeblasenem Gas wieder ausge-tragen wird, und nur ein mengenmäßig geringer Anteil für die Entschwefelung im Schmelzraum zur Verfügung steht. Die ausschließliche Verwendung von stückigem Brandkalk führt auf Grund der Bildung einer Dicalciumsilikatschicht an der Kornoberfläche zu einer ungenügenden Auflösung in der meist sauren Schlacke aus der Kohlenasche. Die Verwendung von körnigem Entschwefelungsmittel in der Kohlewirbelschicht. erlaubt es, einen Großteil der Entschwefelungsarbeit bereits'während der Schmelzreduktionsvorgänge in der fluidisierten Phase durchzuführen und die zusätzliche Zugabe von stückigem Entschwefelungsmittel, welches in der Kohlewirbelschicht nicht gänzlich reagiert, führt zu einer weiteren Entschwefelung durch Austauschvorgänge in der Grenzzone von Schlacke und Wirbelbett.

    [0005] Die Entschwefelungsreaktion mit CaO ist endotherm und läuft in Richtung höherer Temperaturen bevorzugt ab.

    Ist die Sauerstoffaktivität bzw. der FeO-Gehalt der Schlacke hoch, dann muß mit einer Beeinträchtigung .der Entschwefelungseffizienz gerechnet werden, vor allem auch deshalb, weil der Si-Gehalt des erschmolzenen Metalls niedrig liegt.

    [0006] Auf Grund dieses Faktums und wegen des hohen Schwefeleinbringens durch die Kohle wird im Kohlewirbelbett erschmolzenes Roheisen im Schwefelgehalt immer deutlich höher liegen als Hochofenroheisen. Eine Entschwefelung außerhalb des Schmelzgefäßes mit großen spezifischen Mengen der bekannten Entschwefelungsmittel Calciumkarbid, Soda, Magnesium usw. ist daher notwendig. Erfindungsgemäß werden nun die zur Nachentschwefelung vorgesehenen Einsatzstoffe in körniger und/oder stückiger Form schon in den Einschmelzgenerator zudosiert und entsprechend ihrer Korngröße zusammen mit der Kohle gewirbelt. Sie binden dabei in festem, flüssigem oder sublimierten Aggregatzustand den Kohleschwefel ab oder fallen im Falle einer gröberen Körnung sofort durch die Wirbelschicht hindurch und lösen sich in engem Kontakt mit dem aufschmelzenden Eisenschwamm langsam in der Schlackenschicht auf. Durch Variation des stückigen bzw. des körnigen Anteils des Entschwefelungsmittels kann das Schwergewicht der Entschwefelungsreaktion in die Wirbelschicht bzw. in die Schlakkenschicht verlagert werden.

    [0007] Im Rahmen des erfindungsgemäßen Verfahrens können als Entschwefelungsmittel Mangan Calcium, Magnesium, Alkalien oder seltene Erden in Form von Oxiden, Carbiden, Karbonaten, Legierungen, Mischmetallen oder in metallischer Form eingesetzt werden. Die Verwendung von Calciumkarbonat allein hat jedoch den Nachteil, daß bei einer direkten Chargierung in den Vergaser nicht unbeträchtliche Energiemengen für die Austreibung und Umsetzung von C02 erforderlich sind. In besonders bevorzugter Weise wird daher erfindungsgemäß Calciumcarbid als Entschwefelungsmittel eingesetzt. Die Entschwefelungsreaktion mit CaC2 läuft unter Energieabgabe und bevorzugt in Richtung niedriger Temperaturen ab.



    [0008] Calciumcarbid bewirkt auch als Desoxidationsmittei eine Verringerung des FeO-Gehaltes in der Schlacke. Die Reaktionsprodukte CaO und CaS werden von der Schlacke aufgenommen.

    [0009] Die Zugabe von stückigen und/oder körnigen Entschwefelungsnitteln in die Kohlewirbelschicht bringt im Vergleich mit dem Entschwefeln außerhalb des Schmelzgefäßes unter anderem eine optimale Verteilung und lange Aufenthaltsdauer der Entschwefelungsmittel im Wirbelbett bzw. an der Schlackenoberfläche und dadurch ideale kinetische Voraussetzungen mit sich.

    [0010] Leiters ergibt sich eine Steuerungsmöglichkeit durch kombinierte Beaufschlagung der Entschwefelungsräume (Wirbelbett für Kohleentschwefelung und Schlackenschicht für Eisenentschwefelung). Hier spielen Körnung und Qualität des Entschwefelungsmittels eine wichtige Rolle. Eine derartige Steuerungsmöglichkeit wird in vorteilhafter Weise dadurch erzielt, daß der Anteil des Entschwefelungsmittels für die Kohlewirbelschicht im Korngrößenbereich von 0,5 - 5 mm und der Anteil des Entschwefelungsmittels für die Schlacke im Korngrößenbereich von 5 - 50 mm eingebracht wird, wobei diese beiden Anteile in weiten Grenzen variiert werden können und auf diese Weise eine Einstellung des Schwergewichtes der Entschwefelungsreaktion auf das Wirbelbett oder die Schlakkenschicht erzielt werden kann.

    [0011] Weitere Vorteile der Zugabe von stückigem und/oder körnigem Entschwefelungsmittel direkt in die Kohlewirbelschicht bzw. unmittelbar auf das Bad im Einschmelzreaktor ergeben sich im Gegensatz zur Entschwefelung außerhalb des Reaktors aus der besseren energetischen und mengenmäßigen Nutzung der Entschwefelungsmittel. Da der Entschwefelungsprozeß gleichzeitig mit dem Schmelzprozeß abläuft, kann man zusätzliche Behandlungszeiten und davon abhängige Energie- verluste zumindest wesentlich einschränken. Die über die Entschwefelungsmittel eingebrachte chemische Energie (z.B. der Kohlenstoff des CaC2) wird im geschlossenen Schmelzgefäß besser ausgenützt als in der Pfanne.

    [0012] In vorteilhafter Weise wird im Rahmen des erfindungsgemäßen Verfahrens so vorgegangen, daß der körnige und der stückige Anteil des Entschwefelungsmittels oberhalb der Kohlewirbelschicht oder seitlich in diese aufgegeben wird. Hiebei kann das Entschwefelungsmittel in einfacher Weise zusammen mit Kohle, Zuschlags- oder Kreislaufstoffen eingebracht werden.

    [0013] Zur Einstellung der günstigsten Korngrößen ist es vorteilhaft, wenn die Entschwefelungsmittel zumindest teilweise in agglomerierter Form eingebracht werden.

    [0014] Die Erfindung wird nachfolgend an Hand eines Ausführungsbeispieles näher erläutert. Pro Tonne Roheisen wurden in einem Einschmelzvergaser etwa 1000 kg Kohle eingesetzt. Die Kohle hatte einen Schwefelgehalt von 1,0%. Der Schwefel setzte sich aus 60% organisch gebundenem Schwefel und 40% anorganischem Schwefel (Pyrit, Sulfide, Sulfat-S) zusammen. Der größte Teil an anorganischem Schwefel wurde bei der Entgasung der Kohle frei und ging ins Reduktionsgas. Der Restschwefel, ca. 6 - 7 kg/t Roheisen, wurde im Wirbelbett bei der Verbrennung vor den Düsen bzw. Vergasung der verkokten Kohle in den gasförmigen Zustand übergeführt (S-Dampf, S02, COS). Bei der Wirbelung kam der gasförmige Schwefel mit dem feinkörnigen CaC2 in Kontakt und wurde zu CaS abgebunden. Etwa 4 kg S wurden auf diese Weise in CaS übergeführt. Die restlichen 3 kg wurden entweder vom Zuschlagskalk oder vom heißen Eisenschwamm, der durch das Wirbelbett hindurchfiel, absorbiert. Der FeS-hältige Eisenschwamm wurde anschließend beim Kontakt mit dem auf der Schlackenoberfläche schwimmenden stückigen Calciumcarbid entschwefelt.

    [0015] Bei einem Ausnutzungsgrad von 80% des eingesetzten Calciumcarbids ergab sich nachfolgende Gleichung:

    12 kg CaC2 + 6 kg S = 13,5 kg CaS + 4,5 kg C ein Bedarf von 15 kg CaC2, wobei 2/3 in körniger und 1/3 in stückiger Form chargiert wurde.



    [0016] Das Reaktionsprodukt CaS löste sich in der Schlacke. Je nach spezifischer Schlackenmenge lag der Schwefelgehalt der Schlacke zwischen 2 und 3% und der Schwefel im Roheisen bei 0,1%.


    Ansprüche

    1. Verfahren zum Entfernen von Schwefel bei der Erschmelzung von Roheisen in einer Kohlewirbelschicht, dadurch gekennzeichnet, daß stückiges und/oder körniges Entschwefelungsmittel in die Kohlewirbelschicht und gegebenenfalls zusätzlich in die Schlakkenschicht eingebracht wird.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Entschwefelungsmittel Mangan, Calcium, Magnesium, Alkalien oder seltene Erden in Form von Oxiden, Carbiden, Karbonaten, Legierungen oder in metallischer Form eingesetzt werden.
     
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Anteil des Entschwefelungsmittels für die Kohlewirbelschicht im Korngrößenbereich von 0,5 - 5 mm und der Anteil des Entschwefelungsmittels für die Schlacke im Korngrößenbereich von 5 - 50 mm eingebracht wird.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der körnige und der stückige Anteil des Entschwefelungsmittels oberhalb der Kohlewirbelschicht oder seitlich in diese aufgegeben wird.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Entschwefelungsmittel zusammen mit der Kohle, Zuschlägen oder Kreislaufmaterialien eingebracht wird.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Entschwefelungsmittel zumindest teilweise in agglomerierter Form eingebracht werden.
     
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß eine Mischung aus mehreren Entschwefelungsmitteln in Form von Granulaten oder Agglomeraten eingebracht wird.
     
    8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Anteil an stückigen Entschwefelungsmitteln zwischen 0 und 50% der Gesamtmenge beträgt.
     
    9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Entschwefelungsmittel zur Gänze oder teilweise bei der Erzaufgabe mitchargiert wird.
     





    Recherchenbericht