(11) Publication number:

0 128 231 A1

12

EUROPEAN PATENT APPLICATION

- ② Application number: 83105693.2
- ② Date of filing: 10.06.83

(f) Int. Cl.²: **C 11 D 3/00,** C 11 D 3/30, C 11 D 1/835, C 11 D 1/62, D 06 M 13/46

- Date of publication of application: 19.12.84
 Bulletin 84/51
- Applicant: S.A. Camp Fábrica de Jabones, Fray Carbo, 24, Granollers Barcelona (ES)
- ② Inventor: Barba, Joaquim M., San Elias 11, 19, Barcelona 6 (ES) Inventor: Cáliz, Joan, Puig d'en Colomer 56, 58, Banyoles Girona (ES)
- Designated Contracting States: BE CH DE FR GB IT LI
 NL
- Representative: Klöpsch, Gerald, Dr.-Ing., An Gross St. Martin 6, D-5000 Köln 1 (DE)
- Stable concentrated aqueous dispersions of water-insoluble cationic compounds and preparation thereof.
- Fabric softening compositions, based in concentrated aqueous dispersions of water-insoluble cationic compounds, with adequate viscosity and dispersibility in water and an improved stability which time of storage and temperature variations.

The essential components are the following:

- A. 10 to 20% of water-insoluble cationic softener
- B.-0.1 to 3% of an alkoxylated tertiary amine with 20 to 100 mols of alkylene oxide per mol of amine.
- C. -0.5 to 5% of a system constituted by two non-ionic surfactants pertaining to the type of alkoxylated fatty alcohols or alkoxylated alkyl phenols, in such a way that one of them exhibits a high degree of alkoxylation and the other one a low degree of alkoxylation, with a weight ratio between them ranging from 10:1 to 1:10.

Method to obtain these said compositions.

P 0 128 231 A

DR.-ING. GERALD KLÖPSCH
PATENTANWALT

An Groß St. Martin 6 D 5000 KOLN 1

Telefon: (0221) 238348
Telegramme: Marspatent
Telex-Nr.: 8882336
K1/hg, 3.6.1983

S.A.CAMP, Fabrica de Jabones Fray Carbo, 24 Granollers Barcelona - Spain

STABLE CONCENTRATED AQUEOUS DISPERSONS OF WATER-INSOLUBLE CATIONIC COMPOUNDS AND PREPARATON THEREOF

Technical field

5

This present invention deals with concentrated aqueous dispersions or emulsions of insoluble cationic compounds, used as fabric softeners, with an improved stability with time, and in regards to temperature variations in relation to the viscosity and dispersibility in water of the said dispersons. It also deals with the adequate preparation methods for the obtention of the said dispersions.

State of the former technique

5

10

15

20

25

30

The appearance, in the last years, of more concentrated liquid fabric softener compositions is undoubtedly due to economical motivations, and to a greater convenience to the consumer. This fact has originated the emergence of serious technical problems related with the increase in active matter, fundamentally insoluble cationic compounds, from concentrations ranging between a 3% to a 7% in the traditional diluted compositions, to proportions higher than 10% in the currently called concentrated softeners. The primary problems have to do with the physical properties of the concentrated compositions, essentially with their viscosity and dispersibility in water and with the variation, in negative sense, of the said properties with temperature and time of storage, as well as with relatively abrupt changes of temperature.

It has been known for a time, for instance in US-Patent No. 3,681,241, that the addition of small quantities of such electrolytes as salts of divalent metals causes a considerable decrease in viscosity. In German Patent No. 29 11 198 there has also been a description of the use of aluminium salts, producing an anti-gelling effect. But these solutions are only partly effective, as the quantity of electrolyte that can possibly be added has to be very small, otherwise there could be problems caused by the formation of clots and rupture of phases. Another attempt to solve this problem consists in substituting soluble cationic products instead of the insoluble cationic products, as described, for instance, in the European Patent Application No.00 406, but these compositions do not give the required softening performance, as it is necessary for the cationic compound to become bound to the surface of the fabric for the

softening effect to occur, and these compounds, because of their solubility in water, are dragged away in a great proportion during the rinsing process. The European Patent Applications Nos. 13 780 and 18 039 describe the 5 use of non-cyclic hydrocarbons, fatty acids or their esters, and fatty alcohols as additives to decrease viscosity and to enhance the stability of concentrated softening compositions, but the effectivity of these coumpounds decreases noticeably with low storage tempera-10 tures, so the solution provided by them is only a partial one. The addition of non-ionic alkoxylated surfactants is knows for diluted compositions, and has been applied in concentrated compositions, for instance in the German Patent No. 29 11 198, in the French Patent No. 2 482 636 15 and in the US-Patent No. 3,947,076, although its utilization has not been sufficiently specified as far as the types of products are concerned, nor as to the effect produced therewith, and, nevertheless, their stabilizing action on viscosity has little effectivity at high 20 temperatures, so it also has to be considered as only a partial answer.

The utilization of alkoxylated amines in softener composition has been known now for some time, as shown in the following documents: US-Patent No. 3,850,818, German Patent Application No. 16 19 043, US-Patent No. 4,076,632, US-Patent No. 4,157,307, European Patent Application No. 21 476, US-Patent No. 4,320,013. The part played by the alkoxylated amines in the compositions described by the documents above cited are both of fabric softening and of enhancing the stability of the dispersion, but all of them are referred to diluted softener compositions, and, moreover, the stabilizing action of the alkoxylated amine has to be concurrent with the joint action of other additives, like urea or alcohols. In

25

European Patent Application No. 56 695 is introduced for the first time the concept of the action of alkoxylated amines as factors to achieve a proper viscosity, as well as a satisfactory stability, in concentrated softener compositions, provided that it is associated to the addition of low levels of electrolyte. Nevertheless, there is a serious limitation, as it is stated that the number of mols of oxyalkyl which conform the two alkoxylated substituents of the amine cannot ever be higher than 10 14 and that preferably it has to be between 2 and 8, as otherwise it should be necessary, to maintain the adequate viscosity, to significantly increase the presence of electrolyte, which would be deleterious to product stability. This limitation reduces the range 15 of what is possible in the technique of obtention of stable concentrated softener compositions, and does not allow the utilization of alkoxylated amines with a high degree of alkoxylation which, moreover, are significantly lower in cost than those of a lower degree of alkoxyl-20 ation.

Vindication of the invention

5

25

The invention herein solves these problems, as in a surprising way unexpected results are achieved in good characteristics of viscosity and a good dispersibility in water of concentrated aqueous dispersions of insoluble cationic compounds, as well as an extended stabilization thereof in ranges of temperatures between 0° and 50°C, by means of the addition of amines with a high degree of alkoxylation in union with a precise and definite system of two non-ionic components. Also, surprisingly, the dispersions described in the invention herein exhibit an excellent adaptability in the maintenance of their physical properties versus abrupt and wide changes of

temperature. Also inherent difficulties to the process of obention of aqueous concentrated dispersions of cationic softeners are solved.

The fundamental object of the invention herein, then, is to achieve concentrated aqueous dispersions of insoluble cationic softeners with adequate viscosity and dispersibility and an improved stability in storage and in abrupt temperature changes. Another aim of the invention is the achievement of more economically profitable concentrated softener compositions. Another aim of the invention herein is to develop a process to obtain the compositions hereof, easy and dependable in its results.

Description of the invention

The invention herein relates to fabric softener compo-15 sitions which are basically constituted by the following components:

- 1. From 10% to 20% by weight of a cationic water-insoluble softener compound, or of a mixture of the such.
- 2. From 0,1% to 3% by weight of an alkoxylated tertiary amine, or of its correspondent ammonium salt, having the general formula:

$$R_1-N$$
 $(Cn H_2 n 0)_x - H$
 $(Cn H_2 n 0)_y - H$
 (I)

wherein R_1 represents an alkyl or alkenyl group, between 10 to 20 carbon atoms, n is an integer between 1 and 4; x and y represent numbers between 10 and 50, so that the sum thereof be between 20 and 100 (x + y = 20 to 100).

3. 0,5% to 5% by weight of a mixture of two non-ionic surfactants pertaining to the groups:

5

10

15

- A) C₁₀ to C₂₀ alkoxylated fatty alcohols or C₇ to C₁₀ alkoxylated alkylphenols with a number of mols of alkylene oxide between 25 and 75 per mol of alcohol or phenol.
 - B) C₁₀ to C₂₀ alkoxylated fatty alcohols or C₇ to C₁₀ alkoxylated alkylphenols with a number of alkylene oxide mols between 1 and 5, per mol of alcohol or phenol in such a way that the ration between A and B ranges between 10:1 and 1:10.

The above mentioned compounds are dispersed or dissolved in water with a pH ranging between 3 and 5.

It is highly preferred, in the composition of the
invention herein, to add small quantities of an electrolyte, preferably salts of strong acids and divalent
metals, the effect of which is very beneficial on the
viscosity parameter. The most adequate proportions of the
said electrolyte range between 0.02% and 0.15%. Below the
inferior limit, the electrolyte action is very unsubstantial, and above the upper limit, there is risk that
undesirable phenomena may appear, undermining the
stability of the compositions, due to problems of phase
disruption.

The insoluble cationic compounds of the invention herein belong to the type usually used in aqueous dispersions with softening activities on textile fabrics, preferably those belonging to the following groups:

1 - Salts of quaternary ammonium with two long
 chain alk(en)yl groups, C₁₀ to C₂₀.

5

2 - Imidazolinium quaternary salts, with two long chain alk(en)yl groups C₁₀ to C₂₀,

and are incorporated into the compositions in a proportion ranging between a 10% to a 20% by weight of the aforesaid composition, and in a preferred proportion of 11% to a 16% to achieve an optimal ratio of softener activity/viscosity.

The alkoxylated tertiary amines with a number of mols of alkylene oxide higher than 20 per mol of amine, are 15 highly important to achieve a viscosity between 50 and 900 centipoises with a good stability, during long storage terms. In contradistinction to what was anticipated in the previous technique as expressed in the European Patent No. 56 695, it has been possible to 20 adjust the formula in a surprising way so as to make it feasible that highly alkoxylated amines perform the said function with the presence of small quantities of electrolyte in a range of 500 to 1000 ppm. Notwithstanding the fact that the said amines can be used in 25 proportions ranging from 0.1% to 3% by weight, the preferred proportions are those from 0.5% to 1.5%, with a view to achieve a good balance between the desired effect of viscosity reduction and the incidence in the final 30 cost of the composition.

The system of non-ionic surfactants herein shows itself to be effective to achieve compatibility of the alkoxylated amine with a high degree of alkoxylation with the formulation in presence of small amounts of electrolyte, and it is also basic to confer on the dispersion its qualities of elasticity versus temperature changes during storage. These non-ionic surfactants are selected from amongst the group of alkoxylated fatty alcohols or alkoxylated alkylphenols with a general formula:

10 (II)

$$R_2 - 0 - (C_n H_{2n} O)_z - H$$

wherein R_2 represents an alk(en)ylic group between C_8 and C_{20} or phenylalkyl from C_7 to C_{10} , n is an integer from 1 to 4, and z is a number between 1 and 75.

- 15 For a good execution of the invention, it is necessary to use two non-ionic surfactants which are clearly differentiated on their z value:
 - A) A non-ionic surfactant according to the general formula II, in which z ranges between 25 and 75.
- 20 B) A non-ionic surfactant according to the general formula II, in which z ranges between 1 and 5.

Although the proportion between A and B can have a range between 10:1 to 1:10, the preferable proportion is between a range of 3:1 to 1:3.

The process of obtention has also a great importance to obtain good results in viscosity, dispersibility in water, and stability. The temperature during the said process has to be maintained with decreasing rhythm

between 60°C and 30°C, but the most important factor is the order and rate of addition of the different components. So, for example, it is convenient to add to the water, in the first place, a molten mixture of the alkoxylated amine together with the system of non-ionic surfactants, and to adjust the pH by means of a strong acid between 3 and 5. The addition of the insoluble cationic compound is performed in a fractionated way, alternating with additions, also in a fractioned way, of the electrolyte. Small variations in the order of addition are the cause of dispersions with a very high initial viscosity or with a bad performance versus temperature variations.

The characteristics of the dispersions so obtained are as follows:

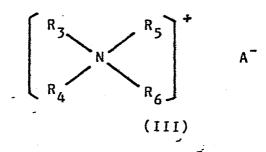
- pH = 3 to 5

5

20

25

- Specific Gravity = 0.95 to 1.05 g/cc
- Initial Viscosity = 50 to 400 cps
- Viscosity after 8 weeks at room temperature =
 50 to 400 cps.
- Viscosity after 2 weeks at 0°C to 5°C: Less than 900 cps.
- Viscosity after 2 weeks at 45°C: Less than 900 cps.
- Dispersibility in water: Excellent,


being these characteristics very appropriated from the viewpoint of its storage and of its use as a fabric liquid softener composition.

The detailed description of the different components of the invention herein are described below.

The insoluble cationic compounds are the active softening matter, and can be selected from amongst the forlowing groups:

 Quaternary acyclic ammonium salts represented by the general formula:

5

wherein R_3 and R_4 represent alkyl or alkenyl groups of from 10 to 20 carbon atoms, R_5 and R_6 represent short 10 alkyl groups from 1 to 4 carbon atoms, and A represents the salt counteranion, as, for example, halides or methyl sulphate. These are very widely known products and, as examples, the following could be quoted: ditallow dimethyl ammonium chloride; dicoco 15 dimethyl ammonium chloride; distearyl dimethyl ammonium chloride; di(hydrogenated-tallow) dimethyl ammonium methyl sulfate; di(hydrogenated tallow) dimethyl ammonium chloride; ditallow dimethyl ammonium 20 methyl sulfate. They are easily available in the market under different trademarks, like Adogen^R, Varisoft^R (Sherex Chemicals), Quartamin^R (Kao Corp.), Arquad^R (Akzo), Präpagen^R (Hoechst, etc... Of these, di(hidrogenated tallow) dimethyl ammonium chloride is 25 preferred.

2. Quaternary imidazolinium salts represented by the general formulae:

where R_7 , R_8 , R_9 and R_{10} represent saturated or unsaturated alkyl groups, with 10 to 20 carbon atoms, and A^- represents the salt counteranion of a monoprotic acid, such as, for example, halide or methyl sulfate. This type of products is also well known, and as examples the following are quoted:

Methyl-1-(hydrogenated tallow) amido ethyl-2-(hydrogenated tallow) imidazolinium methyl sulfate; methyl-1-tallow amido ethyl-2 tallow imidazolinium methyl sulfate; methyl-1-oleyl amido ethyl-2-oleyl imidazolinium chloride; 1-ethylene bis(2-tallow, 1-methyl imidazolinium methyl sulfate). Preferred compounds are methyl-1-(hydrogenated tallow) amido ethyl-2-(hydrogenated tallow) imidazolinium methyl sulfate, marketed by Sherex Chemical Company under the designation Varisoft 445, and 3-methyl-

ethyl-1-(hydrogenated tallow) amido ethyl-2-(hydrogenated tallow) imidazolinium methyl sulfate, marketed by Rewo Chemische under the designation Rewoquat W7500H.

The alkoxylated amines have the general formula I, wherein R_1 represents an alkyl group, saturated or 5 non-saturated, from 10 to 20 carbon atoms, as those corresponding to coconut, oleic, tallow, hydrogenated tallow, and hydrogenated tallow is preferred; n is an integer between 1 and 4, value 2 being preferred, which 10 corresponds to ethoxylated amines. The values of x and y range between 10 and 50 in such a way that the total sum thereof ranges between 20 and 100, this is to say, the number of mols of ethylene oxide per amine mol must range between 20 and 100, although the preferred values of x + y range between 20 and 50. This type of products is available in the market under various commercial designations as, for example, Etilenox^R (Pulcra), Ethomeen^R (Akzo), Genamin^R (Hoechst). Highly preferred are the amines of hydrogenated tallow with 20 mols of ethylene oxide such as Etilenox^R KM-30 of Pulcra, S.A. and $Genamin^R$ S-250 of Hoechst A.G., and with 50 mols of ethylene oxide as, for example, Ethomeen HT60 of AKZO Chemie.

Non-ionic surfactants have the general formula II,

wherein R₂ represents an alkyl group of between 8 and 20 carbon atoms like, for example, those corresponding to fatty alcohols like lauric, miristic, palmitic or stearic alcohols, or the mixtures thereof, or an alkyl phenyl group with 7 to 10 carbons, as those corresponding to the alkyl phenols with 8 and 9 carbon atoms. The preferred groups are those corresponding to the lauric alcohol and nonylphenol. The value of n can be between 1 and 4, being the preferred value that of 2, and, therefore, the

ethoxylated products. According to the invention herein, a binary system of non-ionic oxyethylenated surfactants is necessary in function of the Z value:

A) A non-ionic surfactant according to general formula II and with a Z value between 25 and 75, the preferred values being between 25 and 50.

- B) A non-ionic surfactant according to the general formula II with a Z value between 1 and 5, preferably between 1 and 3.
- in a weight ratio in the range from 10:1 to 1:10, the preferred weight ratio being that of between 3:1 and 1:3. These products are well available in the market and can be found under the following commercial designations: Dobanol^R (ICI), Dowfax^R (Dow Chemical), Emulgen^R (Kao Corp.), Catinex^R (Pulcra, S.A.), etc...Especially preferred is the binary system nonylphenol with 30 mols of ethylene oxide together with nonylphenol with 1.5 mols of ethylene oxide, with a weight ratio ranging from 3:1 to 1:3.
- Besides the essential components, a series of optional additives can be incorporated to the compositions of the invention herein which are conventionally used in the field of fabric softeners, like dyes, perfumes, supplementary viscosity modifiers, emulgents, optical brighteners, antioxidants, germicides, fungicides, moisteners, etc...

It is especially indicated, for a better viscosity control, the use of electrolytes, as salts of divalent metals with strong acids, in weight ratios ranging between 200 and 1.500 ppm. Especially preferred electrolytes are calcium chloride and magnesium sulfate.

5

Other optional additives, which are indicated as auxiliary in viscosity control, are lineal or ramified short chain alcohols from 1 to 4 carbon atoms. Isopropilic alcohols, paticularly, may be had in a proportion, between a 1% and a 4%, but not in a bigger proportion that may cause lack of stability.

Optional components indicated to improve the water absorbancy of the fabrics treated with the softeners are the emulsified silicones, such as DC-347, DC-346 and DC-HV490, marketed by Dow Corning. Small amounts, of an order of a 0.01% to a 0.3% in active matter, are employed.

Optical brighteners can also be employed, like, for example, derivatives of estilbene and distirylbiphenyl, marketed by Ciba-Geigy as Tinopal^R.

It is convenient here to remark that, in what concerns the more detailed aspects of the process of obtention given by the invention herein, that the said process exhibits two very distinct phases:

A - The addition of a molten mixture of the non-ionic components and the alkoxylated amine on water, with stirring, at a temperature between 50° and 60°C, and the addition of a strong acid up to a pH between 3 and 5.

B - Addition of the molten cationic component in two fractions of the 70% and 30%, respectively, of the total amount, alternating with the addition of electrolyte, also in two fractions corresponding to a 30% and a 70% of the total quantity of the same, in such a way that after the first addition, of the 70% of the cationic compound, follows the 30% of the electrolyte, and that, following a time of stirring and mixing, the second fraction of a 30% of the cationic component is added and, upon this, the remaining 70% of electrolyte. All this part of the process takes place with stirring and at a temperature between 45° and 55°C.

Once the dispersion has taken place in the manner

hereinabove, it is left to cool to 30° to 40°C, adjusting the pH again between 3 and 5, and the remaining optional ingredients can now be added.

It is important to remark that the order of addition hereinbefore is essential to achieve dispersions with the desired viscosity and stability.

For a better understanding of the description of the invention given herein, the following examples are given, with the statement that they must not be construed as restrictions to the aforesaid invention:

Example I

25

30

5

10

1.5 parts of etoxylated hydrogenated tallow amine with 25 mols of ethylene oxide per mol of amine are mixed, at a temperature of 55°C, together with 1 part of etoxylated nonylphenol with 30 mols of ethylene oxide per mol of nonylphenol and 1 part of etoxylated nonylphenol with 1.5

mols of ethylene oxide per mol of nonylphenol. The said molten mixture is added upon 70 parts of deionized water, at a temperature of 50° to 60°C, and with strong stirring. Hydrochloric acid 1 N is added until a pH of 3 to 4 5 is reached. Upon this, and keeping a temperature between 50° and 55°C, and a strong stirring, 11.7 parts of molten di(hydrogenated tallow) dimethyl ammonium chloride are added, with an active matter content of a 75%, and after this 0.03 parts of calcium chloride are added, in 10% aqueous solution. The mixture is stirred for 5 minutes, and then 5.0 more parts of molten cationic component are added and 0.07 parts of calcium chloride. The dispersion is cooled to 40°C in 10 minutes, maintaining the stirring on, and 0.6 parts of DC-HV490 are added (a 35% silicone emulsion marketed by Dow Corning). It is left to cool to 30° to 35°C, and other optional ingredients are added, as desired, such as perfume, dyes, etc... and deionized water is added to make up 100 parts. The dispersion is cooled to 25°C, and pH is brought to between 3.5 and 4.5 20 and, after this, the product is bottled.

With the dispersion prepared as hereinbefore, the following tests and measurements are performed:

Initial Viscosity. - The dispersion is left to settle until the day following its preparation, and its viscosity is measured at 20°C with a Brookfield LV Viscosimeter. Initial viscosity for the solution thus prepared is 200 centipoises.

Stability at room temperature. - The dispersion, well packed and closed, is stored at a temperature of 25°C - 30 5°C for two months, and at the end of this period a

viscosity measurement is performed at 20°C. The viscosity value observed for the dispersion thus prepared is 210 centipoises.

Stability at high temperatures. - A sufficient amount of sample of the dispersion is hermetically sealed in the same vessel where the viscosity value is to be determined, and it is kept in a stove at 45°C during five days. Then, the sample is removed from the stove, left for another day at room temperature, and its viscosity is measured at 20°C. The sample is again hermetically sealed and it is again placed in the stove at 45°C, and it is again removed at the end of that period, it is left to stabilize during another day at room temperature and its viscosity is measured at 20°C. The values that have been found are:

Viscosity after 5 days = 380 centipoises Viscosity after 10 days = 850 centipoises.

Stability at low temperatures. - A sample of the dispersion is hermetically sealed in the same vessel where the viscosity is to be tested, and it is placed in a refrigerator at 3°C ⁺ 2°C. The sample is removed after five days, it is left for another day at room temperature and its viscosity is tested at 20°C.

The sample is again placed in the refrigerator, for 25 another four days, and then it is removed, left to stabilize for one day at room temperature, and then the viscosity is tested at 20°C. The values of viscosity that have been found are:

> Viscosity at 5 days = 425 centipoises Viscosity at 10 days = 800 centipoises

Elasticity versus temperature. - A sample of the dispersion is taken, and placed in an appropriate vessel, it is placed in a bath provided with a temperature regulator, and the temperature is adjusted at 20°C and the viscosity is then measured. It is heated to 70°C in 30 minutes, and the viscosity is again measured. It is cooled again to 20°C in 30 minutes, and the viscosity is tested. The values found are:

Viscosity at 20°C = 200 centipoises

Viscosity at 70°C = 490 centipoises

Viscosity at 20°C = 325 centipoises

5

Dispersibility in water. - This test is approximate and orientative. A graduate cylinder is filled with a liter of water at 20°C - 5°C of temperature, and with a 15 hardness of 20°HF. 30 grams of the dispersion, which has been kept two months stored at a temperature of 20°C -5°C, are poured on the surface from a height of 8 cm. That part of the dispersion which results not dispersed in the water remains in a ring shape in the higher or 20 lower part of the graduated cylinder, according to its density, and an arbitrary scale is assigned to it, from 0 to 10. 0 means total dispersion and 10 no dispersion. The volume of water to which the dispersion has not arrived is measured, so that the optimal volume is that of 0 ml, 25 and the worst one is that of 1000 ml.

By means of these data, an approximated and arbitrary scale is made, as follows:

	Grade of	Grade of		Conventional
	Dispersion	Diffusion	Dispersibility	Sign
	8 - 10	1000 - 800	Poor	-
	6 - 7	800 - 600	Scarce	+
5	4 - 5	600 - 400	Acceptable	++
	2 - 3	400 - 200	Good	+++
	0 - 1	200 - 0	Excellent	++++

Applying these criteria to the dispersion obtained by the invention herein, its dispersibility in water is ex
cellent.

Example II

Performing the same operations as decribed under example I, a dispersion is prepared with the following ingredients:

15	Di(hydrogenated tallow) dimethyl			
	ammonium chloride (100%)		12	parts
	Hydrogenated tallow amine with 25			
	mols of Ethylene oxide		1	part
	Nonyl phenol with 30 mols of			
20	Ethylene oxide		1	part
	Nonyl phenol with 1,5 mols of			
	Ethylene oxide		1	part
	Calcium Chloride		0.1	parts
	Optional components and water	to	100	parts

25 The dispersion exhibits the following characteristics, determined according to the criteria established in example I:

	Initial Viscosity	130 centipoises
	Viscosity after 2 months at	
	room temperature	130 centipoises
	Viscosity after 5 days at 45°C	250 centipoises
5	Viscosity after 10 days at 45°C	410 centipoises
	Viscosity after 5 days at	
	3°C + 2	125 centipoises
	Viscosity after 10 days at	
	3°C ± 2	260 centipoises
10	Viscosity after the elasticity cycle	
	20°C - 70°C - 20°C	300 centipoises
	Dispersibility in water	++++ (Excellent)

Example III

Performing the same operations as described herein under example I, a dispersion is prepared with the following ingredients:

	Di(nydrogenated tallow) dimethyl ammonium				
	chloride (100%)	13	parts		
	hydrogenated tallow amine with 50 mols				
20	of Ethylene oxide	1	part		
	Lauric alcohol with 50 mols of				
	Ethylene oxide	0.5	parts		
	Lauric alcohol with 2.7 mols of				
	Ethylene oxide	1.5	parts		
25	Calcium Chloride	0.1	parts		
	Optional components and water to	100	parts		

The dispersion exhibits the following characteristics, determined according to the criteria established in example I:

	Initial Viscosity	165	centipoises
	Viscosity after 2 months at		
	room temperature	190	centipoises
	Viscosity after 5 days at 45°C	350	centipoises
5	Viscosity after 10 days at 45°C	650	centipoises
•	Viscosity after 5 days		
	at 3°C - 2	350	centipoises
	Viscosity after 10 days		
	at 3°C ⁺ 2	780	centipoises
10	Viscosity after the elasticity cycle		
	20°C - 70°C - 20°C	225	centipoises
	Dispersibility in water	++++	(Excellent)

Example IV

Performing the same operation as described herein under example I, a dispersion is prepared with the following ingredients:

	Di(hydrogenated tallow) dimethyl	
	ammonium chloride (100%)	10 parts
	3-methyl-1-(hydrogenated tallow) amido	
20	ethyl-2-(hydrogenated tallow) imidazol-	
	inium methyl sulfate (100%)	5 parts
	Hydrogenated tallow amine with 25 mols	
	of Ethylene oxide	1 part
	Lauric alcohol with 50 mols of	
25	Ethylene oxide	1 part
	Lauric alcohol with 2.7 mols of	
	Ethylene oxide	1 part
	Calcium chloride	0.08 parts
	Optional components and water to	100 parts

The dispersion exhibits the following characteristics, determined according to the criteria established in example I:

	Initial Viscosity	230	centipoises
5	Viscosity after 2 months at		
	room temperature	280	centipoises
	Viscosity after 5 days at 45°C	450	centipoises
	Viscosity after 10 days at 45°C	850	centipoises
	Viscosity after 5 days		
10	at 3°C ± 2	240	centipoises
	Viscosity after 10 days		
	at 3°C ⁺ 2	280	centipoises
	Viscosity after the elasticity cycle		
	20°C - 70°C - 20°C	500	centipoises
15	Dispersibility in water	+++	(Good)

The dispersions described in the examples I to IV exhibit excellent viscosity, dispersibility and stability characteristics during storage and in extreme temperature conditions for their use as fabric concentrated softeners.

Examples V to XIV

20

It is the purpose in the following examples to show the importance of the amine with a high degree of alkoxylation, and of the system of non-ionic surfactants in the viscosity, dispersibility in water, and stability of the dispersions. To the end of the establishment of comparative criteria, some basic aspects, such as the contents in active insoluble cationic matter, nature and contents of the alkoxylated amine, and total contents in non-ionic surfactant, have been harmonized.

The abbreviation to design the different ingredients are as follows:

DHTDMAC: Di(hydrogenated tallow) dimethyl ammonium chloride

5 DTIMS-3M: 3-methyl-1-tallow amido ethyl-2 tallow imidazolinium methyl sulfate

HTA 25: Hydrogenated tallow amine with 25 mols of Ethylene oxide

NP 30: Nonyl phenol with 30 mols of Ethylene oxide

10 NP 14: Nonyl phenol with 14 mols of Ethylene oxide

NP 9: Nonyl phenol with 9 mols of Ethylene oxide

NP 1,5: Nonyl phenol with 1.5 mols of Ethelene oxide

LA 50: Lauric alcohol with 50 mols of Ethylene oxide

15 LA 2,7: Lauric alcohol with 2.7 mols of Ethylene oxide

Tween^R60: Polyoxyethylene sorbitane monostearate (ICI) GLYC (OP-OE): Glycerine with 8 mols of Ethylene oxide and 28 mols of propylene oxide

20 Plurafac^R40: Polyalkoxylated alcohol, from 13 to 15 carbon atoms, marketed by Ugine Kuhlmann

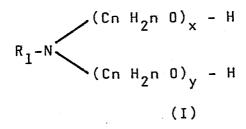
25

In Table 1 are shown the different compositions prepared following the basic ideas as described in example I, and in Table 2 their characteristics are detailed according to the criteria given in example I.

On checking the data in Tables 1 and 2, it can be inferred that the addition of the highly alkoxylated amine causes an improvement in the stability of the compositions at room temperature and an improvement in the dispersibility of the compositions in water. The incorporation of non-ionics improves the stability at low temperatures, but it is not effective at high tempera-

tures. All dispersions with a system of non-ionics as described in the invention herein cause an improvement of stability both at low and at high temperatures, and cause the viscosity value at room temperature to stay practically unchangeable, and give an excellent dispersibility in water.

-			26	•		•	0128	323
XIV	230	350	435	810	335	400	420	‡
XIII	160	140	250	410	400	200	295	‡
XII	100	120	300	550	260	450	325	‡
X	170	210	380	290	720	1.000	175	‡
×	210	450	≻10. 000	₩ 70°000	540	880	000.00	‡
ä	410	450	√10. 000	000.01	375	400	715	‡
VIII	150	220	535	3,300	155	430	215	‡
IIA .	155	265	000 م	000.01	300	009	375	‡
Ŋ	120	650	>10,000	V10.000 V 10.000 V10.000	700	>1. 000	330	+
>	320	٧٦.000	>10.000	>10.000	400	700	710.000	ī
	Initial viscosity	2 months at 20°C ⁺ 5	5 days at 45°C	10 days at 45°C	5 days at 3°C ⁺ 2	10 day at 3°C-2	Elasticity 20°C-70°C-20°C	Dispersibility


TABLE 2

CLAIMS

5

10

- 1. Fabric concentrated softener compositions with a good viscosity and dispersibility in water and an improved stability versus a long period of storage, and versus temperature changes, its essential components being as follows:
 - A. 10 to 20% by weight of a water-insoluble cationic fabric softener compound, or a mixture thereof.
 - B. 0.1 to 3% by weight of a tertiary alkoxylated amine or its corresponding ammonium salt, with a general formula as follows:

wherein R_1 represents an alkyl or alkenyl group, with 10 to 20 carbon atoms, n is an integer from 1 to 4, and x and y represent numbers between 10 and 50, being the total sum of both between 20 and 100. (x + y = 20 to 100) 5

- C. 0.5 to 5 % by weight of a mixture of two non-ionic surfactants belonging to the following groups:
 - i.- C₈ to C₂₀ alkoxylated fatty alcohols or C₇ to C₁₀ alkoxylated alkyl phenols, with a number of mols of alkylene oxide per mol of alcohol or phenol ranging between 25 and 75.
 - ii.- C_8 to C_{20} alkoxylated fatty alcohols or C_7 to C_{10} alkoxylated alkyl phenols with a number of mols of alkylene oxide ranging between 1 and 5,
- in such a way that the weight proportion of the said mixture of non-ionic surfactants is in the range from 10:1 to 1:10.

The said ingredients dissolved or dispersed in water at a pH ranging between 3 and 5.

- 15 2. Compositions according to claim 1 characterized in that the water-insoluble cationic component or components are selected from amongst the following groups:
 - A.-Non-cyclical quaternary ammonium salts having the general formula

$$\begin{bmatrix}
R_3 & R_5 \\
R_4 & R_6
\end{bmatrix}^{\dagger}$$
(III)

wherein R_3 and R_4 represent C_{10} to C_{20} alkyl or alkenyl groups, R_5 and R_6 respresent short chain C_1 to C_4 alkyl groups and A represents the salt counteranion from a strong acid

5 B.-Quaternary imidazolinium salts having the following general formulae:

where R_7 , R_8 , R_9 and R_{10} represent saturated or unsaturated alkyl groups, with chains from 10 to 20 carbon atoms, and A represents the counteranion of a strong acid.

3. Compositions according to claims 1 and 2, wherein the water-insoluble cationic component or components are: Di(hydrogenated tallow) dimethyl ammonium chloride and/or 3-methyl-1-(hydrogenated tallow) amido ethyl-2-(hydrogenated tallow) imidazolinium methyl sulfate.

5

- 4. Compositions according to claims 1 to 3, characterized in that the tertiary alkoxylated amine is: Ethoxylated (hydrogenated tallow) amine with 25 mols of ethylene oxide or ethoxylated (hydrogenated tallow) amine with 50 mols of ethylene oxide.
- 5. Compositions according to claims 1 to 4, characterized in that the highly alkoxylated non-ionic surfactant component is selected from amongst ethoxylated nonyl phenol with 30 mols of ethylene oxide or ethoxylated lauric alcohol with 50 mols of ethylene oxide and the non-ionic surfactant with a low level of alkoxylation is selected from amongst ethoxylated nonyl phenol with 1.5 mols of ethylene oxide or ethoxylated lauric alcohol with 2.7 mols of ethylene oxide.
- 6. Compositions according to any preceding claim, characterized in that an electrolyte is added to them as an agent to improve the value of viscosity, belonging to the salts of divalent metals with strong acids, with a weight ratio ranging between 0.02% and 0.15% of the total
 25 weight of the composition.
 - 7. Compositions according to any preceding claim, characterized by having the following components:
 - A.- 12 to 16% by weight of a water-insoluble cationic softener compound or a mixture thereof.

- B.- 0.5 to 1.5% by weight of an alkoxylated tertiary amine having the general formula I, with 20 to 100 mols of alkylene oxide per mol of amine.
- C.- 1 to 3% by weight of a mixture of two non-ionic surfactants pertaining to the following groups:
 - i.- C₈ to C₂₀ alkoxylated fatty alcohols or C₇ to C₁₀ alkoxylated alkyl phenols with a number of mols of alkylene oxide ranging from 25 to 75 per mol of alcohol or phenol.
- ii.- C₈ to C₂₀ alkoxylated fatty alcohols or C₇ to C₁₀ alkoxylated alkyl phenols with a number of alkylene oxide mols ranging from 1 to 5 per mol of alcohol or phenol
- wherein the weight ratio between the two non-ionic surfactants is in the range from 3:1 to 1:3.
 - D.-0.03 to 0.15% by weight of an electrolyte, belonging to the type of salts of divalent metals with strong acids.

The said ingredients dissolved or dispersed in water at a 20 pH ranging between 3.5 and 4.5.

8. A method of making the compositions according to any preceding claim, characterized in that in a first stage a molten mixture of the non-ionic components is added with stirring together with the alkoxylated amine on deionized water, in a second stage a fractioned addition of the water-insoluble cationic compound is effected, alternating with fractioned additions of electrolyte, all this

with stirring, and the preparation of the composition being finished with the addition of optional ingredients.

9. A method according to claim 8, characterized in that it takes place in a range of temperatures between 60°C and 30°C.

5

10. A method according to claims 8 and 9, characterized by the addition of the water-insoluble cationic compound in two fractions, the first of them being of a 70% of the total amount and the second to the 30% of the said total amount, alternating with the addition of the electrolyte also in two fractions, the first being of a 30% of the total amount, and the second of a 70% of the total amount.

EUROPEAN SEARCH REPORT

() 1 20 Real 20 7 miles

EP 83 10 5693

	DOCUMENTS CONS						
Category		th indication, where appropriate vant passages	Э,	Relevant to claim	CLASSIFICATION APPLICATION (I		
D,X	EP-A-O 056 695 GAMBLE CO.) * Claims 1-9 *	(PROCTER &		1	C 11 D C 11 D C 11 D C 11 D	3/30 1/835 1/62	
D,A	US-A-4 157 307 al.) * Claims 1, 2, 5	•	et		D 06 M	13/46	
A	US-A-4 233 164	(J.E. DAVIS)					
	* Claim 1 *						
A	EP-A-O 063 329 NEMOURS & CO.) * Claim 1 *	(E.I. DU PONT	DE				
A	EP-A-0 074 056	(HOECHST AG)		·	TECHNICAL F SEARCHED (In		
	* Claim 1 *	no sa					
A	BE-A- 888 535 & ASSOCIES S.A. * Claims 1-3, 7)	LLE		C 11 D C 11 D D 06 M	3/00	
	, and see 1						
	The present search report has t	been drawn up for all claims					
	Place of search BERLIN	Date of completion of th	ne search 84	SCHUI	Examiner STZE D		
	CATEGORY OF CITED DOC	UMENTS T: ti	heory or prir	ciple under	lying the invention		
X : pa Y : pa do	CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filling date D: document cited in the application L: document cited for other reasons						
A: ted O: no P: int	cument of the same category chnological background n-written disclosure termediate document		nember of th	e same pate	ent family, correspo	nding	