(1) Publication number:

0 131 922

Α1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 84108219.1

(22) Date of filing: 12.07.84

(51) Int. Cl.⁴: H 01 B 3/56 H 01 H 33/22

30 Priority: 13.07.83 JP 129063/83

(43) Date of publication of application: 23.01.85 Bulletin 85/4

(84) Designated Contracting States: CH DE FR GB LI SE 71) Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA 2-3, Marunouchi 2-chome Chiyoda-ku Tokyo 100(JP)

(72) Inventor: Yamauchi, Shiro 7-19, Maruhashi-cho Nishinomiya Hyogo Prefecture(JP)

(72) Inventor: Yoshioka, Takeo 2-8-4, Hanayashiki Soen Tekarazuka Hyogo Prefecture(JP)

72) Inventor: Munemura, Hirotsugu 4-9-16, Kami-ooichi Nishinomiya Hyogo Prefecture(JP)

Representative: Vossius Vossius Tauchner Heunemann Rauh Siebertstrasse 4 P.O. Box 86 07 67 D-8000 München 86(DE)

64 Electrical apparatus employing a gaseous dielectric.

(5) An improved electrical apparatus employing a gaseous dielectric is disclosed. The improvement resides in the composition of the gaseous dielectric, which comprises a mixture of approximately 60 - 99.5 mole % of SF₄ and approximately 0.5 - 40 mole % of a fluorocarbon compound having no unsaturated carbon bonds. Preferred fluorocarbon compounds are C₂F₅CN, CBrClF₂, and c-C₄F₅. The gaseous dielectric has a higher dielectric strength than SF₅ alone and greatly suppresses formation of carbon powder during arcing.

our ref.: T 162 EP

Case: FEM-6631

MITSUBISHI DENKI KABUSHIKI KAISHA

Tokyo, Japan

0131922

12 July 1

ELECTRICAL APPARATUS EMPLOYING A GASEOUS DIELECTRIC

The present invention relates in general to electrical apparatuses which employ a gaseous dielectric, and in particular to an improved electrical apparatus employing a novel gaseous dielectric which has a high dielectric strength and which forms only a small amount of carbon at the time of arcing.

In electrical equipment of the type comprising a sealed chamber, a gaseous dielectric which fills the chamber, a conductor disposed inside the chamber, and a solid insulating member which supports the conductor, it is common to use sulfur hexafluoride (SF₆), which has excellent dielectric properties, as the gaseous dielectric. In order to achieve further reductions in the size of this type of electrical equipment, there is a need for a gaseous dielectric having a higher dielectric strength than SF6. However, there has yet to be found a gas having suitable properties. For example, while C2F5CN (1.8 times the dielectric strength of SF_6), $CBrClF_2$ (1.4 times the dielectric strength of SF_6), and $c-c_4F_8$ (1.4 times the dielectric strength of SF₆) are all excellent from the standpoint of dielectric strength, they can not be applied alone as gaseous dielectrics in electrical equipment

in which arcing takes place, since they form electrically-conducting carbon powder during arcing.

I- a paper entitled "Ternary Gas Dielectrics" (The Third International Symposium on Gaseous Dielectrics, 1982, Document No. 15), I.G. Christophorou et al. disclosed a gaseous dielectric comprising a mixture of SF, and $2-C_{A}F_{R}$ (octofluorobutene) which has a high dielectric strength but which forms a powder during arcing consisting of a nonconducting powder and a conducting powder. Figure 1 shows test results published in the above-mentioned paper for arcing tests using aluminum electrodes in gas mixtures consisting of SF_6 and $2-C_4F_8$. The amount and the content of the powder formed during arcing clearly depend on the mole % of $2-C_{\Delta}F_{R}$ in the gas mixture. When the gas mixture consisted of 100% SF6, the powder which was formed consisted of AlF3. However, at greater than 20 mole % $2-C_{\Delta}F_{g}$, the content of the powder greatly changed and the powder began to consist of increasing amounts of carbon powder. Thus, although a mixture of SF₆ and 2-C₄F₈ has a higher dielectric strength than SF, alone, it still has the drawback that it forms too large a quantity of conducting powder.

It is the object of the present invention to provide an improved electrical apparatus which utilizes a gaseous dielectric which has a higher dielectric strength

than SF_6 and which forms only a small amount of carbon powder at the time of arcing.

An improved electrical apparatus according to the present invention is of the type comprising a sealed chamber filled with a gaseous dielectric, an electrical conductor disposed in the chamber, and a solid electrically-insulating member which supports the electrical conductor. The improvement resides in the composition of the gaseous dielectric, which comprises a mixture of SF_6 and a saturated fluorocarbon compound, i.e. a fluorocarbon compound having no unsaturated carbon bonds. The amount of SF_6 in the gaseous dielectric is approximately 60-99.5 mole % and the amount of the fluorocarbon compound is approximately 0.5-40 mole %. Preferred substances for use as the fluorocarbon compound are C_2F_5CN , $CBrClF_2$, and $c-C_4F_8$.

Figure 1 is a graph of the amount of powder formed at the time of arcing as a function of the mole % of ${\rm SF}_6$ in a gaseous dielectric comprising a mixture of ${\rm SF}_6$ and ${\rm 2-C_4F_8}$.

Figure 2 is a schematic illustration of an improved electrical apparatus according to the present invention.

а

Figure 3 is/chart of the amount of carbon powder formed during arcing tests performed in ${\rm SF}_6$ and in various fluorocarbon compounds.

Figure 4 is a graph of the amount of carbon powder formed at the time of arcing plotted as a function of the composition of a gaseous dielectric comprising a mixture of SF_6 and C_2F_5CN .

Figure 5 is a graph of the AC breakdown voltage plotted as a function of electrode separation for various mixtures of SF_6 and C_2F_5CN .

Figure 6 is a schematic representation of the electrodes used to obtain the data of Figure 5.

Figure 7 is a graph of the relationship between (the amount of powder formed at the time of arcing / the length of time for which an arc was sustained) and arc current for two different gaseous dielectrics, one comprising $100\%\ C_2F_5CN$ and the other comprising a mixture of 25 mole % of C_2F_5CN and 75 mole % of SF_6 .

An embodiment of an improved electrical apparatus employing a gaseous dielectric will now be described while referring to Figure 2 of the accompanying drawings. In the figure, element number 1 is a sealed chamber filled with a gaseous dielectric 2. Elements number 3 are bushings electrically connected to disconnecting switches 4. Element

number 5 is a circuit breaker electrically connected to the disconnecting switches 4 by electrical conductors 6.

The novel feature of this apparatus is the composition of the gaseous dielectric 2. It comprises approximately 60 - 99.5 mole % of SF_6 and approximately 0.5 - 40 mole % of a saturated fluorocarbon compound. Preferred substances for use as the fluorocarbon compound are C_2F_5CN , $CBrClF_2$, and $c-C_4F_8$.

In the above-described prior art, a mixture of SF_6 with an unsaturated fluorocarbon $(2-C_4F_8)$ had the disadvantage that too large a quantity of carbon powder was formed during arcing. The present inventors found that if a saturated fluorocarbon is used instead, the amount of carbon powder formed can be greatly decreased.

To illustrate this fact, the present inventors performed arcing experiments in various saturated and unsaturated fluorocarbon compounds in gaseous form sealed at atmospheric pressure in a 2-liter container using a discharge voltage of 30kv. The amount of carbon powder formed (mg) for each gas is plotted in Figure 3. As can be seen from the figure, saturated fluorocarbon compounds such as C_2F_5CN , $CBrClF_2$, and $c-C_4F_8$ formed much less carbon powder than unsaturated fluorocarbon compounds such as $1,3-C_4F_6$, $c-C_4F_6$, and $2-C_4F_6$.

In order to determine the appropriate amount of a fluorocarbon compound in a gaseous dielectric for the present invention, the present inventors carried out an

experiment using 4 different mixtures of SF₆ and C_2F_5CN : (1) SF_6 : 99.5 mole %, C_2F_5CN : 0.5 mole %; (2) SF_6 : 80 mole %, C_2F_5CN : 20 mole %; (3) SF_6 : 50 mole %, C_2F_5CN : 50 mole %; and (4) SF_6 : 0 mole %; C_2F_5CN : 100 mole %. Each gas mixture was sealed in a 2-liter container at atmospheric pressure. Inside each container, arcing was produced using copper-tungsten electrodes with a separation of 2mm at a voltage of 30kv. The amount of carbon powder formed during the arcing was measured and the results are shown in Figure 4. When the mole % of C_2F_5CN reached approximately 40%, the slope of the curve abruptly increased, and at mole percentages above this, the amount of carbon powder formed became large. Accordingly, in order to suppress the amount of carbon powder formed during arcing, the amount of a saturated fluorocarbon compound used in the present invention should be no greater than approximately 40 mole %.

A similar arcing experiment was carried out using the electrodes illustrated in Figure 6. A rod-shaped electrode 7 having a hemispherical end and a diameter of 30mm was disposed perpendicularly with respect to a plate electrode 8 having a length of 80mm. In sealed containers containing various combinations of SF $_6$ and C $_2$ F $_5$ CN at 20 $^{\circ}$ C and atmospheric pressure, a 60 Hz AC voltage was applied between the electrodes and the AC breakdown voltages of the gas mixtures were measured using various gap lengths between the electrodes 7 and 8. The results are shown in

Figure 5. As can be seen from the figure, even when the mole % of C_2F_5CN is extremely low, a significant increase in breakdown voltage over SF_6 alone can be achieved merely by increasing the separation between the electrodes. Accordingly, the lower limit for a saturated fluorocarbon compound is approximately 0.5 mole%.

In addition, an experiment was carried out in which arcing was produced in gaseous mixtures comprising either 100 mole % of C₂F₅CN or 25 mole % C₂F₅CN and 75 mole % SF₆. The gas mixtures were separately sealed in a 2-liter container at 20°C and atmospheric pressure. Arcing was produced inside the container between copper-tungsten electrodes with an electrode separation of 2mm using voltages ranging from 10kv to 30kv. The arc current, the length of time for which the arc was sustained, and the amount of carbon powder formed were measured. results are plotted in Figure 7, in which the abscissa is the arc current and the ordinate is the weight of carbon powder formed during arcing divided by the length of time for which the arc was sustained. From this experiment, it was learned that the amount of carbon powder formed by the mixture of 25 mole % C_2F_5CN and 75 mole % SF_6 was less than 1/10 the amount formed by $\mathrm{C}_2\mathrm{F}_5\mathrm{CN}$ alone.

Although the above experiments were carried out using mixtures of C_2F_5CN and SF_6 , similar results can be expected if another saturated fluorocarbon such as CBrCl₂ gas or $c-C_4F_8$ gas is used instead of

 C_2F_5CN . Both of these gases have a high dielectric strength relative to SF_6 , as shown in the following table, which gives the relative dielectric strengths compared to the dielectric strength of SF_6 for C_2F_5CN alone, $CBrClF_2$ alone, $c-C_4F_8$ alone, and mixtures of each of these three gases with SF_6 . In the table, all quantities are given as mole percentages.

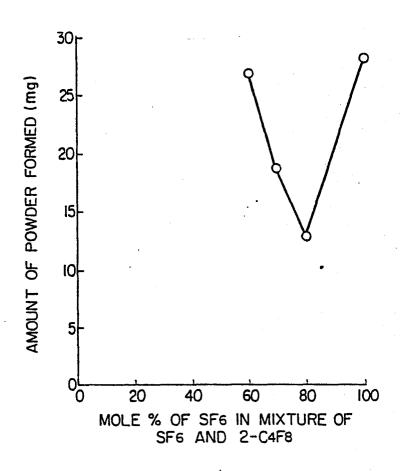
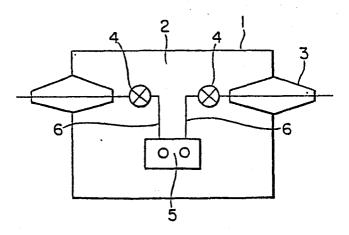
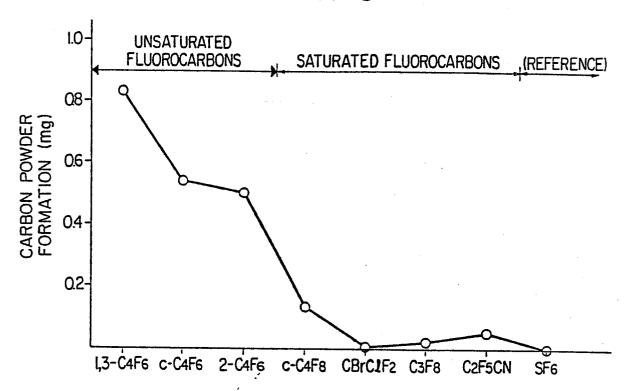
	GAS COMPOSITION							
	100 % C ₂ F ₅ CN			25% C ₂ F ₅ CN 75% SF ₆	25% CBrC ₁₂ F ₂ 75% SF ₆	25% c-C ₄ F ₈ 75% SF ₆		
DIELECTRIC STRENGTH RELATIVE TO 100% SF	1.8	1.4	1.4	1.4	1.15	1.16		

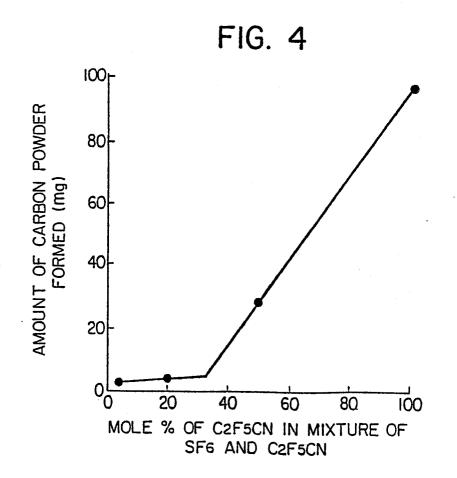
Since an electrical apparatus according to the present invention employs a gas mixture which has a higher dielectric strength than SF_6 and which greatly suppresses carbon formation at the time of arcing, for a given rating, an apparatus of smaller size than an apparatus using SF_6 alone as a gaseous dielectric is achievable. Alternatively, an electrical apparatus according to the present invention can have a higher rating than an apparatus of the same physical size which uses SF_6 alone as a gaseous dielectric.

Patent Claims

- 1. An improved electrical apparatus of the type comprising a sealed chamber, a gaseous dielectric which fills said chamber, a conductor disposed inside said chamber, and a solid insulating member disposed so as to support said conductor, characterized in that said gaseous dielectric comprises a mixture of approximately 60 99.5 mole % of SF_6 and approximately 0.5 40 mole % of a saturated fluorocarbon compound.
- 2. An improved electrical apparatus as claimed in Claim 1, wherein said fluorocarbon compound is ${\rm C_2F_5CN}$.
- 3. An improved electrical apparatus as claimed in Claim 1, wherein said fluorocarbon compound is CBrClF₂.
- 4. An improved electrical apparatus as claimed in Claim 1, wherein said fluorocarbon compound is $c-C_4F_8$.
- 5. The use of a mixture of approximately 60 to 99.5 mole % of ${\rm SF}_6$ and approximately 0.5 to 40 mole % of a saturated gaseous fluorocarbon compound as dielectric medium in electrical apparatuses.

FIG. I


FIG. 2

2/4

FIG. 3

3/4

FIG. 5

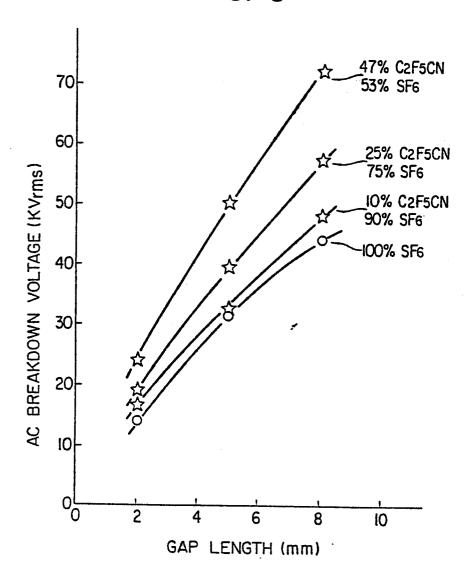


FIG. 6

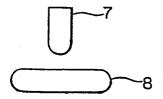
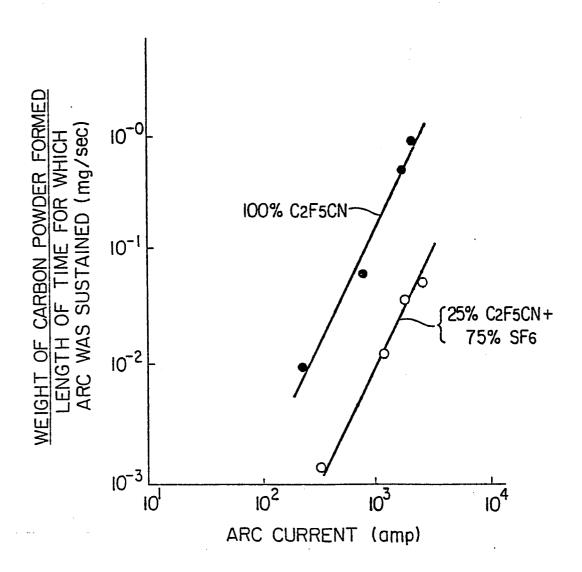



FIG. 7

EUROPEAN SEARCH REPORT

	DOCUMENTS CONSI	EP 84108219.1				
ategory	Citation of document with indication, where appropriate, of relevant passages			Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 3)	
	US - A - 4 071 4	.61 (MFARS et	- al)		H 01	B ₂ 3/56
x	* Abstract; e		I	1,4,5	H 01	H 33/22
Y	* Abstract; e 12 *	-		2,3		
Y	IEEETRANSACTIONS SULATION, vol. E 1980, Piscataway	I-15, nr. 2,		2,3		
	J.C. DEVINS "Rep SF6" pages 81-86	lacement Gas	ses for			
	* Page 82, fi table 1, li 17,24,30 *	g. 1; page 8 nes 3,8,9,12				
v	110 4 4 160 0	(COOVE)		1 E	TEC	HNICAL FIELDS
Х	<u>US - A - 4 162 2</u> * Fig. 3 *	(COOKE)		1,5		RCHED (Int. Cl. 3)
	rig. 3				H 01	D G
					H 01	
					H 01	
					1 101	r
			•			•
					}	
					ļ	
						•
				1		
	The present search report has b	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
			ion of the search		Examiner KUTZELNIGG	
		30-08-1		ain ai air air a		
Y : pi	CATEGORY OF CITED DOCL articularly relevant if taken alone articularly relevant if combined w polyment of the same category	1	F: theory or p E: earlier pate after the fil D: document L: document	ent documes ing date	nt, but public	nvention shed on, or
A: te	echnological background on-written disclosure		s: member of	the same p	atent family.	corresponding