11) Publication number:

0 133 017

A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 84305050.1

(51) Int. Cl.4: F 02 M 69/06

(22) Date of filing: 25.07.84

//F02D3/02

(30) Priority: 01.08.83 US 519192

(43) Date of publication of application: 13.02,85 Bulletin 85/7

Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

71) Applicant: Werner, Roger J. 8 Hillcrest Northville Michigan 48167(US)

(72) Inventor: Werner, Roger J. 8 Hillcrest Northville Michigan 48167(US)

(74) Representative: Meeks, Frank Burton et al, Urquhart-Dykes & Lord 47 Marylebone Lane London W1M 6DL(GB)

64 Carburetion system.

(57) A pressurized fuel carburetion system for internal combustion engines wherein varying velocities and pressures are produced in the throat of the carburetor intermixing fuel with the air passing therethrough in such a manner to create a plurality of cortices containing air and fuel mixtures rotating about an axis substantially perpendicular to the carburetor air flow. The carburetor includes a rotating baffle and fuel distributor producing a restriction in the carburetor throat to cause high air flow velocities and low pressures and the air subsequently expands in such a manner as to produce low air flow velocities and higher pressures creating the desired vortices. The fuel distributor is in the form of a rotating cup, and fuel supplied to the cup interior is projected transverse to the air flow immediately prior to the region of vortex generation. Fuel supply control means utilize a plurality of series related valves employing engine manifold pressure and throttle position to control the rate of fuel supply and idling and acceleration fuel requirements are controlled by appropriate valves.

CARBURETION SYSTEM

- 1. Background of the Invention.
- 2. The basic carburetion of internal combustion engines
- 3. consists of intermixing air and fuel to produce a mixture
- 4. of such ratio as to support combustion. Many proposals have
- 5. been made for improving air and fuel mixtures to increase
- 6. the efficiency of fuel utilization, improve engine perfor-
- 7. mance and running characteristics, and aid in reducing the
- 8. cost of engine operation. Many approaches have been pro-
- 9. posed to improve the various aspects of carburetion, and
- 10. many patents exist disclosing carburetors and air-fuel
- 11. mixing devices for engines.
- 12. For instance, U.S. patents illustrating vortex genera-
- 13. tion within carburetors are shown in 2,054,734; 2,887,309;
- 14. 3,286,997 and German Patent 314,428. Also it has been recog-
- 15. nized that rotating vanes within the carburetor may aid in
- 16. fuel-air mixing, and examples of such carburetion devices
- 17. are shown in U.S. Patents 2,003,180; 2,595,719; 2,750,170;
- 18. 2,823,906; 3,439,903; 3,286,997 and 3,955,545. Additional
- 19. U.S. patents have recognized that the use of electric motors
- 20. to rotate carburetor components to improve intermixing and
- 21. and atomization of the fuel is of advantage as disclosed in
- 22. 2,932,495; 3,701,513 and 3,991,143.
- 23. While the aforementioned patents, in many cases, have
- 24. improved the efficiency to a minor extent of the associated
- 25. engines with which they are used, such carburetion systems
- 26. have not produced substantial increases in engine efficiency,
- 27. and even with the high fuel prices that are now commonplace
- 28. the development of high efficiency carburetors significantly

- 1. advancing the art has been elusive, and nonconventional
 - 2. approaches to engine carburetion are required if major ad-
 - 3. vances are to be made in the art.
 - 4. It is an object of the invention to provide a pres-
 - 5. surized carburetion system wherein improved intermixing of
 - 6. air and fuel particles is achieved, and wherein the control
 - 7. of fuel supply is primarily mechanically controlled without
 - 8. requiring sophisticated expensive electronic apparatus.
 - 9. Another object of the invention is to provide a
 - 10. carburetor for internal combustion engines wherein the confi-
 - 11. guration of the carburetor air flow generates a plurality of
 - 12. vortices of mixing air and fuel particles having axes trans-
 - 13. versely disposed to the path of air flow, such vortices main-
 - 14. taining this orientation to produce improved flow, cleaning
 - 15. and burning characteristics within the engine intake manifold
 - 16. and cylinders.
 - 17. An additional object of the invention is to provide
 - 18. an internal combustion engine carburetor wherein a baffle
 - 19. within the carburetor throat produces sequential high velo-
 - 20. city-low pressure and low velocity-high pressure regions,
 - 21. and the baffle creats a low pressure transition zone inter-
 - 22. mediate such regions capable of generating vortices of air
 - 23. and fuel particles having axes of rotation transversely dis-
 - 24. posed to the direction of carburetor air flow.
 - 25. Yet an additional object of the invention is to pro-
 - 26. vide an internal combustion engine carburetor utilizing an
 - 27. inverted cup baffle with respect to the direction of carbure-
 - 28. tor air flow wherein pressurized fuel is fed to the interior
 - 29. of the cup such that fuel will be thrown from the downstream
 - 30. edge of the cup transversely into the path of air producing

0133017

- 1. vortices of air and fuel having an axis transverse to the
- 2. air flow direction.
- 3. A further object of the invention is to provide an
- 4. internal combustion engine carburetion system wherein se-
- 5. quential high velocity-low pressure and low velocity-high
- 6. pressure regions are formed within the carburetor throat
- 7. with a transition zone intermediate such regions, and a
- 8. reduced pressure is created at the transition zone, such
- 9. pressure differentials producing vortices of fuel and air
- 10. particles rapidly intermixing about axes transverse to the
- 11. air flow within the carburetor throat, the fuel being intro-
- 12. duced into the air flow immediately prior to the transition
- 13. zone and at substantially right angles to the air flow path.
- 14. Yet another object of the invention is to provide an
- 15. internal combustion engine carburetion system of the pres-
- 16. surized type wherein the fuel pressure is regulated regard-
- 17. less of whether an engine powered diaphragm type pump or
- 18. electric pump is utilized, and fuel control is achieved by
- 19. a combination of series related valves employing intake
- 20. manifold pressure and engine throttle conditions to achieve
- 21. efficient engine operation.
- 22. An additional object of the invention is to provide
- 23. an internal combustion engine carburetion system utilizing
- 24. a pressurized fuel wherein engine intake manifold pressure
- 25. is employed to control the rate of fuel flow during accelera-
- 26. tion, and the combination of intake manifold pressure and
- 27. throttle settings are employed to control fluid flow during
- 28. normal operating conditions and engine temperature controls
- 29. fast idle operations.
- 30. In the practice of the invention pressurized fuel is

- 1. supplied to a carburetor having a throat in which an in-0133017
- 2. verted cup-shaped baffle is concentrically located. The
- 3. cup is rotated by an electric motor, and the fuel is intro-
- 4. duced into the central region of the cup and produces a
- 5. film within the cup interior such that the fuel is thrown
- 6. from the downstream cup edge into the carburetor air flow
- 7. at right angles thereto. The cup is of such configuration
- 8. that an annular restricted cross sectional throat portion
- 9. is defined in radial alignment with the cup producing a
- 10. high velocity-low pressure throat region, and below the
- 11. cup the carburetor throat increase in volume producing a
- 12. higher pressure-low velocity region. Immediately below
- 13. the cup a transition zone exists, and due to the cup confi-
- 14. guration reduced air and vapor pressures exist below and
- 15. interiorly of the cup where a plurality vortices of fuel
- 16. and air particles are generated which produces vigorous
- 17. mixing of the air and fuel particles. Such vortices are
- 18. drawn into the engine, and tend to "scrub" the engine in-
- 19. take manifold preventing the accumulation of raw fuel
- 20. thereon, and upon entering the engine cylinders produce uni-
- 21. form combustion.
- 22. The fuel is supplied by a fuel pump and pressure re-
- 23. gulator means are utilized to control the fuel pressure.
- 24. For instance, with a diaphragm engine driven pump a pressure
- 25. regulator utilizing a differential piston is employed con-
- 26. trolling a fuel flow valve to regulate fuel pressure. If
- 27. an electric fuel pump is used a recirculating pressure regu-
- 28. lator is employed wherein recycling of the fuel to the fuel
- 29. tank is controlled by a pressure differential valve pre-
- 30. venting pump overloading or the consumption of excessive fuel.

	2 0100011
1.	A hot idle fuel flow valve is used to control engine
2.	operation during idling, and solenoid operated valves are
3.	mounted within the fuel supply conduit and the hot idle
4.	fuel supply conduit preventing fluid flow to the carburetor
5.	unless desired. Also, a bimetallic element sensing the
6.	engine's temperature regulates the rate at which the as-
7.	sociated engine will idle while the engine is cold.
8.	In the practice of the invention the objects thereof
9.	as set forth above are met, and significant improvements in
10.	engine efficiencies have been experienced.
11.	Brief Description of the Drawings.
12.	The aforementioned objects and advantages of the
13.	invention will be apparent from the following description
14.	and accompanying drawings wherein:
15.	Fig. 1 is an elevational view, partially in diame-
16.	trical section, of an internal combustion
17.	engine carburetor in accord with the invention,
18.	Fig. 2 is a plan, elevational, sectional view as taken
19.	along Section II-II of Fig. 1,
20.	Fig. 3 is a plan, elevational, sectional view taken
21.	through the transitional zone of the carburetor
22.	throat along Section III-III of Fig. 1,
23.	Fig. 4 is a schematic, elevational, sectional view
24.	of a carburetion system in accord with the
25.	invention,
26.	Fig. 5 is a graph illustrating typical engine opera-
27.	ting characteristics during the practice of
28.	the invention,
29.	Fig. 6 is a schematic, sectional, elevational view of
30	an altornate control unit for regulating fuel

control,

31.

1.	Fig. 7 is an elevational view, partially in dia-
2.	metrical section, illustrating an embodiment
3.	of carburetor in accord with the invention
4.	wherein the cup baffle is axially adjustable
5.	within the carburetor throat,
6.	Fig. 8 is an enlarged, elevational, sectional view
7.	of the cam means employed with the embodiment
8.	of Fig. 7 as taken along Section VIII-VIII of
9.	Fig. 7,
10.	Fig. 9 is an elevational view, partially sectioned,
11.	illustrating the bimetallic fast idle and hot
12.	idle linkages, and
13.	Fig. 10 is a schematic, elevational, sectional view
14.	of an alternate fuel supply system utilizing
15.	an electric fuel pump as used with the fuel
16.	control unit illustrated in Fig. 4.
17.	Description of the Preferred Embodiment.
18.	The entire system of the invention is best appreciated
19.	from Fig. 4 wherein the basic components of an internal com-
20.	bustion engine carburetion system are disclosed. The fuel
21.	tank is represented at 10, and fuel is drawn therefrom by
22.	the conventional diaphragm fuel pump 12 mechanically driven
23.	from the engine, not shown, in the usual manner. A fuel ac-
24.	cumulator 14 receives the output from the fuel pump elimina-
25.	ting surges, and the fuel is filtered at 16 prior to being
26.	received by the pressure regulator 18. The pressure regulator
27.	supplies fuel to the control unit 20 and the pressurized
28.	fuel output from unit 20 passes to the carburetor 22 mounted
29.	upon the engine intake manifold schematically represented at

54.

30.

- 1. More specifically, the pump 12 is connected to the
- 2. fuel tank 10 by an inlet conduit 26, and the pump pressurized
- 3. output is connected to the fuel accumulator by conduit 28.
- 4. The fuel accumulator uses a spring biased cylinder to absorb
- 5. fuel surges, and conduit 30 thereof communicates with conven-
- 6. tional fuel filter 16 which supplies the fuel pressure regu-
- 7. lator 18 through conduit 32. The fuel pressure regulator 18
- 8. includes a valve 34 supported upon diaphragm 36 extending across
- 9. chamber 38 separating the chamber into portions 40 and 42.
- 10. Compression spring 44 biases the valve 34 toward a seated con-
- 11. dition to the right, while spring 46 biases the diaphragm and
- 12. valve toward the left. The effective pressure face area on
- 13. the left of the diaphragm 36, and valve 34, is less than that
- 14. on the right of diaphragm wherein the diaphragm comprises a
- 15. differential pressure piston capable of positioning the valve
- 16. relative to its seat, and thereby control the rate of fluid
- 17. flow into the chamber 40. The fuel pressure regulator output
- 18. conduit 48 communicates with the chamber 40, and the metered
- 19. fuel from the control unit communicates with the chamber 42
- 20. through conduit 50.
- 21. The control unit 20 includes a body 52 in which sub-
- 22. stantially similar valves 54 and 56 are mounted as separated
- 23. by a chamber 58. The valve 54 includes an annular groove 60
- 24. and radial ports communicating with an internal chamber and
- 25. orifice 62, while the valve 56 includes a circumferential
- 26. groove 64, and ports, communicating with the internal chamber
- 27. and orifice 66. A control needle or rod 68 is slidably re-
- 28. ceived within the valve 54 axially positionable within the
- 29. orifice 62, while the control rod 70 is axially translatable
- 30. within the valve orifice 66. Each of the control rods is

- 1. provided with a flattened surface 72 formed upon the as-
- 2. sociated cylindrical rod such that the transverse cross
- 3. section of the control rod varies along its axial length.
- 4. Thus, the size of the opening within the orifices through
- 5. which fuel may flow will vary depending upon the axial po-
- 6. sition of the associated control rod, and in this manner
- 7. fluid flow through the associated orifice can be very ac-
- 8. curately controlled.
- 9. The control rod 68 is connected to an evacuated bel-
- 10. lows 74 located within the chamber 76, and the chamber 76
- 11. communicates with the associated engine intake manifold
- 12. through conduit 78. The bellows 74 includes an internal
- 13. compression spring 80, the compression of which may be
- 14. adjusted by the threaded spring pad 82.
- 15. The control rod 70 of valve 56 is connected to the
- 16. associated engine throttle mechanism which includes a
- 17. shaft 84 having a slotted arm 86 cooperating with the con-
- 18. trol rod pin 88. Thus, as shaft 84 is rotated by the en-
- 19. gine throttle linkage the rod 70 will be axially translated
- 20. within the valve orifice 66.
- 21. From the above it will be appreciated that fuel en-
- 22. tering the body 52 through conduit 48 may pass through
- 23. valve 54 and orifice 62 and into chamber 58, and from cham-
- 24. ber 58 into the orifice 66 and through valve 56 into the
- 25. outlet conduit 90 communicating with the pressure regulator
- 26. conduit 50 and carburetor supply conduit 92.
- 27. During acceleration fluid flow to the carburetor is
- 28. primarily controlled by the acceleration valve 94 mounted
- 29. within body 52 and the valve 94 is supplied with fuel by
- 30. body passage 96, and the output from the value flows to

- 1. valve 56 through body passage 98. The acceleration valve
- 2. includes a chamber 100 containing the piston-diaphragm ele-
- 3. ment 102 connected to the valve 94, and compression spring
- 4. 104 adjustable through threaded shaft 106 will permit adjust-
- 5. ment of the seating pressure of the acceleration valve. The
- 6. opposite side of the diaphragm 102, with respect to chamber
- 7. 100, communicates with a dashpot accumulator 108 communica-
- 8. ting with the bleed orifice 110 and parallel check valve
- 9. 112, and both the bleed orifice and the chamber 100 communi-
- 10. cate with the conduit 114 connected to the intake manifold
- 11. wherein, during acceleration when the intake manifold pres-
- 12. sure decreases, the valve 94 will open permitting pressurized
- 13. fuel to flow therethrough into the carburetor supply line 92.
- 14. The fuel control unit 20 also includes a hot idle fuel
- 15. flow valve 116 receiving pressurized fuel through the body
- 16. passage 118 and a threaded needle valve type pin 120 controls
- 17. the fuel flow into the hot idle supply conduit 122 attached to
- 18. the carburetor 22 through the solenoid operated valve 124, as
- 19. later described.
- 20. The carburetor 22 in accord with the invention is il-
- 21. lustrated in Fig. 1 and includes an adapter 126 attached to
- 22. the throttle blade valve plate 128 of intake manifold struc-
- 23. ture 24 in which the conventional throttle valve 130 is lo-
- 24. cated. The throttle valve 130 is connected to the engine
- 25. throttle linkage in the conventional manner, and rotative
- 26. positioning of the valve controls the amount of air and fuel
- 27. mixture entering the engine to regulate the rate of engine
- 28. rotation.
- 29. The carburetor body includes a throat 132 mounted on
- 30. adapter 126 which is of a cylindrical configuration internally

- 1. defined by the cylindrical inner surface 134 which 1:330de7
- 2. a shoulder 136 forming a reduced diameter. The super struc-
- 3. ture of the starter includes an upper support body 138 in
- 4. which the pressurized fuel supply line 140 communicates
- 5. with conduit 92 through solenoid operated valve 142 and
- 6. air passages 144 are formed therein for receiving the car-
- 7. buretor air throughout the circumference of the upper body
- 8. as indicated by the arrows.
- 9. The upper body 138 supports an electric motor 146
- 10. usually of the 12 volt variety having a driveshaft 148 sup-
- 11. ported within bearing structure and the driveshaft is sealed
- 12. at 150 to the plate hub 152. As will be apparent from Fig.
- 13. 1, an annular chamber 154 is defined about the driveshaft
- 14. 148 which communicates with the fuel supply passage 140.
- 15. The driveshaft 148 supports the shaft extension 156
- 16. coaxially aligned with the driveshaft which includes radial
- 17. ports 158 communicating with an axial passage, and lower
- 18. radial passages 160 which communicate with the fuel distri-
- 19. bution spokes or fingers 162.
- 20. A baffle in the form of a cup 164 is attached to the
- 21. extension 156 for rotation therewith, and the cup includes
- 22. the hub firmly mounted upon the extension, and the tubular
- 23. spokes 162 extend therethrough. The cup 164 includes an
- 24. upper closed end 166 disposed "upstream" with respect to
- 25. the direction of air flow as represented by the air flow ar-
- 26. rows, and at the downstream end the cup is open as defined
- 27. by the circular edge 168. The spokes 162 are each provided
- 28. with a hole 170 wherein the fuel within the spokes is dis-
- 29. charged adjacent the inner surface of the cup cylindrical
- 30. wall 172, and centrifugal force due to cup rotation will

- 1. produce a film of fuel upon the cup inner surface and the
- 2. fuel will be rapidly thrown outwardly from the out a page 7168
- 3. in a direction and plane perpendicular to the air flow
- 4. through the carburetor throat 132.
- 5. As will be appreciated from Fig. 1, the configuration
- 6. and dimension of the cup 164 is such that a relatively large
- 7. chamber 174 will be defined upstream of the cup, but as the
- 8. cup wall 172 is disposed relatively close to the throat in-
- 9. ner surface 134 an annular chamber is defined at 176 of re-
- 10. stricted cross sectional area and the velocity of air flowing
- 11. through the chamber 176 will substantially increase with
- 12. respect to the air flow velocity within chamber 174, and
- 13. the pressure within the chamber 176 will be lower than
- 14. at 174.
- 15. The greatest resistance to air flow will be at the
- 16. clearance 178 intermediate the throat shoulder 136 and the
- 17. lower region of the cup, and downstream from this annular
- 18. location the carburetor throat area again enlarges at cham-
- 19. ber 180 producing a region of lower velocity and higher pres-
- 20. sure when the valve 130 is open such that air flow is existing
- 21. in the carburetor throat. A transitional zone exists at 182
- 22. downstream of the cup and in the region adjacent the cup
- 23. edge 168. This transitional zone has a reduced air pressure
- 24. due to the venturi effect resulting from the configuration
- 25. of the cup and the high velocity of the air passing between
- 26. the shoulder 136 and the cup edge 168. Thus the "hollow"
- 27. nature of the cup and its axial dimension as defined by
- 28. the cylindrical cup wall 172 and parallel relationship to
- 29. the throttle throat inner surface 136 produces a venturi ef-
- 30. fect resulting in a controlled turbulence within the transi-

- 1. tion zone 182 and the chamber 180.
- 2. The aforementioned controlled turbulence results in
- 3. a plurality of vortices within the transition zone 182 and
- 4. chamber 180 and such vortices rotate about axes substantially
- 5. perpendicularly disposed to the axis of the throat and the
- 6. flow of air therethrough. As the fuel has been mixed with
- 7. the air as the air passes the cup edge 168 the vortices as
- 8. represented at 184 in Fig. 1, will contain fuel particles as
- 9. well as air particles and a thorough and rapid intermixing
- 10. of the particles and vaporization of the fuel occurs.
- 11. As the vortices 183 continue to rotate about their
- 12. axes the vortices are drawn into the engine intake manifold
- 13. 124 and into the combustion cylinders. The direction of vor-
- 14. tex rotation will continue to be substantially horizontal
- 15. as represented in Fig. 1, and such air and fuel movement
- 16. tends to "scrub" the walls of the intake manifold reducing
- 17. the likelihood of fuel adhering to the manifold walls which
- 18. produces a wet condition, as often occurs within engine in-
- 19. take manifolds. Also, the vortexing of the fuel and air mix-
- 20. ture continues into the combustion chamber distributing the
- 21. fuel throughout the combustion chamber facilitating burning
- 22. resulting in high efficiency utilization of the fuel.
- 23. The combination of the sequential flow of air from
- 24. the high velocity-low pressure chamber 172 to the higher pres-
- 25. sure-low velocity chamber 180 and the formation of the low
- 26. pressure transitional zone 182 immediately after mixing of
- 27. the fuel and air achieves a controlled vortexing of the fuel
- 28. and air mixture described above which significantly increases
- 29. the efficiency of combustion of the fuel more effectively uti-.
- 30. lizing the energy thereof.

- 1. As illustrated in Fig. 4, the hot idle circuit in-
- 2. cludes the chamber 186 receiving fuel from the valve 124
- 3. and the chamber communicates with the carburetor throat at
- 4. orifice 188 adjacent the periphery of the valve 130 at valve
- 5. notch 190, and at the needle valve orifice 192, below the
- 6. throttle valve, the rate of fluid flow through the orifice
- 7. 192 being controlled by needle valve 194.
- 8. Operation of the solenoid valve 124 is by a limit
- 9. switch, not shown, connected to the throttle wherein, the
- 10. valve will be opened upon the throttle being released to
- 11. return to its usual "idle" position, and at such time the
- 12. valve 142 will close interrupting the main supply of fuel
- 13. through the conduit 92 and to the cup 164.
- 14. In the embodiment shown in Fig. 6, a modification of
- 15. hot idle fuel supply is illustrated. In this modification
- 16. similarly described components are indicated by primed re-
- 17. ference numerals.
- 18. The body 52' includes the hot idle needle valve 116'
- 19. which communicates with supply passage 196, and the output
- 20. thereof communicates with the acceleration valve 94' through
- 21. passage 198. Thus, during idling, when no acceleration is
- 22. taking place and the intake manifold pressure is high, the
- 23. valve 94' permits fuel to flow through the valve 94' and
- 24. passage 98' through the fluid supply conduit 90', and this
- 25. construction eliminates a separate electric solenoid valve
- 26. in the hot idle circuit. In this embodiment notched openings
- 27. must be located in the throttle valve 130 to allow the fuel
- 28. and air mixture to enter the intake manifold.
- 29. With further reference to Fig. 6, a cold idle control
- 30. is shown which includes a bimetallic spring member 200 mounted

- 1. within block 202 which is attached to the associated engine
- 2. block. Thus, the bimetallic spring 200 is subjected to
- 3. the temperature of the engine, and as the arm 204 is
- 4. affixed to the spring temperature variations in the bime-
- 5. tallic spring will cause the arm to rotate. A cam slot
- 6. 206 defined in the bracket receives the follower pin 208
- 7. attached to the needle valve 210 and as the bimetallic
- 8. spring and arm rotate the position of the needle valve will
- 9. vary.
- 10. The block chamber 212 communicates with a filtered
- 11. air supply at 214, and the chamber also communicates with
- 12. the valve 210. Thus, air within the chamber 212 may be
- 13. drawn through the needle valve 210 into conduit 216 which
- 14. communicates with the control unit 20' at chamber 58' and
- 15. communicates with the engine intake manifold at 218. This
- 16. arrangement permits the vacuum within the chamber 58' to be
- 17. regulated in accordance with the temperature of the engine
- 18. allowing fuel enrichment during engine warmup. Once the
- 19. engine is warm the cold idle mode enrichment circuit will
- 20. be closed due to the closing of the needle valve 210, and
- 21. in this manner the valve 54' will provide the additional
- 22. fuel required during the initial engine warmup phase.
- 23. The acceleration valve 94, Fig. 4, and Fig. 6,
- 24. utilizes the bleed orifice 110 in series with the dashpot
- 25. accumulator 108. The bleed orifice and dashpot accumulator
- 26. limit the time that the acceleration mode circuit is actua-
- 27. ted. The time that the acceleration circuit will be in use
- 28. is variable depending upon the amount of the differential
- 29. decrease in the manifold vacuum as sensed through conduit
- 30. 114 and the "on" time of the acceleration valve is directly

- 1. dependent upon the value of the differential decrease in
- 2. the manifold vacuum. The check valve 112 within the bleed
- 3. orifice housing resets the timing circuit when the vaccum
- 4. increases.
- 5. With reference to Fig. 9, the lever 220 attached to
- 6. the hot idle valve 116 is shown. The lever 220 cooperates
- 7. with a stop set screw 222 mounted upon bracket 224 wherein
- 8. the amount of fuel passing through valve, 116 may be readily
- 9. controlled. Also, the shaft of the bimetal spring 200 may
- 10. include an arm 226, Fig. 9, which supports a wire link co-
- 11. operating with the pivotally mounted fast idle cam 228.
- 12. The fast idle cam is provided with a plurality of stop sur-
- 13. faces 230 cooperating with the adjustment screw 232 formed
- 14. on the hot idle lever 220, and it will be appreciated that
- 15. the position of the cam 228 will vary in accordance with the
- 16. engine temperature presenting different adjustment screw
- 17. stop surfaces 230 in alignment with the screw 232 to control
- 18. the position of the idle screw lever 220 and idle valve 116.
- 19. As the engine warms a lesser amount of fuel is required for
- 20. idling purposes.
- 21. In the graph of Fig. 5 typical operating relationships
- 22. of an engine in accord with the invention are shown. The
- 23. throttle range indicates the angular position of the throttle
- 24. blade 130, while the fuel flow indicates the percentage of
- 25. flow with respect to the maximum possible. The curves indi-
- 26. cate the relationship between throttle angle and fuel flow
- 27. under various manifold vacuum conditions, and the road load
- 28. is represented by curve A. As the manifold vacuum decreases
- 29. the fuel flow increases as does the throttle angle.
- 30. A modification of carburetor relationships is illus-

- 1. trated in Figs. 7 and 8 wherein components identical to
- 2. those previously described are indicated by primed refer-
- 3. ence numerals.
- 4. In this embodiment the motor 146' is supported upon
- 5. the plate 138' by a ball and ramp assembly consisting of
- 6. plates 234 and 236 having a plurality of ball elements
- 7. 238 interposed therebetween within obliquely disposed
- 8. grooves 240 and 242, as apparent in Fig. 8. The plate 236
- 9. is connected to motor 244 for rotating the plate about the
- 10. motor axis, and such plate rotation will cause the balls
- 11. 238, several of which are used, to raise and lower the
- 12. motor, driveshaft and cup 164' in accordance with engine
- 13. performance. For instance, an expansible chamber motor
- 14. 244, such as a bellows in communication with the engine in-
- 15. take manifold, is mechanically connected to the plate 236
- 16. wherein the axial position of the cup 164' within the
- 17. throat 132' will vary in accordance with manifold pressure.
- 18. It is possible to substitute a pneumatic, mechanical or
- 19. electronic motor means for the vacuum means shown, if de-
- 20. sired.
- 21. The axial position of the cup 164' may be varied
- 22. with respect to the throat and the throat shoulder 136'
- 23. which varies the spacing at clearance 178 controlling the
- 24. velocity of the air stream flowing therethrough. By con-
- 25. trolling the dimension of the clearance 178 throughout the
- 26. range of engine speed optimum air flow characteristics can
- 27. be maintained thereby regulating the carburetor for optimum
- 28. efficiency and operation. The smaller gap will occur at
- 29. clearance 178 during high manifold vacuum conditions with
- 30. a closed throttle or idle speed, while the clearance will

- 1. be increased at low vaccum open throttle conditions during
- higher engine speed.
- 3. When the engine ignition is deactivated the solenoid
- 4. valves 142 and 124 close preventing fluid loss to the car-
- 5. buretor, or flooding, and the use of the solenoid operated
- 6. valve provides complete control of the fuel supply to the
- 7. carburetor.
- 8. As shown in Fig. 4, the drive motor 146 may include
- 9. the upstanding threaded stud 246 for receiving conventional
- 10. air filter structure, not shown, and it is to be appreciated
- 11. that the carburetion system of the invention utilizes the con-
- 12. ventional filters and anti-pollution equipment commonly em-
- 13. ployed with motor vehicles and required by law.
- 14. In Fig. 10 the arrangement is shown which is used
- 15. with an electric fuel pump, rather than a diaphragm pump.
- 16. Electric pump 248 supplies regulator 249 having valve 250
- 17. controlled by diaphragm 252. When the pressure within cham-
- 18. ber 254 becomes excessive the valve 250 opens and returns
- 19. fuel to tank 10' by return conduit 256. In this manner a
- 20. constant pressure is maintained on the fuel without becoming
- 21. excessive.
- 22. It is also to be appreciated that while a combination
- 23. pneumatic and mechanical control unit 20 is illustrated,
- 24. known electronic fuel control devices may be used with the
- 25. illustrated carburetor, and it is to be appreciated that
- 26. the carburetor disclosed is not dependent upon the fuel
- 27. supply and control apparatus shown.
- 28. The presence of the vortices 184 at the transition
- 29. zone 182 imparts to the air and fuel mixture a movement
- 30. highly advantageous with respect to intermixing the small

- 1. air and fuel particles and produces a "scrubbing" action
- 2. of the manifold walls as well as producing a turbulence
- 3. within the combustion chamber. Of course, a very fine
- 4. fuel-air mist and vapor exists within the transition
- 5. zone and therebelow, and the improved movement and inter-
- 6. mixing of the air and fuel produces superior combustion
- 7. characteristics.
- 8. It is appreciated that various modifications to the
- 9. inventive concepts may be apparent to those skilled in the
- 10. art without departing from the spirit and scope of the in-
- 11. vention.

Claims.

- 1. In the method of intermixing air and fuel for
- 2. combustion purposes within a passage comprising the steps
- 3. of:
- 4. (a) producing a dynamic air flow in a given
- 5. direction within a passage,
- 6. (b) introducing fuel particles into the air
- 7. flow,
- 8. (c) producing a plurality of vortices of mixed
- 9. air and fuel particles each having a vortex axis substan-
- 10. tially perpendicular to said air flow given direction, and
- II. (d) introducing said vortices of mixed air and
- 12. fuel into the intake manifold of an internal combustion en-
- 13. gine.
 - 1. 2. The method of intermixing air and fuel as in
 - 2. claim 1 wherein the step of introducing the fuel particles
 - 3. into the air flow comprises projecting the fuel particles
 - 4. into the air flow in a direction substantially perpendicular
 - 5. to the air flow given direction.
 - 1. 3. The method of intermixing air and fuel as in
 - 2. claim 2, including the step of producing a decreased air
 - 3. pressure region within the passage adjacent the location of
 - 4. introduction of the fuel particles into the air flow to aid
 - 5. in the formation of said vortices.

- 1. 4. The method of intermixing air and fuel as in
- 2. claim 2, including the step of channeling the air flow
- 3. into an annular cross sectional configuration at a first
- 4. axial location and shaping the air flow into a solid uni-
- 5. form cross section configuration at a second axial location
- 6. downstream of said first location, the fuel particles being
- 7. introduced into the air flow at a transition zone between
- 8. said first and second axial locations.
- 1. 5. The method of intermixing air and fuel as in
- 2. claim 4, including the step of producing a decreased air
- 3. pressure within the passage at a transition zone between
- 4. said first and second locations to aid in the formation of
- vortices.
- 1. 6. The method of intermixing air and fuel for com-
- 2. bustion purposes within a passage comprising the steps of:
- 3. (a) producing a dynamic air flow in a given di-
- 4. rection within the passage,
- 5. (b) creating a high velocity flow within the
- 6. passage at a first axial location,
- 7. (c) creating a low velocity air flow within the
- 8. passage at a second axial location adjacent to said first
- 9. location and downstream thereof, a transition zone existing
- 10. between said first and second locations,
- 11. (d) introducing fuel particles into the air flow
- 12. at said transition zone to produce a plurality of vortices
- 13. of mixed air and fuel each having a vortex axis substantially
- 14. perpendicular to said air flow given direction, and
- 15. (e) introducing said vortices of mixed air and
- 16. fuel into the intake manifold of an internal combustion en-
- 17. gine.

- 1. 7. The method of intermixing air and fuel as in
- 2. claim 6 wherein the step of introducing the fuel particles
- 3. into the air flow comprises projecting the fuel particles
- 4. into the air flow in a direction substantially perpendicular
- 5. to the air flow given direction.
- 8. The method of intermixing air and fuel as in
- 2. claim 6, wherein said high velocity flow is of an annular
- 3. transverse cross section, said low velocity air flow being
- 4. of a uniform cross section configuration, comprising the
- 5. step of producing a low pressure at said transition zone
- 6. aiding in the formation of said vortices.
- 1. 9. A carburetor for an internal combustion engine
- 2. comprising in combination, a body having a throat defined
- 3. therein having a longitudinal axis, an air inlet and a fuel
- 4. mixture outlet, vortex generating means within said throat
- 5. producing a plurality of air vortices within said throat
- 6. each having an axis transverse to the throat axis and fuel
- 7. supply means introducing fuel into said throat adjacent
- 8. said vortex generating means whereby said vortices intermix
- 9. fuel with vortexing air.
- 1. 10. In a carburetor as in claim 9, said vortex
- 2. generating means including air guiding means within said
- 3. throat sequentially restricting and expanding the transverse
- 4. cross sectional area of said throat, a transition zone being
- 5. defined within said throat between said restricted and ex-
- 6. panded cross sectional areas, said fuel supply means sup-
- 7. plying fuel to said throat at said transition zone, said
- 8. vortices being generated in said transition zone.

- 1. In a carburetor as in claim 10, said throat
- 2. being circular in transverse cross sectional configuration,
- 3. said air guiding means including a baffle concentrically
- 4. located within said throat having a wall radially spaced
- 5. from said throat defining an annular channel within said
- 6. throat of restricted transverse cross sectional area, said
- 7. baffle having a downstream end at said transition zone, said
- 8. fuel supply means introducing fuel into said throat in said
- 9. transition zone in axial alignment with said channel adja-
- 10. cent said baffle downstream end.
 - 1. 12. In a carburetor as in claim 11, said fuel supply
 - 2. means introducing fuel into said transition zone throughout
 - 3. the circumference of said baffle at said downstream end.
 - 1. 13. In a carburetor as in claim 12, said baffle
 - comprising an inverted cup having a closed upstream end,
 - 3. a wall and an open downstream end whereby a reduced air
 - 4. pressure is produced within said cup in axial alignment
 - 5. with said baffle adjacent said downstream end.
 - 1. In a carburetor as in claim 13, means rotatably
 - 2. supporting said cup within said throat, an electric motor
 - 3. mounted upon said body drivingly connected to said cup ro-
 - 4. tating said cup about an axis coincident with said throat
 - 5. axis, said fuel supply being introduced into said cup and
 - 6. forming a film upon the inner surface of the cup wall and
 - 7. being projected radially outwardly at said downstream end
 - 8. into axial alignment with said channel.

- 1. 15. In a carburetor as in claim 13, an annular
- 2. shoulder defined within said throat adjacent said baffle
- 3. downstream end in axial alignment with said channel restric-
- 4. ting the channel transverse cross sectional area adjacent
- 5. said baffle downstream end.
- 1. l6. In a carburetor as in claim 15, adjustable cup
- 2. supporting means defined on said body supporting said cup
- 3. for axial displacement within said throat, engine manifold
- 4. pressure operated motor means connected to said cup supporting
- 5. means for adjusting the axial position of said cup in accor-
- 6. dance with the associated engine manifold pressure.

Frq-6-

Fig.8.