(19)
(11) EP 0 142 043 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
22.05.1985  Patentblatt  1985/21

(21) Anmeldenummer: 84112309.4

(22) Anmeldetag:  12.10.1984
(51) Internationale Patentklassifikation (IPC)4C10G 1/06, C10G 47/00
(84) Benannte Vertragsstaaten:
AT BE DE FR GB IT NL SE

(30) Priorität: 15.10.1983 DE 3337623

(71) Anmelder: VEBA OEL Technologie GmbH
D-45896 Gelsenkirchen (DE)

(72) Erfinder:
  • Winckler, Lothar
    D-4390 Gladbeck (DE)
  • Fuhrmann, Klaus, Dr. Dipl.-Chem.
    D-4270 Dorsten (DE)
  • Graeser, Ulrich, Dr. Dipl.-Ing.
    D-4358 Haltern (DE)
  • Wenning, Peter, Dipl.-Ing.
    D-4270 Dorsten-Rhade (DE)

(74) Vertreter: Lindner, Wolfgang, Dr. 
Alexander-von-Humboldt-Strasse
45896 Gelsenkirchen
45896 Gelsenkirchen (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren zur Gewinnung von verdampfbaren Ölen aus dem Rückstand der Hydrierung von Schwerölen, Bitumen, Teer und dergl.


    (57) Bei diesem Verfahren zur Gewinnung von verdampfbaren Ölen aus dem Rückstand der Hydrierung von Schweroder Schwerstölen, Bitumen, Teer, Ölen aus Ölschiefer oder Teersand u. dgl. wird eine Vakuumdestillation bei Drücken von 0,01 bis 0,6 bar angewendet.
    Zwecks verbesserter verfahrenstechnischer Durch- führung der Vakuumdestillation derartiger Hydrierrückstände wird der Hydrierrückstand in einer einoder mehrwelligen Schneckenmaschine einer Destillation unter vermindertem Druck unterworfen.




    Beschreibung


    [0001] Zur Hydrierung von Schwer- und Schwerstölen, Bitumen, Teer, Ölen aus Ölschiefer oder Teersand und dergl. sind Verfahren bekannt, bei denen diese Einsatzstoffe bei Temperaturen von 250 - 550 °C, vorzugsweise 350 - 490 °C und Drücken von 50 - 700 bar, vorzugsweise 100 - 350 bar, gegebenenfalls in Gegenwart von Katalysatoren hydriert werden. Durch die Hydrierung dieser bei Normaldruck hochsiedenden Einsatzstoffe werden neben gasförmigen Kohlenwasserstoffen und bei Raumtemperatur zähviskosen bzw. festen Hydrierrückständen insbesondere niedriger siedende Flüssigprodukte des Benzin- und Mittelölsiedebereiches als Produkte erzeugt (s. W. Krönig, "Die katalytische Hydrierung von Kohlen, Teeren und Mineralölen", Springer Verlag, Berlin, Göttingen, Heidelberg 1950 insbesondere S. 77 - 91).

    [0002] Die entsprechenden Technologien wurden in den Jahren 1920 bis 1965 zur technischen Reife entwickelt und eingesetzt. Das Basisverfahren war die Hydriertechnologie nach BERGIUS-PIER. Aufbauend auf dieses Verfahren wurden in neuerer Zeit spezielle Technologien entwickelt und im Pilotanlagen- bzw. großtechnischen Maßstab angewandt. Als neuere Entwicklungen sind insbesondere die H-OIL-Technologie, das LC-FINING sowie das VEBA COMBI CRACKING-Verfahren (VCC) zu nennen (s. u. a. R. M. Eccles, "Recent Technical Advances in H-OIL Upgrading of Heavy Crudes", Proc., Vol. II, 2nd World Congress of Chemical Engineering, 1981, S. 520 - 537); U. Graeser, K. Niemann, "Proven hydrogenation processes for upgrading residua being revived in Germany", Oil and Gas J., 22. März 1982, S. 121, 122, 125 - 127).

    [0003] Allen diesen Verfahren ist gemeinsam, daß die Abtrennung der Hydrierrückstände von den gasförmigen bzw. kondensierbaren Produkten in Heißabscheidern erfolgt, wobei die Phasenseparierung unter Reaktionsdruck bei Reaktionstemperatur bzw. wenig darunter liegenden Temperaturen durchgeführt wird. Schwierigkeiten bietet dabei die Aufarbeitung der Hydrierrückstände. Diese enthalten neben Feststoffen wie z. B. Katalysatoren und nicht verdampfbaren flüssigen oder pastösen Bestandteilen wie z. B. Asphaltene wertvolle verdampfbare Produktöle, deren Abtrennung aus wirtschaftlichen Gründen zwingend ist.

    [0004] Zur Abtrennung dieser verdampfbaren Ölbeimengungen wurden verschiedene Verfahren wie Filtration, Schleudern, Vakuumdestillation usw. angewandt. Die dabei gewonnenen Öle im Siedebereich des Vakuumgas- öls werden z. B. durch weitere Hydrierung in marktfähige, niedriger siedende Produkte überführt. Allerdings enthalten die durch Filtration bzw. Schleudern abgetrennten Ölmengen z. T. erhebliche Beimengungen an schwerhydrierbaren öllöslichen hochmolekularen Stoffen wie z. B. Asphaltenen, die eine weitere hydrierende Aufarbeitung ungünstig beeinflussen bzw. deren Abbau verschärfte Hydrierbedingungen erfordert.

    [0005] Die vorgenannten Schwierigkeiten werden durch Einsatz der Vakuumdestillation überwunden. Die durch Vakuumdestillation gewonnenen Öle können unter verhältnismäßig milden Bedingungen zu höherwertigen Produkten aufhydriert werden. Die verfahrenstechnische Durchführung der Vakuumdestillation derartiger Hydrierrückstände ist zwar bekannt, doch wirft die Handhabung des Vakuumrückstandes erhebliche Probleme auf. Insbesondere gestaltet sich das Austragen aus der Vakuumkolonne sowie der Transport zur Weiterverarbeitung aufgrund der hohen Zähigkeit des Vakuumrückstandes äußerst schwierig.

    [0006] Die vorliegende Erfindung hat sich die Aufgabe gestellt, diese Schwierigkeiten zu überwinden. Erfindungsgemäß geschieht dies dadurch, daß der Rückstand der Hydrierung von Schwer- oder Schwerstölen, Bitumen, Teer, Schieferölen und dergl. in einer einoder mehrwelligen Schneckenmaschine einer Destillation unter vermindertem Druck unterworfen wird. Der während der Destillation ständig seine Viskosität erhöhende Hydrierrückstand wird durch die Schnecke laufend umgewälzt und dabei durch die Destillationszone der Schneckenmaschine geführt, so daß ihm die verdampfbaren Bestandteile entzogen werden.

    [0007] Ein- oder mehrwellige Schneckenmaschinen mit Gas-oder Dampfabführung sind bekannt, z. B. aus den US-PSen 1 156 096 und 2 615 199. Sie wurden jedoch bisher trotz der Schwierigkeiten, die schon bei der Verarbeitung der Hydrierrückstände von Kohle in den 30er und 40er Jahren dieses Jahrhunderts auftraten, nicht zur Ölgewinnung aus Hydrierrückständen, sondern z. B. zur Entfernung von Gasen oder Monomeren-Dämpfen aus Kunststoffen eingesetzt (s. M. Herrmann "Schneckenmaschinen in der Verfahrenstechnik", Berlin/Heidelberg/New York 1972). In der Kunststoffindustrie stellt die Schneckenmaschine somit einen Teil des Polymerisationsreaktors dar, wobei über die Monomerenentfernung in der Vakuumzone ein Abbruch der Polymerisationsreaktion herbeigeführt wird, wohingegen im Fall der Hydrierung vorgenannter Einsatzstoffe die Feststoffanreicherung im Hydrierrückstand zielführend ist.

    [0008] Bei der Destillation des Hydrierrückstandes in der ein- oder mehrwelligen Schneckenmaschine werden insbesondere Drücke von 0,01 - 0,6 bar, vorzugsweise 0,02 - 0,1 bar angewandt. Nach einer Weiterbildung der Erfindung fällt über die Länge der Schneckenmaschine vom Eintritt des Hydrierabschlammes zu dessen Austritt der Druck von 0,6, vorzugsweise 0,1 bar auf 0,01, vorzugsweise 0,02 bar ab. Diese Maßnahme verringert die Gefahr von Störungen des Destillationsvorganges in der Schneckenmaschine.

    [0009] Die Destillation des Hydrierrückstandes in der Schneckenmaschine erfolgt insbesondere bei Temperaturen von 200 - 400 °C, vorzugsweise 250 - 350 °C. Nach einer weiteren Ausbildung der Erfindung steigt über die Länge der Schneckenmaschine vom Eintritt zum Austritt des Hydrierrückstandes die Temperatur von 200 °C, vorzugsweise 250 °C auf 400 °C, vorzugsweise 350 °C an. Hierdurch wird die Zeit, während der Hydrierrückstand hohe, Veränderungen begünstigende Temperaturen annimmt, verkürzt und die weitere Verarbeitung des von den flüchtigen Bestandteilen befreiten Rückstandes erleichtert. Nach dem erfindungsgemäßen Verfahren können Rückstände bis zu einer Endviskosität von etwa 2000 mPas (250 °C) bei der Destillatabtrennung gehandhabt werden.

    [0010] Die gasförmig aus der Schneckenmaschine abgezogenen Öle werden zweckmäßigerweise mit den übrigen Hydrierölen, z. B. den die Heißabscheider gasförmig verlassenden Hydrierprodukten vereinigt und zusammen mit diesen der Weiterbehandlung, z. B. einer Hydrierung unterworfen. Das nicht verdampfte Gut kann nach einer weiteren Ausbildung der Erfindung aus der Schneckenmaschine in eine Kühl- oder Granuliervorrichtung eingebracht werden, wo es verfestigt wird. Das in dieser Form lager- und transportfähige Gut kann z. B. als Brennmaterial oder als Einsatzprodukt einer Vergasungsanlage verwendet werden.

    [0011] Nach einer anderen Ausbildung der Erfindung wird das nicht verdampfte Gut in der Schneckenmaschine nach der Destillation auf höhere Temperaturen, vorzugsweise 350 - 600 °C erhitzt und bei dieser Temperatur, insbesondere bei Atmosphärendruck oder auch bei einem darunter liegenden Druck geschwelt. Zweckmäßigerweise besitzt die Schneckenmaschine hierfür neben der Destillierzone eine Schwelzone, in die der Hydrierrückstand nach Durchlaufen der ersteren durch die Schnecken gefördert wird. Die entstandenen Schweldämpfe werden getrennt von den Öldämpfen abgezogen. Der anfallende Koks schließlich kann z. B. als Brennmaterial eingesetzt werden.

    [0012] Besonders günstig ist es, das in der Schneckenmaschine nicht verdampfte Gut nach der Destillation weiter zu verdichten und direkt in einen Vergasungsreaktor einzubringen, in dem z. B. über Synthesegas der für die Hydrierung der Einsatzprodukte des Hydrierverfahrens notwendige Wasserstoff gewonnen wird. Zweckmäßigerweise besitzt die Schneckenmaschine hierfür neben der Destillierzone eine Verdichtungszone verbunden mit einem Direkteintragsystem in einen Vergasungsreaktor.

    [0013] Das vorliegende Verfahren ist geeignet zur Verarbeitung sämtlicher Hydrierrückstände, die bei Hochdruckhydrierprozessen von Schwer- oder Schwerstölen, Bitumen, Teer, Ölen aus Ölschiefer oder Teersand und dergl. anfallen, bei denen der Einsatzstoff mit Hydrierwasserstoff und ggf. in Gegenwart eines Katalysators bei erhöhtem Druck und erhöhter Temperatur umgesetzt wird, beispielsweise nach dem sogenannten Bergius-Pier-Verfahren.

    [0014] Die Erfindung wird anhand des nachfolgenden Ausführungsbeispiels und der Zeichnung weiter erläutert.

    [0015] Der Rückstand der Vakuumdestillation eines venezolanischen Rohöls mit einem Siedebeginn von oberhalb 325 °C wurde in einer Hydrieranlage, die im wesentlichen auf Basis eines weiterentwickelten Bergius-Pier-Verfahrens arbeitet, bei 300 bar und 450 °C unter Zusatz eines anorganischen Katalysatorsystems sowie unter Zugabe von Wasserstoff hydriert und über Leitung 1 einem Heißabscheider 2 zugeführt, in welchem bei Reaktionsdruck und Reaktionstemperatur die gasförmigen Reaktionsprodukte von den flüssigen und festen Bestandteilen des Reaktionsgemisches abgetrennt werden. Die gasförmigen Bestandteile werden über Leitung 3 abgezogen und in üblicher Weise weiterverarbeitet. Die nicht flüchtigen festen und flüssigen Bestandteile verlassen den Heißabscheider über Leitung 4 und werden nach Entspannung auf Atmosphärendruck über Stutzen 6 der Vakuumschneckenmaschine 7 zugeführt. Hierbei erfolgt der Eintritt in die Vakuumschneckenmaschine von unten her in den Flüssigraum, um damit einen Abschluß des Zulaufstromes der Produkte aus dem Heißabscheider zu der Vakuumzone der Vakuumschneckenmaschine 7 zu bekommen. Als Förderorgan für den Zulaufstrom wird ein zwangsförderndes Pumpensystem 5, welches gleichzeitig als Dosiereinheit dient, eingesetzt.

    [0016] Das Einsatzprodukt in die Vakuumschneckenmaschine setzt sich aus 0,86 t Öl mit einem Siedebereich von 200 - 550 °C bei Normaldruck, 0,12 t Rückstand mit einem Siedebeginn von mindestens 550 °C bei Normaldruck und 0,02 t anorganischen Bestandteilen zusammen.

    [0017] Die Vakuumschneckenmaschine 7 war mit einer Doppelschnecke ausgerüstet und war im Falle des vorliegenden Beispiels über die Länge des Schneckenzylinders in eine Verdampfungszone 8 und in eine Schwelzone 9 unterteilt.

    [0018] Über die Länge der Verdampfungszone 8 wird der eingesetzte Hydrierrückstand bei 0,1 bar auf 350 °C erhitzt. Es werden 0,75 t flüchtige Bestandteile über die Stutzen 10 abgezogen und über Leitung 11 im Anschluß an eine im Fließbild nicht dargestellte Abkühlung in den Kondensatbehälter 12 geleitet. Der Kondensatbehälter ist mit der Vakuumleitung 13 verbunden und das Kondensat wird über Leitung 15 abgezogen.

    [0019] In der Verdampfungszone 8 war ein ständiges Ansteigen der Viskosität des eingesetzten Rückstandes zu beobachten. Die befürchteten Feststoffabsetzungen an der Schnecke sowie am Schneckenzylinder konnten nicht beobachtet werden.

    [0020] Der aus der Verdampfungszone 8 erhaltene Rückstand enthielt 0,13 t Öl-Bestandteile mit einem Siedebereich von etwa 450 - 500 °C unter Normaldruck, 0,10 t eines bei Normaldruck oberhalb von 550 °C siedenden Rückstandes sowie 0,02 t anorganischer Bestandteile. Dieser Rückstand wurde in der sich an die Verdampfungszone 8 anschließenden Schwelzone 9 von 350 °C über die Länge der Schwelzone an allmählich ansteigend auf 600 °C erhitzt, wobei Verdampfungszone 8 und Schwelzone 9 durch eine maschinentechnische Kompressionsstufe 16 getrennt sind, wodurch eine Verdichtung des Rückstandes erfolgt.

    [0021] In der Schwelzone 9 werden weitere 0,21 t Destillat gewonnen, das über die Stutzen 14 und über Leitung 17 abgezogen wird. Der resultierende Rückstand enthielt im wesentlichen nur noch 0,02 t koksähnlicher Produkte und 0,02 t anorganischer Bestandteile und wurde in einer Austragszone 18 verdichtet und über Stutzen 19 und Leitung 20 abgezogen.

    [0022] Die Beheizung der Vakuumschneckenmaschine erfolgte über eine Mantelbeheizung mittels überhitztem Dampf in der Verdampfungszone 8 und mittels Rauchgas in der Schwelzone 9.

    [0023] In technisch äquivalenter Weise kann die Beheizung aber auch mittels elektrisch beheizter Heizbacken oder durch Induktionsheizung oder bei Mantelbeheizung durch Wärmeträgeröle erfolgen.


    Ansprüche

    1. Verfahren zur Gewinnung von verdampfbaren Ölen aus dem Rückstand der Hydrierung von Schwer- oder Schwerstölen, Bitumen, Teer, Ölen aus Ölschiefer oder Teersand und dergl. durch eine Vakuumdestillation, dadurch gekennzeichnet, daß der Hydrierrückstand in einer ein- oder mehrwelligen Schnekkenmaschine einer Destillation unter vermindertem Druck unterworfen wird.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Destillation bei Drücken von 0,01 bis 0,6 bar, vorzugsweise 0,02 - 0,1 bar erfolgt.
     
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß über die Länge der Schneckenmaschine vom Eintritt zum Austritt des Hydrierrückstandes der Druck von 0,6, vorzugsweise 0,1 bar auf 0,01, vorzugsweise 0,02 bar abfällt.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Destillation bei Temperaturen von 200 - 400 °C, vorzugsweise 250 bis 350 °C erfolgt.
     
    5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß über die Länge der Schneckenmaschine vom Eintritt zum Austritt des Hydrierrückstandes die Temperatur von 200 °C, vorzugsweise 250 °C, auf 400 °C, vorzugsweise 350 °C ansteigt.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das nicht verdampfte Gut nach der Destillation aus der Schneckenmaschine in eine Kühl- oder Granuliervorrichtung eingebracht wird.
     
    7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das nicht verdampfte Gut in der Schneckenmaschine nach der Destillation vorzugsweise bei Temperaturen von 350 bis 600 °C geschwelt wird.
     
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Schwelung bei Atmosphärendruck erfolgt.
     
    9. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das nicht verdampfte Gut in der Schneckenmaschine nach der Destillation verdichtet und direkt in einen Vergasungsreaktor eingebracht wird.
     
    10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Eintritt des flüssigen Hydrierrückstandes in die Schneckenmaschine (7) über ein zwangsförderndes Pumpensystem (5) von unten her in den Flüssigraum erfolgt.
     
    11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Schneckenmaschine (7) eine Verdampfungszone (8) und eine Schwelzone (9) aufweist, die durch eine maschinentechnische Kompressionsstufe (16) voneinander getrennt sind.
     




    Zeichnung