(11) Veröffentlichungsnummer:

144 615

Α1

(12)

## EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84112110.6

(22) Anmeldetag: 10.10.84

(5) Int. Cl.4: **B 22 D 11/00**B 22 D 11/06, B 22 D 11/08

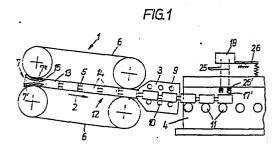
B 22 D 11/10, B 22 D 41/00

(30) Priorität: 11.11.83 DE 3340778

(43) Veröffentlichungstag der Anmeldung: 19.06.85 Patentblatt 85/25

(84) Benannte Vertragsstaaten: AT BE CH FR GB IT LI LU NL SE (1) Anmelder: Fried. Krupp Gesellschaft mit beschränkter Haftung Altendorfer Strasse 103 D-4300 Essen 1(DE)

(72) Erfinder: Artz, Gerd Tannenstrasse 35 D-4030 Ratingen 8(DE)


72) Erfinder: Figge, Dieter Defreggerstrasse 22 D-4300 Essen 1(DE)

(72) Erfinder: Hoster, Thomas, Dr. Baltrumweg 8 D-4300 Essen 1(DE)

(72) Erfinder: Pötschke, Jürgen, Dr. Wortbergrode 13 D-4300 Essen 1(DE)

(54) Arbeitsverfahren zum Vorheizen einer Giessdüse und Anfahrkette zur Durchführung des Arbeitsverfahrens.

(57) Die Anfahrkette zur Durchführung des Verfahrens ist dadurch gekennzeichnet, daß das die Geißbohrung (7') verschließende Anfahrstück (13) der Anfahrkette einen angepaßten, abtrennbaren Vorderabschnitt (15) mit einem eine Widerstandsheizung bildenden Heizteil aufweist, der teilweise in die Gießbohrung hineinragt und über eine lösbare Verbindung sowie über eine mit der Anfahrkette mitgeführte Energiezuführung an eine außenliegende Heizstromquelle (18) anschließbar ist.



## FRIED. KRUPP GESELLSCHAFT MIT BESCHRÄNKTER HAFTUNG IN ESSEN

Arbeitsverfahren zum Vorheizen einer Gießdüse und Anfahrkette zur Durchführung des Arbeitsverfahrens

Die Erfindung betrifft ein Arbeitsverfahren zum Vorheizen einer Gießdüse, durch deren Gießbohrung

5 Stahlschmelze zwischen die in Gießrichtung mitlaufenden Kokillenwände einer Stranggießkokille eingeleitet wird, sowie eine Anfahrkette zur Durchführung des Arbeitsverfahrens an einer Gießdüse, deren Stahlschmelze zuführende Gießbohrung in den Gießhohlraum einer

10 Stranggießkokille mit in Gießrichtung mitlaufenden Kokillenwänden einmündet.

Stranggießkokillen, deren endlose Kokillenwände kontinuierlich und ohne Schlupf mit dem erstarrenden Metallstrang in Gießrichtung mitlaufen, ermöglichen hohe Gießgeschwindigkeiten und damit besonders wirtschaftlich das Auswalzen des Metallstrangs zum beispielsweise drahtförmigen Endprodukt. Derartige Stranggießkokillen, deren Kokillenwände beispielsweise aus sich jeweils paarweise gegenüberliegenden endlosen Gießbändern bzw. aus endlosen Seitendämmen mit gegeneinander beweglichen Einzelgliedern bestehen, sind bisher für Metalle wie Blei, Zink, Aluminium, Kupfer und deren Legierungen zur Anwendung gelangt. Versuche, Stahlschmelze mit hohen Gießgeschwindigkeiten von beispielsweise 10 m/min. zu vergießen, haben bisher deshalb zu einer unzureichenden Qualität des Gießerzeugnisses, insbesondere an der

15

20

Oberfläche, geführt, da auch in diesem Falle mit einer rinnenförmigen, nach außen hin offenen Zuführung ge-arbeitet worden ist.

Eine der Hauptschwierigkeiten beim Vergießen von Stahl 5 tritt bei Gießbeginn dann auf, wenn erstmals Stahlschmelze, beispielsweise von einem vorgeschalteten Vorsatzbehälter, durch die Gießdüse hindurch in den Bereich der Kokillenwände eingeleitet werden muß. Zwar läßt sich der Keramikkörper der Gießdüse mittels Gasbrennern auf etwa 1250°C vorwärmen; der Koppelungsvor-10 gang zwischen Stranggießkokille und Vorsatzbehälter erfordert jedoch eine Zeitspanne in der Größenordnung von knapp einer Minute, während der die Gasbrenner aus dem Bereich der Gießdüse weg geschwenkt sind und das 15 Mundstück der Gießdüse in den Bereich der wassergekühlten Kokillenwände gelangt. Dies hat zur Folge, daß die Temperatur des Mundstücks auf etwa 900°C absinktund die in diesen Bereich einströmende Stahlschmelze möglicherweise einfriert. Sofern es gelingt, den Gießbeginn ohne Störungen einzuleiten, besteht die Gefahr 20 des Einfrierens nicht mehr, da durch die nachströmende Stahlschmelze dem Bereich des Mundstücks fortlaufend eine ausreichend große Wärmemenge zugeführt wird.

Der Erfindung liegt die Aufgabe zugrunde, ein Arbeitsverfahren zum Vorheizen einer Gießdüse sowie eine Anfahrkette zur Durchführung des Arbeitsverfahrens anzugeben, die es ermöglichen, das besonders gefährdete
Mundstück der Gießdüse (d.h. insbesondere den dem Austrittsquerschnitt benachbarten Bereich) so zu erwärmen, daß auch bei Gießbeginn noch ausreichend hohe Temperaturen vorliegen.
Insbesondere soll sichergestellt sein, daß die Gieß-

Insbesondere soll sichergestellt sein, daß die Gießdüse während der Zeitspanne des Kopplungsvorgangs möglichst heiß bleibt, d.h. Temperaturen zwischen

etwa 1000°C bis 1250°C aufweist.

Die Beheizung der Gießdüse wird dabei durch die beengten Platzverhältnisse im Anfangsabschnitt der Stranggießkokille erheblich erschwert.

- Es wäre denkbar, die Gießdüse mittels wassergekühlter Induktionsspulen zu beheizen. Diese Möglichkeit scheidet jedoch zum einen deswegen aus, weil Wasser in der Nähe von Stahlschmelze die Gefahr einer Knallgasexplosion nach sich zieht. Zum anderen ließe sich die Wirkung der Induktionsspulen wie es wünschenswert wäre gerade nicht auf den besonders gefährdeten Bereich des Mundstücks konzentrieren, welches aus einem für die induktive Ankopplung nicht geeigneten Keramikwerkstoff, insbesondere Bornitrid, gefertigt ist.
- Die gestellte Aufgabe wird durch ein Arbeitsverfahren 15 gelöst, welches die Merkmale des Anspruchs 1 aufweist. Der Grundgedanke der Erfindung besteht danach darin, die Austrittsöffnung der Gießdüse mittels des Anfahrstücks einer an sich bekannten Anfahrkette zu verschlie-20 ßen und den in das Gießdüsenmundstück hineingeschobenen Vorderabschnitt des Anfahrstücks nach Möglichkeit bis zum Gießbeginn nach Art einer Widerstandsheizung elektrisch zu beheizen. Das Anfahrstück wird also wie eine in der Stranggießkokille bewegliche Widerstandsheizung betätigt, die selbst dann noch wirksam sein kann, wenn 25 die Stahlschmelze bereits in die Gießbohrung der Gießdüse einströmt. Dies hat zur Folge, daß das Gießdüsenmundstück auch unmittelbar vor Gießbeginn eine die Bildung von Einfrierungen ausschließende hohe Tempera-
  - Zweckmäßigerweise wird das Arbeitsverfahren so ausgeführt, daß der mittels des Vorderabschnitts des Anfahrstücks bewirkte Heizvorgang durch Abkuppeln der Energiezuführung von der Heizstromquelle unterbrochen wird (Anspruch 2). Dies läßt sich dadurch verwirklichen, daß

tur aufweist.

30

die Anfahrkette durch ihre Abziehbewegung in Gießrichtung selbst die Unterbrechung herbeiführt.

Die erfindungsgemäße Anfahrkette, welche die Durchführung des Arbeitsverfahrens an einer Gießdüse der eingangs genannten Gattung ermöglicht, ist gemäß Anspruch 3 ausgebildet. Ihr Anfahrstück weist einen angepaßten, abtrennbaren Vorderabschnitt mit einem eine Widerstandsheizung bildenden Heizteil auf, der in die Gießbohrung hineinragt und über eine lösbare Verbindung sowie über eine mitgeführte Energiezuführung an eine außenliegende Heizstromquelle anschließbar ist. Der Vorderabschnitt weist dabei eine derartige Form auf, daß sein in die Gießbohrung hineinragender Bereich in einem Abstand zu deren Wandung liegt, der allenfalls einige wenige Millimeter beträgt.

Bei einer besonders bevorzugten Ausführungsform des Erfindungsgegenstandes besteht das Heizteil aus einem Metallband, das - im Querschnitt senkrecht zur Längs-erstreckung des Anfahrstücks gesehen - viereckförmig gebogen ist (Anspruch 4); die beiden seitlichen Endflächen des Metallbandes liegen sich dabei unter Bildung eines in Längsrichtung des Heizteils verlaufenden Schlitzes mit Abstand gegenüber.

20

35

Wesentlich ist in diesem Zusammenhang eine ausreichende
Dimensionierung der Energiezuführung; diese muß so beschaffen sein, daß die Erwärmung tatsächlich am Heizteil und nicht bereits an der Energiezuführung auftritt. Dies führt dazu, daß die Energiezuführung, die
in der Anfahrkette untergebracht ist, in geringem Um30 fang biegsam ist.

Das Heizteil besteht vorzugsweise aus einem hochwarmfesten Werkstoff, insbesondere aus Kanthal (Anspruch 5). Der Heizteil-Werkstoff sollte in jedem Fall derartig beschaffen sein, daß er im Dauerbetrieb bis etwa 1275°C belastbar ist und bei einer Temperatur von etwa 1350°C

schmilzt.

Der Erfindungsgegenstand ist dadurch weiter ausgestaltet, daß die Energiezuführung außerhalb der Anfahrkette mit von der Heizstromquelle lösbaren Anschlußelementen ausgestattet ist (Anspruch 6). Diese können so 5 ausgebildet sein, daß sie über eine Steckverbindung mit der Heizstromquelle in Verbindung stehen. Der Vorderabschnitt des Anfahrstücks besteht - in Gießrichtung gesehen - zweckmäßig aus dem Heizteil 10 und einer fest mit diesem verbundenen Anschlußplatte, die ihrerseits lösbar an dem Restteil des Anfahrstücks befestigt ist (Anspruch 7). Bei Gießbeginn verschweißt die Stahlschmelze nach Zerstörung des Heizteils mit der Anschlußplatte. Da diese lösbar mit dem 15 Restteil des Anfahrstücks verbunden ist, stellt das Restteil ein wiederverwendbares Teil dar, welches nach Anbringen eines neuen Vorderabschnitts erneut zum Vorheizen der Gießdüse eingesetzt werden kann. Die Anfahrkette weist also lediglich einen verhältnismäßig wenig aufwendigen Verbrauchsabschnitt auf, der nach jedem 20 Gießbeginn abgetrennt und ersetzt werden kann und der - soweit die Anschlußplatte betroffen ist - aus normalem Stahl besteht.

Die Erfindung wird nachfolgend anhand mehrerer Ausfüh-25 rungsbeispiele im einzelnen erläutert. Es zeigen:

Fig. 1

schematisch eine Stranggießkokille mit mitlaufenden Kokillenwänden, einer nachgeschalteten ersten und zweiten Sekundärkühlstrecke sowie eine in den Gießhohlraum der Stranggießkokille eingefahrene Anfahrkette, deren beheizbares

Anfahrstück die Gießbohrung einer Gießdüse yerschließt,

- Fig. 2 schematisiert einen vertikalen Teilschnitt durch die Stranggießkokille
  im Bereich des Gießdüsenmundstücks mit
  Anfahrkette,
- Fig. 3 in Explosionsdarstellung einen Teilschnitt durch das mit einem lösbaren
  Vorderabschnitt ausgestattete Anfahrstück einer Anfahrkette, wobei der
  Vorderabschnitt mit einem als Widerstandsheizung wirksamen Heizteil versehen ist, und
- Fig. 4 eine Stirnansicht in Gießrichtung des 15 in Fig. 3 dargestellten Anfahrstücks.

20

25

30

Die in Fig. 1 beispielhaft dargestellte Anlage zum Stahlgießen weist eine Stranggießkokille 1 mit einer in Gießrichtung (Pfeil 2) nachgeschalteten ersten und zweiten Sekundärkühlstrecke 3 bzw. 4 auf. Die obere und untere Begrenzung des Gießhohlraums 5 der Stranggießkokille wird durch zwei endlose Gießbänder 6 gebildet, die während des Gießvorgangs entsprechend der Gießrichtung (Pfeil 2) umlaufen. Die seitliche Begrenzung des Gießhohlraums 5 besteht aus ebenfalls endlosen Seitendämmen, die aus gegeneinander beweglichen Einzelgliedern aufgebaut sind und sich im Bereich des Gießhohlraums mit den Gießbändern 6 mitbewegen. Die Zuführung der zu verarbeitenden Stahlschmelze erfolgt von der linken Seite her über eine rohrförmige Gießdüse 7 mit einer Gießbohrung 7', deren aus Bornitrid bestehendes Mundstück 7" in den von den Kokillenwänden begrenzten Gießhohlraum 5 hineinragt.

Das Mundstück ist dabei so angeordnet und ausgebildet, daß mit den benachbarten Kokillenwänden während des Gießvorgangs ein Dichtungsbereich gebildet wird, welcher den Austritt von Stahlschmelze entgegen der Gießrichtung nach außen verhindert. Dies kann dadurch erreicht werden, daß zwischen den benachbarten Flächen des Mundstücks und der Kokillenwände stets ein enger Dichtspalt beispielsweise in der Größenordnung unterhalb von 1 mm aufrechterhalten wird.

Der während des Gießvorgangs aus der Stranggießkokille

1 austretende Gießstrang wird in der sich anschließenden ersten Sekundärkühlstrecke allseitig, also
auch oben und unten, mittels Führungsrollen 9, 10

15 abgestützt, bevor er die lediglich mit Unterrollen 11
ausgestattete zweite Sekundärkühlstrecke 4 durchläuft.

Um bei Gießbeginn die Entstehung von Einfrierungen in der Nähe der Austrittsöffnung 7'" des Gießdüsenmundstücks 7" (vgl. dazu Fig. 2) zu vermeiden, muß dafür 20 Sorge getragen werden, daß dieses möglichst bis zum Gießbeginn eine ausreichend hohe Temperatur in der Größenordnung von 1200°C aufweist.Dies wird nach der Lehre der Erfindung durch die Verwendung einer kurvengängigen Anfahrkette 12 ermöglicht, die aus einem 25 in Gießrichtung vornliegenden Anfahrstück 13 und weiteren gelenkig mit diesem und gelenkig untereinander verbundenen Kettengliedern 14 zusammengesetzt ist. Die Länge der Anfahrkette 12 ist so gewählt, daß sie sich in der in Fig. 1 dargestellten Heizstellung, in 30 welcher das Anfahrstück 13 die Austrittsöffnung 7'" des Gießdüsenmundstücks verschließt, bis in den Bereich der zweiten Sekundärkühlstrecke 4 erstreckt.

Das Anfahrstück 13 setzt sich aus einem dem Mundstück 7" gegenüberliegenden Vorderabschnitt 15 und einem sich anschließenden Restteil 16 zusammen, die lösbar miteinander verbunden sind. Der Yorderabschnitt 15 umfaßt ein Heizteil, welches als Widerstandsheizung betrieben wird und über eine innerhalb der Anfahrkette 12 angeordnete Energiezuführung in Form zweier Stromzuführungsdrähte 17 an eine außenliegende Heizstromquelle 18 angeschlossen werden kann (vgl. dazu Fig. 1). Die Stromzuführungsdrähte müssen einen ausreichend großen Kerndurchmesser aufweisen, damit die beabsichtigte Erwärmung nur im Bereich des Heizteils, d.h. im Bereich vor dem Restteil 16 des Anfahrstücks 13 auftritt.

Bei der Ausführungsform gemäß Fig. 3 ist der Vorderabschnitt 15 als Wegwerfteil ausgebildet, welches 15 über eine Innensechskantschraube 19 lösbar mit dem Restteil 16 des Anfahrstücks in Verbindung steht. Der Vorderabschnitt 15 weist als Hauptbestandteile ein trichterförmig gebogenes Heizteil 20 und eine fest mit diesem verbundene Anschlußplatte 21 auf. Das aus dem Werkstoff Kanthal gefertigte, eine ver-20 hältnismäßig geringe Wandstärke aufweisende Heizteil 20 kann über in Stecker 22' übergehende Drähte 22, die gegen die Anschlußplatte 21 isoliert sind, elektrisch an das Restteil 16 angeschlossen werden. Dieses weist auf der dem Vorderabschnitt zugewandten 25 Seite zwei Buchsen 23 auf, in welche die Stromzuführungsdrähte 17 übergehen; beide genannten Bestandteile sind ebenfalls gegen die Umgebung isoliert. Die Stecker 22' und Buchsen 23 bilden eine lösbare Steckverbindung, welche den An- und Abbau des Vor-30 derabschnitts 15 erleichtert.

In der Heizstellung (vgl. dazu Fig. 1) wird das Heizteil 20 durch die in die Gießbohrung 7' einströmende Stahlschmelze zerstört, bevor der sich bildende Gießstrang mit der aus normalem Stahl bestehenden-Anschlußplatte 21 verschweißt und mit dieser die Stranggießkokille 1 in Gießrichtung verläßt. Der Vorderabschnitt 15 muß also für die Einleitung jedes Gießvorgangs erneuert werden, während das Restteil 16 und die übrigen Bestandteile der Anfahrkette 12 mehrfach wieder verwendbar sind. Zur Abdichtung gegen die in den Gießhohlraum 5 einströmende Stahlschmelze ist das Restteil 16 auf der

strömende Stahlschmelze ist das Restteil 16 auf der dem Vorderabschnitt 15 zugewandten Seite mit einer Rundschnurdichtung 24 ausgestattet, die an den Kokillenwänden anliegt.

10

Das Heizteil 20 ist hinsichtlich seiner Form und seines Werkstoffs so ausgebildet, daß es im Dauerbetrieb mit Temperaturen bis etwa 1275°C belastbar ist und bei Temperaturen um 1350°C schmilzt.

Gemäß Fig. 1 gehen die Stromzuführungsdrähte 17 in an dem letzten Kettenglied der Anfahrkette 12 angeordnete Stecker 17' über; diese bilden ihrerseits mit den Buchsen 25' der von der Heizstromquelle 18 20 kommenden Stromzuführungsdrähte 25 eine lösbare Verbindung. Letztere ist (wie in Fig. 1 dargestellt) zweckmäßig an einem federbelasteten Tragarm 26 befestigt. Dies hat den Vorteil, daß sie der Abziehbe-25 wegung der Anfahrkette 12 nachfolgen kann, bevor die Buchsen 25' von den Steckern 17' abgezogen werden und dadurch der mittels des Heizteils 20 bewirkte Heizvorgang unterbrochen wird. Die in Rede stehende Anordnung ermöglicht es also, den Heizvorgang zu einem einstellbaren Zeitpunkt über die Abziehbewe-30 gung der Anfahrkette 12 selbst zu unterbrechen.

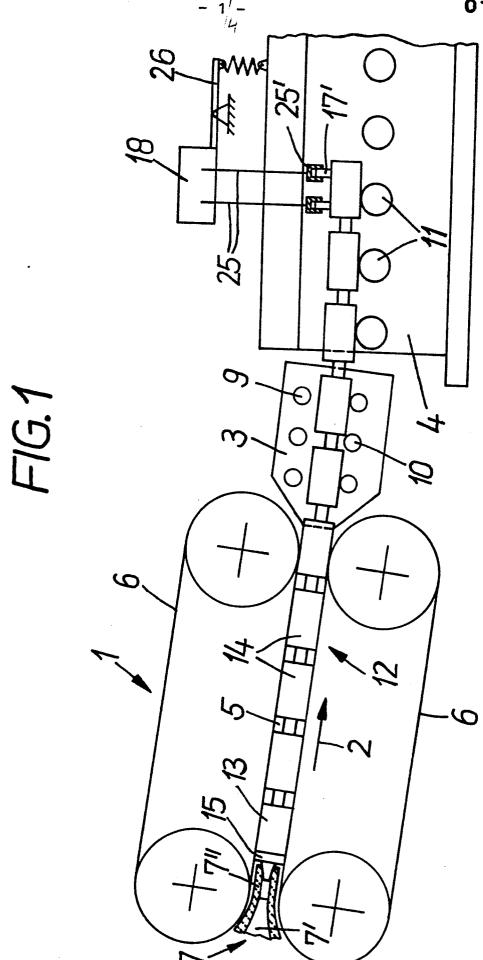
Das Heizteil 20 des Vorderabschnitts 15 besteht aus einem rechteckförmig gebogenen Kanthal-Blech (vgl. Fig. 4). Der hinsichtlich seiner Außenform an das

Gießdüsenmundstück angepaßte Rechteckkörper ist auf einer Seite geschlitzt, d.h. die sich dort gegenüber-liegenden seitlichen Endflächen 20' des Kanthal-Blechs berühren sich nicht.

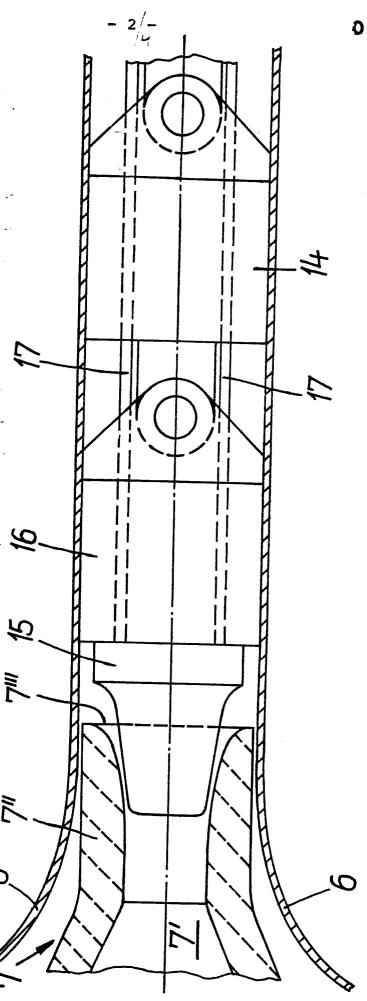
Abweichend von der beschriebenen Möglichkeit, die lösbare Verbindung zwischen den Steckern 17' und den Buchsen 25' über die Bewegung der Anfahrkette 12 in Gießrichtung selbst zu unterbrechen, können insbesondere die Buchsen 25' mit einer Servoeinrichtung (beispielsweise Hydraulikzylinder, Pneumatikzylinder) ausgestattet sein, welche die Buchsen 25' zu einem geeigneten Zeitpunkt von den Steckern 17' abzieht. Die Betätigung der Servoeinrichtung kann dabei von Hand oder im Rahmen eines vorgegebenen Steuerprogramms ausgelöst werden.

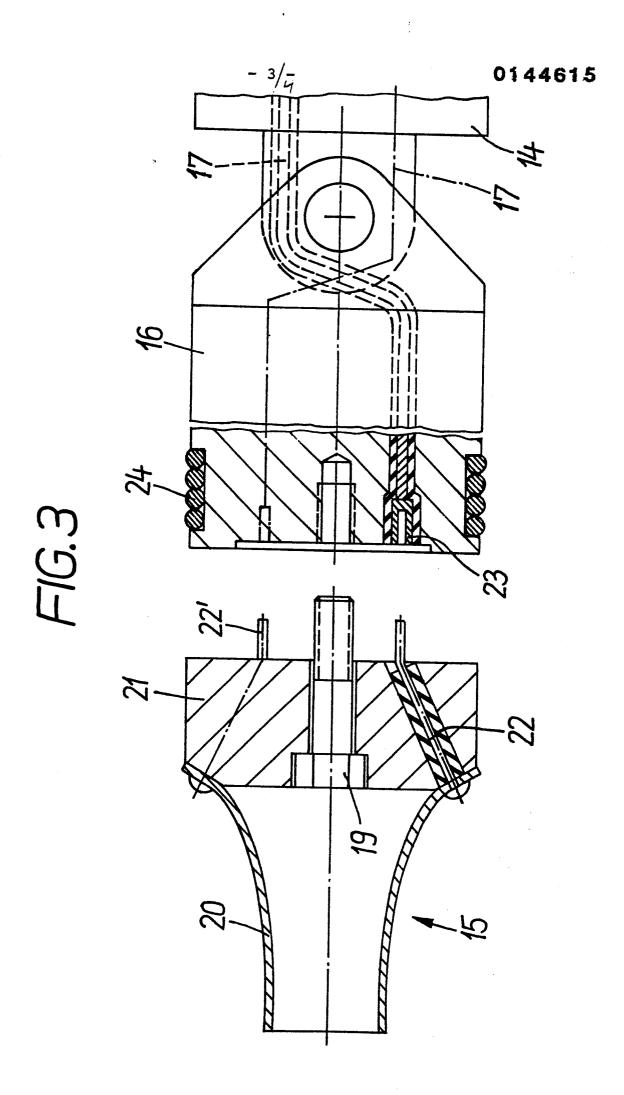
Der mit der Erfindung erzielte Vorteil besteht insbesondere darin, daß das Gießdüsenmundstück bis zum Gießbeginn auf die erforderliche hohe Temperatur vorgeheizt werden kann und daß die die Vorheizung ermöglichende Anfahrkette – abgesehen von dem leicht auswechselbaren Vorderabschnitt des Anfahrstücks – mehrfach wieder verwendet werden kann.

## Ansprüche


- 1. Arbeitsverfahren zum Vorheizen einer Gießdüse, durch deren Gießbohrung Stahlschmelze zwischen die in Gießrichtung mitlaufenden Kokillenwände einer Stranggießkokille eingeleitet wird, 5 dadurch gekennzeichnet, daß die Austrittsöffnung der Gießdüse vor Gießbeginn mittels des Anfahrstücks einer zwischen die Kokillenwände verfahrbaren Anfahrkette verschlossen und dabei dessen Vorderabschnitt in das Gießdüsen-10 mundstück bis zur Anlage an der Gießbohrungswand hineingeschoben wird, daß der Vorderabschnitt über eine mit der Anfahrkette mitgeführte Energiezuführung nach Art einer Widerstandsheizung elektrisch aufgeheizt und daß der Heizvorgang frühestens mit 15 Einleiten der Stahlschmelze in die Gießdüse, spätestens jedoch nach dem Gießbeginn, der mit dem Abziehen des Anfahrstücks in Gießrichtung zeitlich zusammenfällt, unterbrochen wird.
- Arbeitsverfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Heizvorgang durch Abkuppeln der
  Energiezuführung von der Heizstromquelle unterbrochen wird.
- Anfahrkette zur Durchführung des Verfahrens gemäß den Ansprüchen 1 und 2 an einer Gießdüse, deren
   Stahlschmelze zuführende Gießbohrung in den Gießhohlraum einer Stranggießkokille mit in Gießrichtung mitlaufenden Kokillenwänden einmündet, da durch gekennzeich net, daß

5


20


das die Gießbohrung (7') verschließende Anfahrstück (13) der Anfahrkette (12) einen angepaßten, abtrennbaren Vorderabschnitt (15) mit einem eine Widerstandsheizung bildenden Heizteil (20) aufweist, der in die Gießbohrung hineinragt, und über eine lösbare Verbindung (22', 23) sowie über eine mit der Anfahrkette mitgeführte Energiezuführung (17, 17') an eine außenliegende Heizstromquelle (18) anschließbar ist.

- Anfahrkette nach Anspruch 3, dadurch gekennzeichnet,
   daß das Heizteil (20) aus einem Metallband besteht,
   das im Querschnitt senkrecht zur Längserstreckung
   des Anfahrstücks (13) gesehen viereckförmig gebogen
   ist.
- 5. Anfahrkette nach einem der Ansprüche 3 bis 4, dadurch gekennzeichnet, daß das Heizteil (20) aus dem Werkstoff Kanthal besteht.
  - 6. Anfahrkette nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Energiezuführung (17) außerhalb der Anfahrkette (12) mit von der Heizstromquelle (18) lösbaren Anschlußelementen (25') ausgestattet ist.
- 7. Anfahrkette nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der Vorderabschnitt (15) in Gießrichtung (Pfeil 2) gesehen aus dem Heizteil
   (20) und einer fest mit diesem verbundenen Anschlußplatte (21) besteht, die ihrerseits lösbar an dem Restteil (16) des Anfahrstücks (13) befestigt ist.










- 4 -

FIG. 4





## **EUROPÄISCHER RECHERCHENBERICHT**

Nummer der Anmeldung

84 11 2110 ΕP

| Categorie               | Kennzeichnung des Dokuments mit Angabe, soweit erforderlich,<br>der maßgeblichen Teile |                                                                               | Betrifft<br>Anspruch | KLASSIFIKATION DER<br>ANMELDUNG (Int. CI.4)    |                                           |
|-------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|------------------------------------------------|-------------------------------------------|
| A                       | DE-B-2 902 426<br>ALUMINIUM AG)<br>* Ansprüche 2-4                                     | (SCHWEIZERISCHE                                                               | 1-4                  | B 22 D<br>B 22 D<br>B 22 D<br>B 22 D<br>B 22 D | 11/00<br>11/08<br>11/08<br>11/10<br>41/00 |
| A                       | DE-A-2 815 293                                                                         | (PROLIZENZ AG)                                                                |                      |                                                |                                           |
| A                       | DE-B-2 131 435                                                                         | (PROLIZENZ AG)                                                                |                      |                                                |                                           |
|                         |                                                                                        |                                                                               |                      |                                                |                                           |
|                         |                                                                                        | •                                                                             |                      |                                                |                                           |
|                         |                                                                                        |                                                                               |                      | RECHERCHIERTE<br>SACHGEBIETE (Int. Cl.4)       |                                           |
|                         |                                                                                        |                                                                               |                      | B 22 D<br>B 22 D                               | 11/00<br>41/00                            |
|                         |                                                                                        | •                                                                             |                      |                                                |                                           |
|                         |                                                                                        |                                                                               |                      |                                                |                                           |
|                         |                                                                                        |                                                                               |                      | ·                                              |                                           |
| P.                      | andianada Pask                                                                         | olo fiir allo Datantaneoriicha aretelle                                       | _                    |                                                |                                           |
| Recherchenort<br>BERLIN |                                                                                        | de für alle Patentansprüche erstellt.  Abschlußdatum der Recherche 30-01-1985 | . GOLD:              | DSCHMIDT G                                     |                                           |

A : technologischer Hintergrund
O : nichtschriftliche Offenbarung
P : Zwischenliteratur
T : der Erfindung zugrunde liegende Theorien oder Grundsätze

&: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument