EP 0 145 244 A2

Europaisches Patentamt

0’ European Patent Office
Office européen des brevets

@

@ Application number: 84307586.2

@) Date of filing: 02.11.84

0 145 244
A2

@ Publication number:

EUROPEAN PATENT APPLICATION

G ntcs: G 06 F 9/46

() Priority: 04.11.83 GB 8329509
@ Date of publication of application:
19.06.85 Bulletin 85/25

Designated Contracting States:
DE FR GB IT NL SE

(@) Applicant: INMOS LIMITED
Whitefriars Lewins Mead
Bristol BS12NP(GB)

@ Inventor: May, Michael David
‘124 Pembroke Road
Clifton Bristol BS8 3ER(GB)

@ Inventor: Shepherd, Roger Mark
21 Cotham Vale
Cotham Bristo}{GB)

Representative: Palmer, Roger et al,
Page, White and Farrer 5 Plough Place New Fetter Lane
London EC4A 1HY(GB)

@ Microcomputer.

@ A microcomputer comprises memory (60) and a proces-,
sor including a plurality of channels (70} to enable data
transmission between concurrent processes. An inputting
process may input data through one of a plurality of
alternative input channels (70). Data transmission occurs
when both processes are at corresponding stages in their

programs. If an inputting process finds that no outputting
process is yet ready on any of the alternative channels the
inputting process may be descheduled and synchronisation
achieved by special values located in locations (67) in a
workspace {60) for the process.

25 9 2
____._._____.-_-j._.___,’ __________ 1
i !
Z~ } SERAL 7 pom—— |
27 LINK £DU
% SRl RAM  |ROM|FUSE[COLUMNS
76— SERUAL FUSE| Rows
2 AL “ 5\ NEHOR
l —
27 T t INTERFACE [ b0
v g MEMORY
oyo—|NPUTL | SERVICE aom | EMORY e ,
PINS SYSTEM 0GIC ]
CPU [|_INTERFACE ‘
RESEe 1, | IoNTROL LOGKC | Ly
CLOCK / | L 7/ |
Vo - A A W S S SU T
7 w2 M 50 73

Fig.1.

Croydon Printing Company Ltd



- 0145244

MICROCOMPUTER

The present invention relates to microcomputers and more particularly
to microcomputers for effecting message transmission between
concurrent processes.

BACKGROUND OF THE INVENTION

Our European Patent Specification 0113516 describes a microcomputer
comprising a processor and memory for operating a plurality of
concurrent processes. It permits outputting processes to output data
and inputting processes to input data by use of communication
channels. It permits descheduling of a current process and scheduling
by adding a process to a collection awaiting execution. An inputting
process may input through one of a number of alternative channels but
the inputting process must be scheduled in order to test the state of
the channels to find when an outputting process has reached a
corresponding stage in its program.

OBJECTS OF THE INVENTION

It is an object of the present invention to provide an improved
microcomputer which allows a process to input data through one of a
plurality of alternative channels.

It is a further object of the present invention to permit a process to
input data through one of a plurality of alternative input channels
and for the inputting process to be descheduled while awaiting an
outputting process to reach a corresponding stage in its program.

SUMMARY OF THE INVENTION

The invention provides a microcomputer comprising memory and a
processor arranged to execute a plurality of concurrent processes,



2. 0145244

each in accordance with a program consisting of a plurality of
instructions for sequential execution by the processor, each
instruction designating a required function to be executed by the
processor, said processor comprising (1) a plurality of registers and
data transfer means for use in data transfers to and from said
register (2) means for receiving each instruction and loading into one
of the processor registers a value associated with the instruction,
and (3) control means for controlling said data transfer means and
registers in response to each instruction received to cause the
processor to operate in accordance with the instruction, wherein the
microcomputer includes:- T '
(1) scheduling means to enable the processor to share its processing
time between a plurality of concurrent processes, said scheduling
means comprising:-
(a) means for identifying one or more processes to form at
least one collection awaiting execution by the processor
(b) means for descheduling a process by interrupting execution
of the current process
{c) means for scheduling a proéess by adding it to a
collection awaiting execution, and
(2) communication means to permit data transmission from one process
to another by use of communication channels when both processes are at
corresponding stages in their program sequences, an outputting process
operating to output data and an inputting process operating to input
data in response to message instructions which identify one or more
channels for use in the data transmission, said communication means
including: - ' S T
(a) a plurality of channels each comprising store means for
holding a value indicating whether a process has executed
an instruction to effect data transmission using that
channel,
(b) means responsive to execution of a message instruction
by one of the processes involved in the data transmission
when said one process is the current process for testing
the contents of the or each channel identified by the



-3- 0145244

instruction and arranged to operate said means to deschedule
the current process if no channel is found containing a
value indicating that the other process involved in the data
transmission has reached a corresponding program stage, and
(c) means to allow an inputting process to input through one of
a plurality of alternative channels, and comprising:
(1) means responsive to execution of a message instruction by the
inputting process to test the contents of each of the alternative
channels and to load into each channel a value indicating that the
inputting process has executed the message instruction if the channel
does not already contain a value indicating that an outputting process
has executed a message instruction using that channel,
(2) selection means arranged to select one of the alternative input
channels when an outputting process has executed a message instruction

- on one of the alternative channels, and

(3) means to remove from the alternative channels which are not
selected the value loaded therein by the inputting process.

Preferably the means for descheduling a process is responsive to the
operation of testing the channels to deschedule an inputting process
if, on execution of the message instruction by the inputting process,
none of the alternative channels contains a value indicating that an
outputting process has executed a message instruction using that
channel.

Preferably the said scheduling means is arranged to respond to
execution of a message instruction by an outputting process using a
channel containing a value indicating a descheduled inputting process,
to reschedule the inputting process. Preferably the selection means
is responsive to descheduling of an inputting process to delay
selection of one of the alternative channels until the inputting
process has been rescheduled.

In one embodiment means is responsive to execution of a message
instruction to input through one of a plurality of alternative
channels to store in a memory location associated with the process a
first special value indicating that the process has commenced an
alternative input operation.




e 0145244

Preferably the said means for testing the contents of each of the
alternative channels is arranged to store a second special value in a
memory location associated with the inputting process if the test of
any one of the channels locates a value indicating that an outputting
process has executed a message instruction using that channel.

Preferably means are provided for checking the contents of the memory
lTocations associated with the process and to deschedule the inputting
process if said second special value is not located, said means
further locating third and fourth special values into memory locations
associated with the process one of which values indicates that the
process is descheduled to indicate that the process is involved in an
alternative inputting process. Preferably said selection means is
arranged to test the contents of each of said alternative channels and
to select for the input the first channel tested which contains a
value indicating that an outputting process has executed a message
instruction using that channel, said selection means being arranged to
remove said third special value from the memory location associated
with the inputting process whereby thé selection means does not select
any further channel which may contain a value indicating that an
outputting process has executed a message instruction using that
channel. Preferably means responsive to selection of a channel to
store in a memory location associated with the inputting process an
offset value to indicate an offset necessary in the program sequence
for that process when that channel is selected.

=~ A1 a3l - PR

Preferably scheduling means is provided for adding or removing a

process from one of a plurality of collections of processes having
different priority.

It will be understood that the term microcomputer relates to small
size computers generally based on integrated circuit devices but it
does not impose any limit on how small a computer may be.



-5 - 0145244

BRIEF DESCRIPTIbN'Q% THE DRAWINGS

An embodiment of the invention will now be described by way of example
and with reference to the accompanying drawings in which:-

Figure 1 is a block diagram showing the main features of the
microcomputer,

Figure 2 shows further detail in block diagram form of part of the
microcomputer and particularly illustrates the registers, data paths
and arithmetic logic unit of the central processing unit as well as
the interface beteen the central processing unit and the memory and
communication 1inks,

-~aaexn~--Figure-3-illustrates the relationship between processor registers and
the workspaces of a Tist of high priority processes for execution by

the microcomputer,

Figure 4 is similar to Figure 3 but illustrates a 1ist of low priority
processes while a high priority process is being executed,

Figure 5 illustrates a form of pointer used in the microcomputer,

Figure 6 illustrates a form of process descriptor used in the
microcomputer,

Figure 7 i1lustrates a form of instruction used in the microcomputer,

Figure 8 illustrates the format of a data packet for transmission
through a serial 1ink between two microcomputers,

Figure 9 illustrates the format of an acknowledge packet for
transmission through a serial 1ink between two microcomputers,



St - 0145244

Figure 10 i1lustrates four serial links of a microcomputer together
with their interface arrangement with the rest of the microcomputer,

Figure 11 illustrates more fully signals used in an output channel and
an input channel of one serial link,

Figure 12 shows further details of a output channel of a serial link,
Figure 13 shows further detail of an input channel of a serial Tink,

Figure 14 shows a 1ink interface for connecting output and input
channels of a serial link to input and output terminals,

Figure 15 illustrates in a sequence from 15{a) to 15(e) operations for
effecting communication between two processes on one microcomputer,

Figure 16 illustrates in a sequence from 16(a) to 16(f) operations for
effecting communication via serial 1inks between two processes of
similar priority carried out on different microcomputers,

Figure 17 illustrates in a sequence from 17(a) to 17(f) operations for
effecting communication via serial 1inks between two processes on
different microcomputers in which the inputting process starts an
“alternative input" before the outputting process starts to output,

Figure 18 illustrates in a sequence from 18(a) to 18(d) operations for
effecting communication via serial 1inks between twb'proéessesﬂcarried
out on different microcomputers in which an outputting process first
starts an output operation and this is followed by an inputting
process executing an “alternative input" operation,

Figure 19 illustrates in a sequence from 19(a) to 19(g) operations for
effecting communication between two processes on the same
microcomputer in which an inputting processes commences an
*alternative input” operation before the outputting process commences



L -1 0145244
an output operation and both processes have the same priority,

Figure 20 illustrates a sequence 20(a) to 20(c) showing relevant
register contents when a low priority process X is interrupted by a

high priority process Y involved in an output operation through a
serial 1ink,

Figure 21 illustrates in a sequence 21(a) to 21(c) the contents of
relevant registers during communication between a high priority
process X effecting "alternative input" and a low priority process "Y"
effecting an output operation on the same microcomputer, and

Figure 22 illustrates a network of communicating microcomputers in
accordance with the present invention, the microcomputers in the

. wrrn:or--Network having different wordiengths.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The microcomputer described in this example comprises an integrated
circuit device in the form of a single silicon chip having both a
processor and memory in the form of RAM as well as 1inks to permit
external communication. The main elements of the microcomputer are
illustrated in Figure 1 on a single silicon chip 11 using p-well
complementary MOS technology. A central processing unit (CPU) 12 is
provided with some read-only memory (ROM) 13 and is coupled to a
memory interface 14 controlled by interface control logic 15. The CPU

PN 12 incorporates an arithmetic logic unit (ALU), registers and data
paths illustrated more fully in Figure 2. The CPU 12 and memory
interface 14 are connected to a bus 16 which provides interconnection
between the elements on the chip 11. A service system 17 is provided
with a plurality of input pins 18. The microcomputer is provided with
a random access memory (RAM) 19 and ROM 20 and the amount of memory on
the chip is not less than 1 K byte so that the processor 12 can be
operated without external memory. Preferably the memory on the chip
is at least 4 K bytes. An external memory interface 23 is provided



-8 - 0145244

and connected to a plurality of pins 24 for connection to an optional
external memory. To allow the microcomputer to be linked to other
computers to form a network, a plurality of serial links 25 are
provided having input and output pins 26 and 27 respectively. The
input and output pins of one serial link may each be connected by {ts
own single wire non-shared unidirectional connection to the
corresponding output and input pins of a serial 1ink on another
microcomputer as shown in Figure 22. Each serial link is connected to
a synchronisation Togic unit 10 comprising process scheduling logic.

The block diagram shown in Figure 1 corresponds to that included in
European Patent Application No 83307078.2, Japanese Patent Application
No 22145571983 and US Patent Applications Nos 552601, 552602, 553027,
553028 and 553029. To avoid unnecessary repetition of description,
the full details of the construction and operation of that
microcomputer will not be set out below but the description in the
above mentioned patent applications is hereby incorporated herein by
reference.

The present embodiment provides an improved form of Transputer (Trade
Mark of INMOS International plc) microcomputer. In the particular
embodiment described in the above mentioned patent applications, all
processes were treated as having equal priority. Messages
communicated between one process and another had a uniform message
Tength between successive synchronising operations and in the example
described the message length was one word. If a process was required
to .input from one of a number of alternative input channels it was
necessary for the process to remain scheduled in order to test those
channels until an outputting process commenced an output operation of
one of the possible channels.

The preéent embodiment is an improvement in that it permits different
priority allocation to different processes. It permits variable
Tength message communication between processes, each message
consisting of one or more units of standard bit length such as a



-9 - 0145244

byte. Furthermore it permits an inputting process to input from one
of a number of alternative input channels without the need to remain
scheduled while awaiting an outputting process.

The overall arrangement of the microcomputer is generally similar to
that described in the above mentioned patent applications. In the
following description similar names will be given to those parts
corresponding to the embodiment in the above mentioned patent
applications. The memory provides a plurality of process workspaces
having addressable locations which can be indicated by pointers.
Message communication can be effected through an addressable memory
location (herein called a soft channel) in the case of process to
process communication on the same microcomputer. To effect process to
process communication between different microcomputers input and
output channels (herein called hard channels) are provided in serial
1inks and these channels may also be addressed in a manner similar to
the soft channels provided in the memory.

In order to implement the improvements discussed above, various
modifications in the construction and operation of the microcomputer
are necessary and the foliowing description will be directed to those
aspects where modifications are involved in order to effect those
improvements.

As in the example of the above mentioned patent applications, the

. particular wordlength of the example described is 16 bits but it will
be understood that other wordlengths such as 8, 16, 24, 32 or other
wordiengths may be used. Furthermore, in the present case different
wordlength microcomputers can be connected in the same network so that
they may communicate with each other regardiess of their independent
wordlength.

In this example message communication on the same microcomputer or
between different microcomputers is effected by transmitting one or
more message units of standard bit length and in this example each



-10 - 0145244

message unit consists of 8 bits thereby forming 1 byie. This means
that it is necessary to be able to identify a byte in memory. The
processor accesses the memory in words and all byﬁé'oﬁerations are
performed by the processor. As shown in Figure 5, a-pointer is a
single word of data {in this particular example 16 bits). The least
significant bit acts as a byte selector and the most sfgnificant 15

" bits provide a word address. The number -of bits.needed to represent
the byte selector depends on the word length of the microcomputef. In
the case of a 16 bit machine, only 1 bit is needed as a byte
selector. It will however be understood that the byte selector will
need two bits for a 24 or 32 bit microcomputer and 4 bits for an 80
bit microcomputer. Where a pointer is used to identify a word rather
than a byte, a pointer to the least significant byte in that word is
used.

The pointer is treated as a two's complement signed value. That means
that if the most significant bit in the pointer is a 1 the most
signficant bit is taken as negative with all the remaining bits
representing positive numbers. If the most significant bit is O then
all bits in the pointer are taken as representing positive values.
This enables the standard comparison functions to be used on pointer
values in the same way that they are used on numerical values.

Certain values are never used as pointers as they are reserved to
indicate that some special action is required particularly relating to
the state of the communication channels.

In the following description, names are used to represent these and
other values as follows:

MostNeg the most negative value
(the most significant bit is one,
and all other bits are zero)



-1 - 0145244

MostPos the most positive value
(the most significant bit is zero,
_and all other bits are one)

MachineTRUE 1
MachineFALSE 0
NotProcess.p MostNeg
Enabling.p MostNeg + 1
Waiting.p MostNeg + 2
Ready.p MostNeg + 3

As in the example of the above mentioned patent applications, each
process may have a workspace consisting of a vector of words in memory
used to hold the local variables and temporary values manipulated by
the process. A workspace pointer WPTR is used to point to a set
Tocation for-the process workspace. As the workspace of each process
consists of a number of words, it is not necessary to incorporate the
byte selector. It is therefore possible to use the byte selector bits
to represent the priority of the process. In this way each process
can be identified by a "process descriptor" of the type shown in
Figure 6. The least significant bit indicates the priority of the
process and the most significant 15 bits indicate the word in memory
identifying the process workspace. In the present example the
microcomputer allocates one bf two possible priorities to each
process. A high priority process is given the designation Pri = 0 and
& low priority process has a designation Pri = 1. It can therefore be
seen that each process descriptor comprises a single word which is
formed by taking the “bitwise OR" of the workspace pointer WPTR and
the process priority Pri. Similarly the workspace pointer WPTR can be
obtained from a process descriptor by forming the “bitwise AND" of the
process descriptor and NOT 1. The priority of the process can be
obtained by forming the "bitwise AND" of the process descriptor and 1.

CPU Data Paths and Registers

The central processing unit 12 and its operation will be more fully



L

-12 - 0"! 45244

understood with reference to Figure 2.

The CPU 12 includes an arithmetic logic unit (ALU) 30 and & plurality
of data registers connected to an X bus, Y bﬁs, Z bus and
bidirectional data bus 31. The operation of the registers and their
interconnections with the buses is controlled by a p]ura]ity of
switches diagrammatically represented at 32 and controlled by signals
derived from a microinstruction program contained in the ROM 13.
Communication between the CPU and the memory is effected via a
unidirectional address path 33 leading to the memory interface 14 as
well as the data bus 31.

As in the above mentioned patent applications, each instruction
consists of 8 bits having the format shown in Figure 7. 4 bits
represent the required function of the instruction and 4 bits are
allocated for data. Each instruction derived from the program
sequence for the process is fed to an instruction buffer 34 and the
instruction is decoded by a decoder 35. The output of the decoder is

fed through a condition multiplexor 36 to a microinstruction register

37 used for addressing the microinstruction ROM 13. The operation of
the instruction buffer 34, decoder 35, condition multiplexor 36, MIR
37, microinstruction ROM 13 and switches 32 are generally as described

::in 4the -above mentioned patent applications.

As the present embodiment is arranged to deal with two sets of
processes, those with priority 0 and those with priority 1, two

~register banks are-provided. -Register bank 38 is provided for the

priority 1 processes and a similar register bank 39 is provided for
the high priority O processes. Both register banks have a similar set
of registers similarly connected to the X, Y, Z and data buses. For
simplicity, the registers and their connections have only been shown
in detail for register bank 38. 1In addition to the two register banks
allocated to specific priorities, the CPU includes a constants box 40,
a register bank selector 41 and a number of other registers indicated
in Figure 2 which are common to both priority 0 and priority 1



processes.

Abbreviation

MADDR

DATAOUT

1B

TEMP REG

PROCPTR REG

PROCDESC REG

PRIFLAG

PROCPRIFLAG

TREG

IPTR REG

-13 - 0145244

The registers are as follows:-

Register
Common to both priority processes

Memory address register 42 containing the address
of the memory location required.

A register 43 for supplying data to the memory on the
data bus 31.

Instruction buffer 34 for receiving sequentially
instructions from the memory.

A temporary register 44,

A register 45 for holding & process pointer (no
priority indication).

A register 46 for containing a process descriptor
A 1 bit register or flag 47 for indicating the
priority 0 or 1 of the currently executing process.
If the processor is not executing a process this is

set to 1.

A 1 bit register or flag 48 for indicating a process
priority.

Registers in Bank 38 for Priority 1

A temporary register 49.

A register 50 which holds the instruction pointer
(IPTR) of any process indicated by register 51



Abbreviation

WPTR REG

BPTR REG

" FPTR REG- - -

T ~7;7.TAREG T - -

BREG -

CREG

OREG

- SNPFLAG

COPYFLAG

V- 0145244

Register

A register 51 for holding the workspace pointer

(WPTR) of the current process or an interrupted
process. '

- A register 52 holding the workspace pointer of a

process at the end of a Tist of priority 1 processes
awaiting execution.

A register 53 holding the workspace pointer of a
process at the front of a Tist of priority 1
processes awaiting execution.

A first register 54 for holding an operand for the
ALU 30 and arranged as a stack with registers 55 and
56.

A second register 55 forming part of the stack.
A register 56 forming a third register in the stack.

An operand register 57 for receiving the data derived
from an instruction in _the instruction buffer 34, and
used as a temporary register.

A 1 bit register or flag 58 which when set to 1
indicates that the current process should be
descheduled on completion of the current instruction.

A 1 bit register or flag 59 which when set to 1
indicates that the process is copying a block of
data to or from memory.



- 15 - 0145244

The bank of registers 39 for priority 0 processes is the same as that
already described for priority 1 processes. In the description that
follows the suffix [1] indicates a register relevant to the priority 1
bank and the suffix [0] indicates that the register relates to the
priority O bank. Where the priority is not known the suffix [Pri]
indicates that a register of appropriate priority to the process is
used.

The registers are generally of word length which in this case is 16
bits apart from the 1 bit flags 47, 48, 58 and 59. The dinstruction

- buffer may be of 8 bit length if arranged to hold only 1 instruction
at a time. The A, B and C register stack 54, 55 and 56 are the
sources and destinations for most arithmetic and logical operations.
They are organised as a stack so that the loading of a value into the
A register is preceded by relocating the existing contents of the B
register into the C register and from the A register into the B
register. Similarly storing a value derived from the A register
causes the contents of the B register to be moved into the A register
and the contents of the C register into the B register.

The TREG 49 is available to hold temporary values during the execution
of all instructions apart from certain communication instructions
which require copying of blocks of data and in that case the TREG 49
is used to indicate the action to be performed when the copying of the
block of data is completed.

The OREG 57 of both register banks 38 and 39 are connected to the
decoder 35 so that for both priority processes that part of the
instruction which is fed into the 0 register reaches the decoder for
use in generating appropriate microinstructions. The SNP FLAG 58 and
COPY FLAG 59 of both priority banks are also connected to the
condition multiplexor 36 so that the microinstructions can take into
account the setting of these flags for either priority process in
determining the next action to be effected by the processor at any
time.



- 16 - 0145244

As the workspace pointer (WPTR) of a process is used as a base frou
which local variables of the process can be addressed, it 1s'sometimes
necessary to calculate offset values from the location indicated by
the workspace pointer. The constants box 40 is connected to the Y bus
and enables constant values to be placed on that bus under the control
of the microinstruction ROM 13. These can be used in pointing to
offset locations in a process workspace. In order to effect selection
of one or other of the register banks 38 or 39, the register bank
selector 41 has inputs from the PRI FLAG 47, the PROCPRI FLAG 48 and
the microinstruction ROM 13. The output from the register bank
selector is connected to the condition multiplexor 36, to the decoder
35 and to the switches 32. Depending on the output of the
microinstruction ROM 13, the selector will chose the register bank
indicated by the PRI FLAG 47 or the PROCPRI FLAG 48.

Memory Allocation for Process Workspaces

As in the example described in the above mentioned patent
applications, the microcomputer carries out a number of processes
together sharing its time between them. Processes which are carried
out together are called concurrent processes and at any one time the
process which is being executed is called the current process. Each
concurrent process has a region of memory called a workspace for
holding the local variables and temporary values manipulated by the
process. The address of the first local variable of the workspace is
indicated by the workspace pointer (WPTR). This is indicated in
Figure 3 where four concurrent processes, Process L, M, N and 0 have
workspaces 60, 61, 62 and 63. The workspace 60 has been shown 1in more
detail and the workspace pointer held in the WPTR REG 51 points to the
zero location which is a single word location having the address
indicated in this example as 10000. The other local variables for
this process are addressed as positive offset addresses from the word
indicated by the workspace pointer. Some of the workspace locations
with small negative offsets from the zero location are used for
scheduling and communication purposes. In this example three



-17 - 0145244

additional word locations 65, 66 and 67 are shown having negative

offsets of 1, 2 and 3 respectively below the zero location indicated
by the WPTR. These ‘three locations are as follows:-

Offset Name of Offset Name of Location
-1 Iptr.s Iptr location
-2 Link.s Link location
-3 State.s State location

~ Location 65 is used when a process is not the current process to hold
a pointer (IPTR) to the next instruction to be executed by the process
when it becomes the current process. Location 66 is used to store a
workspace pointer of a next process on a link list or queue of
processes awaiting execution. Location 67 is normally used to contain
an indication of the state of a process performing an alternative
input operation or as a pointer for copying of a block of data. This
will be described more fully below.

The memory also provides word locations for process to process
communication and Figure 3 indicates such a soft channel 70.

In addition to communication through soft channels provided by a
single word in memory, external communication may occur through the

serial links.

Serial Links

As described in the above mentioned patent application, data is
transmitted from one microcomputer to another in the form of data
packets having a predetermined protocol. The receipt of data is
indicated by the transmission of an acknowledge packet. In this
particular example, data is transmitted in the form of packet
illustrated in Figure 8. Each packet consists of a standard unit of
data which in this case consists of 1 byte (8 bits). The data packet



- 18- 0145244

commences with 2 start bits each of 1 followed by the byte of data ana
terminating with a stop bit of 0. After transmission of each packet
as shown in Figure 8, the input channel of a serial .1ink which
recejves the packet is arranged to signal to its associated output
channel to transmit an acknowledge packet of the typé shown in Figure
9. This is merely a 2 bit packet starting with a 1 and terminating
with a 0. The instructions executed by a process to send or receive
data may require that more than one such packet of data is involved in
the message transmission and consequently the instruction may indicate
how many standard units or bytes of data are to be transmitted in
order to complete the message required by the instruction. The
structure of the 1inks is shown more fully in Figures 10 to 14. 1In
the examples shown in Figures 10 for serial links 70, 71, 72 and 73
are shown each having an input pin 26 and an output pin 27. Each link
is connected by parallel buses 75 and 76 to the memory interface 14.
The Tinks are also connected to the interface control logic 15 by
lines 77 and 78 which provide read request and write request signals
respectively to the interface control logic. The control logic 15 is
arranged to provide a “DATA VALID" signal to the links on a line 79.
Each of the links is arranged to provide a status output signal on
1ine 80 to the condition multiplexor 36 of Figure 2. The Z bus is
also connected to each of the 1inks 70 to 73 and the Z bus is
connected via 1ine 81 to the sync logic 10. A line 82 provides an
output from the microinstruction ROM 13 to the sync logic 10 and lines
83 provide an output from the sync logic 10 to the condition
multiplexor 36. Lines 84 connect each of the 1inks to the sync logic
10 for carrying request signals from the 1inks when the links indicate
a request for action by the processor. A Tine 85 connects the
microinstruction ROM 13 to each of the 1inks in order to provide
request signals to the 1inks from the processor.

Figure 11 shows more detail of one 1ink. The link has an output
channel 90 and an input channel 91. Both are connected to a link
interface 92 which is shown more fully in Figure 14. The 1ink
interface 92 is connected to the input pin 26 and output pin 27



-19 - 0145244

and arranged to receive or transmit data and acknowledge packets as
previously described with reference to Figures 8 and 9. The output
channel 90, input channel 91 and 1ink interface 92 are all supplied
with clock pulses 93 from a common clock. The output channel 90 is
arranged to receive from the 1ink interface an OUTPUT ACK signal 94
and to supply to the link interface an QUTPUT DATA signal on bus 95
and an OUTPUT DATA VALID signal on line 96. Similarly the input
channel is arranged to receive from the 1ink interface 92 INPUT DATA
on line 97, and INPUT DATA VALID signal on 1ine 98 and to send to the
1ink interface an INPUT ACK signal on 1ine 99.

A reset line 101 is connected to the output channel 90, the input
channel 91 and the 1ink interface 92.

The output channel 90 is arranged to output a predetermined number of
bytes of data from a specified memory location by making read reguests
on 1ine 77 for data to be copied from addresses given on bus 76. The
data is supplied to the channel on parallel bus 75 together with an
OUTPUT DATA VALID signal on line 79.

Similarly the input channel 91 is able to cause a specified number of
bytes of data to be written into memory at a specified destination
address by generating write requests on line 78 at memory addresses
given on bus 76. The data is output to the memory on the -parallel bus
75.

In order to communicate with the processor, both channels 90 and 91
are connected to the Z bus. The microinstruction ROM 13 may make an
OUTPUT REQUEST on 1ine 85a to the output channel 90. In the case of
the input channel 91 the microinstruction ROM 13 may provide three
different signals on the bus 85. It may make an INPUT REQUEST 85b or
an ENABLE signal 85c or a STATUS ENQUIRY 85d. The bus 84 leading to
the sync logic 10 may carry an OUTPUT RUN REQUEST 84b and an OUTPUT
PRIORITY signal 84a from the output channel 90. The bus 84 may carry
an INPUT READY REQUEST 84c with an INPUT PRIORITY signal 84d or an
INPUT RUN REQUEST 84e with an INPUT PRIORITY signal from the input
channel 91 to the sync logic 10.



~20- . 0145244

The input channel 91 also provides a STATUS OUT signal on 1ine 80.
The function of these signals will be explained more fully later.

Figure 12 shows further detail of the output channel 90. The Z bus is
connected to a priority register 110 used to indicate the priority of
the process using the channel. The Z bus is also connected to a byte
counter 111 and a pointer register 112 used to contain the address of
the source of data to be indicated on bus 76. The channel also
includes a transfer state machine 113. The state machines in the
serial 1inks each consist of a state register to hold the current
state of the machine and a programmable logic array which responds to
the value of the state register and varjous input signals to the state
machine in order to produce a predetermined pattern of output signals
and a new value for the state register.

The state machine 113 has four inputs. These are output request on
line 85a, reset on Tine 101, output ack on line 94 and count zero on
Tine 114. At the beginning of a message output the byte counter
register 111 indicates the total number of bytes to be transmitted in
the message but as each byte is transmitted the register will
decrement under control of a deccount output signal 115 from the state
machine 113 and will generate the count zero signal 114 when no bytes
remain to be sent. In addition to the deccount output 115, the state
machine 113 provides a read request output on 1ine 77, a run request
on line 116 and incpointer on line 117. The pointer register 112
initially contains the pointer to the first byte to be transmitted but
due to the signal on 1ine 117 the pointer is incremented as each byte
is transmitted.

The output 116 is connected to the run request signal line which has
been marked 84b and also to an AND gate 118 receiving a further input
on Tine 119 from the priority register 110. 1In this way, the priority
of the outputting process can be indicated on 1ine 84a when a run
request is made on line 84b.



-2l - 0145244

The signals on bus 75 and 1ine 79 from the memory interface pass
directly through the channel to the link interface 92 on lines 95 and
96. Bus 75 and line 95 transmit the value of the byte to be
transmitted whereas Tines 79 and 96 carry the output data valid signal
which is generated by the memory interface to indicate that the data
now sent properly represents a full byte of data.

The succession of transition states for the transfer state machine 113
is as follows:-

State Inputs Qutputs Next State
any Reset Idle

Idle A Qutputreq Idle

Idle Outputreq SendByte0
SendByte( ReadReq SendBytel
Sendbytel IncPointer WaitOutputAck
WaitOutputAck 4 OutputAck WaitOutputAck
WaitOutputAck  OutputAck DecCount CheckFinished
CheckFinished A CountZero SendBytel

CheckFinished CountZero RunRequest Idle

Figure 13 shows more fully the input channel 91. This includes a
priority flag or register 120, a byte counter register 121 and a
pointer register 122 all connected to the Z bus. The input and output
signals for the channel are controlled by three state machines. Thése
consist of a TRANSFER state machine 125, an ALTERNATIVE state machine
126 and a READY state machine 127. Each of the state machines
receives an input of clock pulses from the same source 93.

The TRANSFER state machine 125 controls the input of a message through
the channel to a memory location. When the processor executes the
instructions necessary to input a message, it loads the byte counter
register 121 with an indication of the number of bytes to be input,
the pointer register 122 is loaded with a pointer to the first memory



- 22 - 0145244

location into which the message is to be copied and the priority flag
120 is set with an indication of the priority of the process executing
the input instructions. The processor then effects an input request
on line 85b which forms one of the inputs to the transfer state
machine 125. The byte counter register 121 includes a decrementor
arranged so that as each byte of input message is received the count
is reduced until finally reaching zero. Similarly the pointer
register 122 incorporates an incrementor so that as each byte is
received the pointer increments to the memory destination address for
the next byte of the input message.

The transfer state machine 125 has a reset input from line 101, a
count zero signal on line 128 from the byte counter 121, an input
request from 1ine 85b and a READY signal on line 129 from the READY
state machine 127. The transfer state machine 125 has an oUtput
DECCOUNT on line 130 in order to decrement the byte counter 121.
Similarly it has an output INCPOINTER on line 131 in order to
increment the pointer register 122. It also provides an output write
request on line 78, input ACK on 1ine 99 and RUNREQ on line 84e.

The succession of states of the transfer state machine 125 is as
follows:-

State Inputs Qutputs Next State
any Reset , Idle
1dle A Inputreq Idle
Idle Inputreq AwaitByte
AwaitByte A Ready | AwaitByte
AwaitByte Ready WriteRequest CheckFinished
IncPointer
DecCount
CheckFinished A CountiZero AwaitByte

CheckFinished CountZero RunReq Idle



- 23 - 0145244

The READY state machine 127 can be in the form of a simple flip-flop
and is used to indicate whether a byte of data has been received in an
input register in the link interface and not yet acknowledged. The
READY state machine 127 has a reset input 101 and in addition it has
an input signal input data valid on 1line 98 derived from the 1link
interface when a valid byte of data has been received in an input
register of the interface. In addition, the state machine 127 has an
input 132 derived from the input ACK signal line 99 so that the state
machine is set in one condition when a byte of data has been received
by the 1ink interface and is then reset once the input ACK signal has
been sent on Tine 99. The state machine 127 provides a single output
READY on 1ine 129 which forms an input to the transfer state machine

125 as well as one input to an AND gate 133 as well as a READY input
134 to the alternative state machine 126. The succession of states of
the READY state machine 127 is as follows:

Transitions

State Inputs Outputs Next State
any Reset ~ DataAbsent
DataAbsent A InputDataValid DataAbsent
DataAbsent InputDataValid Ready DataPresent
DataPresent  AlnputAck Ready DataPresent
DataPresent  InputAck DataAbsent

The alternative state machine 126 deals with processes executing
instructions for a number of alternative input channels. In addition
to the READY input 134 it has a reset input 101 an enable input 85c
and a status enquiry input 85d. It provides a READYREQ output 135
which leads to the signal line 84c. It provides a further output
REPLY on line 136 which forms a second input to the AND gate 133. The
output line 135 and 84e both form inputs to an OR gate 137. The OR
gate provides an output to an AND gate 138 which also receives an
input from line 139 indicating the priority of the process using the



24 - 0145244
fnput channel.

By use of input signals on 1ines 85, the processor can make an input
request or enable the channel or make a status enquiry and these will
be described more fully below. The 1ink provides RUN requests or
READY requests on lines 84 and by use of the gates 137 and 138 the
priority is indicated on 1ine 84d when either a READY request or RUN
request is made. The provision of the AND gate 133 enables the READY
status to be indicated on 1ine 80.

The succession of states of the alternative state machine 126 is as
follows:-

Transitions

State Inputs Outputs Next State
any Reset Disabled
Disabled StatusEnquiry Disabled
Disabled AStatusEnquiry /\ Enable /\ Ready ReadyReq Disabled
Disabled AStatusEnquiry /\ Enable /\ Ready Enabled
Disabled AStatusEnquiry /\ Enable Disabled
Enable StatusEnquiry Reply Disabled
Enabled AStatusEnquiry /\ Ready ReadyReq Disabled
Enabled AStatusEnquiry /\ Ready Enabled

Although the output and input channels 90 and 91 communicate with the
processor and with the memory, it is the 1ink interface 92 which
creates the data packets or acknowledge packets which are to be output
in accordance with the protocol shown in Figures 8 and 9 and similarly
to receive and recognise either of these packets which are output by a
further microcomputer. The 1ink interface consists of an output state
machine 140 with a bit counter 141 and an input state machine 142
having a bit counter 143. It further includes an output register 144
connected to the output data bus 95 and arranged to receive a byte



- 25 - 0145244

of data. An input register 145 is connected to the input pin 26 in
order to receive incoming data. The register 145 is connected to the
input data bus 97.1eading to the memory interface. The 1ink interface
also includes two Ready Indicators,146 and 147 which may each comprise
a flip-flop. 1t further includes two latches 148 and 149 which may
each comprise a flip-flop. It also includes three AND gates 150, 151
and 152 as well as an OR gate 153. The output state machine 140 has a
plurality of inputs and outputs as follows:

reference signal purpose
 numeral name

inputs:

160 Reset Link interface reset connected to line 101

161 " Datago Initiate data transmission -

162 Countzero Test if bit count zero

163 Ackgo Initiate acknowledge transmission

outputs:

164 Loadcount Set Bit Counter to number of bits to be
transmitted

165 Deccount Decrease bit counter by one

166 Oneout Set output pin 27 to one

167 Dataout Set output pin 27 to least significant bit
of shift register

168 ~ Shiftout Shift data register one place

169 Datagone Transmission of data complete

170 Ackgone Transmission of acknowledge complete



-2 - 0145244

The input state machine 142 has inputs and outputs as follows:- ' -

reference signal purpose .
numeral name '
inputs:
- 171 - Reset - - Link interface reset connected to 1ine 101
172 Datain Data from input pin 26
173 Countzero Test if bit count zero
© outputs: .
174 Loadcount Set Bit Counter to number of bits to be
received
175 Deccount Decrease bit counter by one
176 Shiftin Shift data register one place taking least
significant bit from pin
177 Setdataready Reception of data complete
178 Setackready Reception of acknowledge complete

The succession of states for the output state machine is as follows:-

OUTPUT STATE MACHINE 140

State Inputs ) Outputs Next State
1. any Reset - idle
2. idle (ADatago) /\ (AAckgo) idle
3. idle Ackgo Oneout ackflag
4, idle ~  {aAAckgo) /\ Ddtago ' Oneout dataflag
5. ackflag Ackgone idle
6. dataflag Oneout databits
Loadcount
7. databits ACountzero DecCount databits
Shiftout
Dataout

8. databits Countzero Datagone idle



- 21 - 0145244

The succession of states for the input state machine 142 are as
follows:-

INPUT STATE MACHINE 142

State Inputs Outputs ~ Next State

1. any Reset idle

2. 1idle ADatain - idle

3. idle Datain start

4. start ADatain SetAckready idle

5. start Datain LoadCount databits

6. databits ACountzero . Shiftin databits
DecCount

7. databits Countzero Shiftin dataend

8. dataend SetDatready idle

For both state machines, where a specific output is listed under the
output column, this means that a signal 1 is generated in order to
indicate that specific output. At all other times the signal value of
each output not listed is in the form of a zero. A1l inputs except
those listed under the input column are ignored. The symbols \/ /\
and A are used to denote the boolean operations AND, OR and NOT
respectively.

The purpose of the latch 148 is to control the output operation. Once
a byte of data has been output the signal from output 169 sets the
latch 148 to a state which controls the AND gate 150 to prevent
further output until the latch 148 is reset by an acknowledge signal
from output 178 from the input state machine. Similarly the latch 149
controls the input operation. When data has been received, the signal
on line 177 sets the latch 149 to remember that data has been input
until an acknowledgement is sent. It controls the AND gate 152 to
permit an ACKGO input to the output state machine until the latch 149
is reset by the output 170 indicating that the acknowledge has gone.

The operation of this 1ink interface is as follows. Consider first



- 28 - ' 0214?52?}4

the situation where an output Tink wishes to outpuf-data. “The oﬁtput
channel of Figure 12 causes data to be supplied to the output register

- along bus 95 and an output data valid signal sets the Réady indicator

-

147. The output of the indicator 147 is fed to the AND gate.150 and
the state of the latch 148 is such that a DataGo signal is input at-
161. The output on pin 27 is derived through the OR gate 153 and

‘therefore consists either of the signal on the output 166 from the

output state machine or the output of the AND gate 151 dependent on
the signal suppiied on output 167 from the output state machine. As
can be seen from the table of transitions for the output state machine
140, when the machine is idle after being reset there is no.indicated
output for line 166 and consequently this transmits a signal level to
the output pin 27 indicating a zero. When the Dataéo signal is
applied at input 161 this corresponds to 1ine number 4 of the state
table where there is -an input DataGo and no AckGo signal. As
indicated this causes the signal Oneout on output 166. This feeds a
signal 1 to the output pin 27 and forms the first bit of the data
packet shown in Figure 8. The output state machine then moves to the
state ‘called ‘"DataFlag” as can be seen from line 6 of the state

table. 1In this condition with no further inputs the state machine
causes a further Oneout signal on output 166 and a loadcount signal on
output 164. This causes the second signal value 1 to be output by pin
27 thereby forming the two start bits of the data packet in Figure 8,
The bit counter 141 is also loaded with the number of bits to be
output which in this case would be 8. The output state machine is
then in the state called "databits" and as can be seen from lines 7
and '8 of the state table, this provides a dataout signal to the AND
gate 151 so as to allow the data contents of the register 144 to be
output to the output pin 27. A shiftout signaf on output 168 causes
sequential discharge of the data from the register 144 with a
consequential decrement in the count in the bit counter 141. When the
counter reaches zero as shown in line 8 of the state table a Datagone
signal is output at 169 which changes the latch 148 and removes the



-29 - 0145244

Datago signal from the input 161. As can be seen from line 8 of the
state table, no outputs on lines 166 and 167 are shown which means
that the signal value O is resumed on 1line 166 which is fed through
the OR gate 153 and the output pin 27 thereby forming the stop bit O
at the end of the data packet shown in Figure 8. The output state
machine returns to the idle condition.

The output channel may also be used to send an acknowledge packet.
When the input channel has received a byte of data it sends a signal
to the output state machine in order to output an acknowledge packet
of the type shown in Figure 9. A signal is fed to the AND gate 152
from the Ready Indicator 146 and the state of the latch 149 at this
time permits the ACKGD signal to be applied to input 163 of the output
state machine 140. This corresponds to line 3 of the state table for
the output state machine 140 and as can be seen, this causes the
output oneout on the output 166. This is passed through the OR gate
153 so that the signal level on pin 27 is changed from the previous
zero level to indicate a 1 forming the first bit of the acknowledge
packet shown in Figure 9. This changes the output state machine 140
to the state called ACKFLAG and as can be seen from 1line 5 of the
state table for that machine, this causes no further outputs on lines
166 and 167 and this means that the signal level on output 166 changes
back to the zero level so that the signal level on the output 27
reverts to zero giving the second bit of the acknowledge packet shown
in Figure 9. The output state machine 140 also causes an output
ACKGONE on line 170 so as to change the state of the latch 149 and
thereby alter the output of the AND gate 152 so that the ACKGO signal

is removed from the input 163. The state machine then returns to the
idle state. |

The operation of the input state machine 142 will now be described.
The machine is reset by a reset signal on line 101 and in accordance



230 - 0145244

with 1ine 1 of the state table for the input state machine 142 this
causes no listed outputs but puts the state machine into the idle
state. As no outputs are listed the signals on all outputs will have
a zero signal level. Input 172 is connected to the input pin 26 and
so long as there is no Dataln signal the machine remains idle in
accordance with Tine 2 of the state table. As soon as a Dataln signal
is received at input 172 due to the arrival of a start bit of either a
data packet of the type shown in Figure 8 or an acknowledge packét of
the type shown in Figure 9 the state machine moves onto 1ine 3 of the
state table causing no listed output but moving to the state called
start. If the next bit to arrive at the input pin 26 is a 0 in
accordance with the acknowledge packet shown in Figure 9 then line 4
of the state table for the input state machine 142 will apply. The
machine has been put into the state called start by the arrival of the
first bit of the packet but as the second bit is a 0 there is no
Tonger a Dataln signal on line 172 and in accordance with Tine 4 of
the state table this causes the output SETACKREADY on output 178 and
the machine returns to the idle state. The output on line 178 is fed
to the latch 148 in order to indicate to the output state machine that
an acknowledge packet has been received. It is also fed to the Ready
Indicator 147.

1f however the second bit of the packet arriving at the input pin 26
was a 1 rather than a 0 such that the packet is a data packét of the
type shown in Figure 8, then line 5 of the state table would apply in
that the machine is in the start state due to the first bit of the
data packet and the input is now Dataln on‘input 172. This causes the
output loadcount on output 174 so that the bit counter 143 is loaded
with the number of bits to be expected in the data packet. In this
case the number of bits will be 8 corresponding to 1 byte of data,
The machine moves to the new state databits and as can be seen from
line 6 of the state table, so long as the input 173 does not reach
zero the state machine continues to cause a succession of operations
of moving the incoming bits successively along the input register 145
due to the shiftin signal on the output line 176 and it causes



- 31 - 0145244

progressive decrease in the counter 143 due to the DECCOUNT signal on
the output 175. When the count in the counter 143 reaches zero
indicating that the required 8 bits of data have now been received,
line 7 of the input state machine table applies in that the machine is
sti11 in the state databits and a count zero signal is received on
1ine 173. This causes a shiftin output on 1ine 176 to move the last
databit into the input register 145 and the machine changes to the
dataend state. Line 8 of the state table indicates that in this
condition a SetDataready signal is output on line 177 to alter the
latch 149 and the Ready Indicator 146. The input state machine 142
then returns to the idle state. The SetDataready signal which was
supplied to the Ready Indicator 146 causes the signal “input data
valid" on line 98 to indicate that a full byte of data has now been
received by the input register 145,

It will therefore be seen that the 1ink interface shown in Figure 14
provides a packet generator in the form of the output state machine
140 together with the associated bit counter latches and gates so that
data may be output in packets of the type shown in Figure 8 or
acknowledge of the type shown in Figure 9. The input state machine
142 together with its bit counter and latches forms a packet decoder
which can distinguish between receipt at the input pin 26 of an
acknowledge packet of the type shown in Figure 9 or a data packet of
the type shown in Figure 8. In the case of a data packet it loads the
input register 145 and provides an output from the Ready Indicator 146
..when a complete byte has been received. In the case of an acknowledge
packet it does not load the input register 145 but causes an output
signal for use in controlling the output of the next data packet.

That output signal alters latch 148 to permit transmission of the next
datago signal through the AND gate 150. It also causes the output ACK
signal on line 94 to indicate that a further byte to be output can now
be supplied along bus 95 to the output register 144. When a byte of
data has been received by the input register 145 and then transferred
to its destination via bus 97, an input acknowledge signal is
generated for line 99 so that an acknowledge packet must be sent by



. 0145244
the output pin 27 before another byte of data can be input.

It will be seen that by use of the link interface shown in Figure 14,
a message may consist of one or more bytes of data each byte being
separately transmitted in a packet of the type shown in Figure 8. As
each packet of the type shown in Figure 8 is received by an input pin
an acknowledge of the type shown in Figure 9 must be output by the
associated output pin before the next data packet can be input. =~
Similarly the output pin must await an acknowledgment packet for each
data packet which is output before it can proceed to outputting the
next data packet.

Although each byte must be separately sent and acknowledged, the
processor may be required to respond to a single output or input
instruction by transmitting or receiving a message which consists of a
plurality of bytes in order to complete the message transmission.

In the above described example all state machines in the input
channel, output channel and 1ink interface are supplied with timing
pulses from a common clock. This will be used in controlling the bit
frequency of the data and acknowledge packets transmitted by the
output pin 27. It is assumed in the above example that other devices
to which the link interface is connected in order to carry out message
transmission are fed with timing pulses from the same clock. In this
way synchronisation is achieved between the input state machine 142
and the incoming data from input pin 26. However the link interface

may be arranged to operate with synchronising logic between th?,j“P"t,,A”,,”

pin 26 and the input state machine 142 so that different devices which
are connected together for communication purposes may use different
clocks. Such different clocks should have the frequency although they
may have different phase. Such synchronising logic may be arranged to
sample an incoming bit pattern at a frequency higher than the

frequency of the bit pattern in the message so that the signal level

is sampled several times for each incoming bit. In this way the
leading edge of a start bit can be detected and the signal level at

the input pin 26 may be treated as valid a predetermined time after
detecting the leading edge of the start bit. In this way samp]ing.of



T .33 - 0145244
the incoming data is effected approximately midway through the
duration of each incoming bit.

Notation

In the following description of the way in which the microcomputer
operates, particularly with reference to its funtions, operations and
procedures, notation is used in accordance with the OCCAM (Trade Mark
of INMOS International plc) language. This language is set forth in
the booklet entitled “Programming Manual - OCCAM" published and
distributed by INMOS Limited in 1983 in the United Kingdom.
Furthermore the notation used has been set out fully in European
Patent Application 0110642 and for simplicity will not be repeated in
this specification. However the explanation of OCCAM and the notation
used which is set out in European Patent Application 0110642 is
incorporated herein by reference.

In addition to the above mentioned notation the following description
refers to certain memory access procedures which are defined as
follows:-

AtWord(Base, N, A) sets A to point at the
Nth word past Base

AtByte(Base, N, A) sets A to point at the
Nth byte past Base

RIndexWord(Base, N, X) sets X to the value of the
Nth word past Base

RIndexByte(Base, N, X) sets X to the value of the
Nth byte past Base

WindexWord(Base, N, X) sets the value of the
Nth word past Base to X

WindexByte(Base, N, X) sets the value of the
Nth byte past Base to X

WordOffset(Base, X, N) set N to the number of words
between X and Base



- 34 - 0145244

PROCEDURES USED BY THE MICROCOMPUTER

In the following description thirteen different procedures (PROC) are
referred to. The following six procedures are used in the description
of the behaviour of the processor. '

Dequeue

Run

StartNextProcess

HandleRunRequest

HandleReadyRequest

BlockCopyStep

Procedure "Dequeue" makes the process on the front of the priority
"Pri" process queue the current process.

1. PROC Dequeue =

2. SEQ

3 WptrReg[Pri] := FptrReg[Pri]

4, IF )

5. FptrReg[Pri] = BptrReg[Pri]

6 FptrReg[Pril] := NotProcess.p

7 TRUE

8 RIndexWord({FptrReg[Pri}, Link.s, FptrReg[Pri])
9 RIndexWord(WptrReg[Pril, Iptr.s, IptrReg[Pri]) :

Procedure "Run" schedules the process whose descriptor is contained in
the ProcDesc register. This will cause a priority O process to start

running immediately, in preference to an already executing priority 1

process. '

1. PROC Run =

2. SEQ

3. ProcPriFlag := ProcDescReg /\ 1

4 ProcDescReg /\ (NOT 1)
5

L

ProcPtrReg
IF



- 35 o - 0145244

6. (Pri = 0) OR ((ProcPriFlag = Pri) AND (WptrReg[Pril <
NotProcess.p))
7. SEQ -- add process to queue
IF

9, FptrReg[ProcPriFlag] = NotProcess.p

10. FptrReg[ProcPriFlag] := ProcPtrReg

11. TRUE

12. WIndexWord(BptrReg[ProcPriFlag], Link.s, ProcPtrReg)

13. BptrReg[ProcPriFlag] := ProcPtrReg

14. TRUE

15. SEQ -- either Pri O interrupting Pri 1, or Pri 1
and idle m/c

16. Pri := ProcPriReg

17. WptrReg[Pril] := ProcPtrReg

18. RIndexWord(WptrReg[Pri], Iptr.s, IptrReg[Pri])

19. Oreg[Pri] := 0 :

Procedure "StartNextProcess" deschedules the current process and, if
there is another runnable process, selects the next runnable process.
This may cause the resumption of an interrupted priority 1 process if
there are no further priority 0 processes to run.

Procedure “StartNextProcess® is always executed as a result of the
SNPFlag being set. The first action of this process is, therefore, to -
clear that flag.

1. PROC StartNextProcess =

2 SEQ

3 SNPFiag[Pri] := 0 -- Clear the SNP flag
4. IF

5. FptrReg[Pril <> NotProcess.p
6 ' Dequeue

7. Pri =0

8. SEQ

9. Pri :=1




. 0145244

10. IF

11. (WptrReg[Pri] = NotProcess.p) AND
12. (FptrReg[Pril <> NotProcess.p)

13. Dequeue

14, TRUE

15, SKIP

16. Pri =1

17. WptrReg[Pri] := NotProcess.p :

Procedure “HandleRunRequest” is executed as a result of a 1ink making
* a "RunRequest” ‘to the processor.” In the description of the procedure
“PortNo" is the number of the Tink making the request. The procedure
operates by loading the "ProcDescReg” with the content of the process
word associated with the 1ink and executing the “Run" procedure.

1. PROC HandleRunRequest{VAR PortNo) =

2. SEQ

3. RIndexWord(PoriBase, PortNo, ProcDescReg)
4, Run : ;

Procedure “HandleReadyRequest" is executed as a result of a 1ink
making a “ReadyRequest" to the processor. In the description of the
procedure "PortNo" is the number of the 1ink. Port Base is the address
of the first 1ink. The procedure identifies the process which is
performing alternative input from the content of the process word
associated with the 1ink. The procedure schedules that process if
appropriate and updates the State location of that process as
appropriate.

1. PROC HandleReadyRequest({VAR PortNo) =

2. SEQ

3. RIndexWord(PoriBase, PortNo, ProcDescReg)
4. ProcPtrReg := ProcDescReg /\ (NOT 1)

5. RIndexWord(ProcPtrReg, State.s, TempReg)
6. IF

7. TempReg = Enabling.p



8.
9.

10.
11.
12.
13.
14.

- 37 - 0145244

WindexWord(ProcPtrReg, State.s, Ready.p)

TempReg = Ready.p
SKIP
TempReg = Waiting.p
SEQ
WIndexWord(Proc
Run :

PtrReg, State.s, Ready.p)

The procedure “BlockCopyStep" causes a single byte of a message to be
transferred. The procedure always executes as a result of the
“CopyFlag” being set. If the
message it clears (unsets) the "CopyFlag" and, if the “Treg" contains
a process descriptor that process is scheduled.

PROC BlockCopyStep =

SEQ

procedure has copied the last byte of a

RIndexByte(Creg[Pril, 0, Oreg[Pri])
WIndexByte(Breg[Pril, 0, Oreg[Pril)
Oreg[Pri] := 0 )
AtByte(Creg[Pril, 1, Creg[Pri]l)
AtByte(Breg[Pri], 1, Breg[Pril)
Areg[Pril] := Areg[Pri] - 1

IF

Areg[Pri]l =0 --
SEQ
CopyFlag[Pri] :
IF
Treg[Pril <«
SEQ
ProcDescR
Run
Treg[Pri]l =
SKIP
TRUE
SKIP :

has the block copy been completed
=0

NotProcess.p

eg := Treg[Pri]

NotProcess.p



.38 - 0145244

The processor performs a sequence of actions. These are performed
either on behalf of the current process or on behalf of a link.

The actions which may be performed on behalf of the current process
are to perform "StartNextProcess", to perform “BlockCopyStep" or to
fetch, decode and execute an instruction.

The actions which may be performed on behalf of a 1ink are to perform
*HandleRunRequest" or to perform "HandleReadyRequest".

Each of these actions corresponds to a sequence of microinstructions.
The last microinstruction in any of the sequences comprising these
actions is "NextAction". This causes the processor to choose the next
action to be performed.

The way in which the processor decides which action is to be performed
next when a "NextAction®™ microinstruction is executed is as described
below.

The Sync Control Logic 10 will forward at most one “RunRequest” or
“ReadyRequest” to the processor at any time. The Sync Control Logic
will not forward a priority 1 request if there is a priority 0 request
outstanding. This results in two signals entering the Condition
Multiplexor, one indicating the presence of a request, the other
indicating the priority of that request.

The Condition Multiplexor also has signals coming from the currently
selected SNPFlag and the currently selected CopyFlag. It is,
therefore, able to make the selection as described below.

The processor will perform "StartNextProcess" if the SNPFlag[Pril is
set. Otherwise, the processor will handle a channel request, unless
the priority of that request is lower than the priority of the current
process. Otherwise, the processor will perform “"BlockCopyStep" if the
CopyFlag[Pril] is set. Otherwise the processor will fetch, decode and
execute an instruction if there is a current process. Otherwise the



-39 - .
. processor will wait until there is a channel request. 0145244

The description of the Function Set which follows refers to the
additional seven procedures:

CauselinkInput
CauselinkOutput

Makel inkReadyStatusEnquiry
Enablelink
LinkChannellInputAction
LinkChannelOutputAction
IsThisSelectedProcess

The four procedures “CauselLinkInput®, “CauselLinkOutput",
Makel inkReadyStatusEnquiry" and “EnableLink" describe interaction
between the processor and a link.

The procedure "CauseLinkInput(VAR PortNo)" loads 1ink channel PortNo
with a priority, a pointer and a count and then makes an InputRequest
to that 1ink channel which causes the 1ink channel to input a
message. More precisely, the processor loads the Priority flag, the
Pointer register and the Count register of the 1ink channel from the
Pri flag, Creg[Pri] register and Areg[Pri] register of the processor,
and makes an InputRequest to the 1ink channel.

The procedure “CauselLinkQutput(VAR PortNo)" loads 1ink channel PortNo
with a priority, a pointer and a count and makes an OutputRequest;
which causes the 1ink channel to output a message. More precisely,
the processor loads the Priority flag, the Pointer register and the
Count register of the 1ink channel from the Pri flag, Creg[Pri]
register and Areg[Pri] register of the processor, and makes an
OutputRequest to that 1ink channel.

The procedure “MakelinkReadyStatusEnquiry(VAR PortNo, Ready), makes a
ReadyStatusEnquiry to link channel PortNo. “Ready" is set to TRUE if
the 1ink channel is ready, FALSE if it is not ready.



-~ a0 - 0145244

The procedure “EnableLink(VAR PortNo)" sets the Priority flag of link
channel PortNo to the value of the Pri flag and signals an
EnableRequest to the link channel.

The remaining procedures are described as follows:-

1. PROC LinkChannellnputAction =
2. VAR PortNo :
3. SEQ
4, WIndexWord(WptrReg[Pri], Iptr.s, IptrReg[Pri])
5 WindexWord (Breg[Pril, O, WptrReg[Pri] \/ Pri)
6 WordOffset(PortBase, Breg[Pril, PortNo)
7. CauseLinkInput (PortNo)
8 SNPFlag[Pri] := 1 :

1. PROC LinkChannelOutputAction =

2 YAR PortNo :

3 SEQ

4 WIndexWord(WptrReg[Pril, Iptr.s, IptrReg[Pril)
5. WIndexWord(Breg[Pril, 0, WptrReg[Pri] \/ Pri)
6 WordOffset(PortBase, Breg[Pri], PortNo)

7 CauselLinkOutput(PortNo)
8 SNPFlag[Pri] :=1 :

1. PROC IsThisSelectedProcess =

2 -- this is used by all the disable instructions
3 SEQ

4 RIndexWord(WptrReg[Pril, 0, Oreg[Pril)

5. IF

6 Oreg[Pri] = (-1)

7 SEQ

8 WIndexWord(WptrReg[Pril, 0, Areg[Pril)
9. Areg[Pri] := MachineTRUE

10. Oreg[Pri] < (-1)

11, Areg[Pril] := MachineFALSE :



- 41 - 0145244

FUNCTION SET

As in European patent specification 0110642, each instruction for the
microcomputer includes a function element selected from a function
set. The functions executed by the microcomputer include direct
functions, the prefixing functions pfix and nfix, and an indirect
function opr which uses the operand register Oreg to select one of a
set of operations. As in the above patent application, the Oreg[Pri]
is cleared after the execution of all instructions except PFIX and
NFIX.

The improved set of direct functions and operations of the present
application is as follows:

DIRECT FUNCTIONS

Code No Abbreviation Name

0 1d1 Toad local

1 stl store local

2 1d1p load local pointer
3 1dnl load non-local

4 stnl store non-local

5 1dnlp load non-local pointer -
6 eqc equals constant

7 ldc load constant

8 adc add constant

9 J Jump

10 cj conditional jump
11 call call

12 ajw adjust workspace
13 opr operate

14 pfix prefix

15 nfix negative prefix



OPERATIONS

Code No

W 0O ~NN O O B W N = O

PR R RN RN N I ket et bt el el e ped fed et
ggrogmgmpwmucmm\lmmpwwwo

Abbreviation

rev
ret
gcall
gajw
1dpi
bsub
wsub
bent
went
1end
1b
sb

copy
gt

add
sub
mint
startp
endp
runp
stopp
1dpri
in

out
alt
altwt
altend
enbs
diss
enbc
disc

- 42 -

0145244

Name

reverse

return

general call
general adjust workspace
load pointer to instruction
byte subscript
work subscript
byte count
word count
Toop end

Toad byte
store byte
copy message
greater than
add '
subtract
minimum integer
start process
end process
run process
stop process
load priority
input message
output message
alt start

alt wait

alt end

enable skip
disable skip
enable channel
disable channel



- 43 0145244

DIRECT FUNCTIONS

load local
def: SEQ
Creg[Pri] := Breg[Pri]
Breg[Pri] := Areg[Pri]
RIndexWord(WptrReg[Pril, Oreg[Pril, Areg[Pril)
purpose: to load the value of a location in the current
process workspace
store local
def: SEQ
WindexWord(WptrReg[Pril, Oreg[Pril, Areg[Pril)
Areg[Pri] := Breg[Pri]
Breg[Pri] := Creg[Pri]
purpose: - to store a value in a location in the current
process workspace
load local pointer
def: SEQ
Creg[Pri] := Breg[Pri]
Breg[Pri] := Areg[Pri]
AtWord(WptrReg[Pri], Oreg[Pril, Areg[Pri])
purpose: to load a pointer to a location in the current
process workspace

to load a pointer to the first location of a
vector of locations in the current process

workspace
Toad non-local
def: RIndexWord(Areg[Pril, Oreg[Pril, Areg[Pril)
purpose: to load a value from an outer workspace

to load a value from a vector of values
to load a value, using a value as a pointer
(indirection) - in this case Oreg = 0



- 44 - 0145244

store non-local
def: SEQ
WindexWord({Areg[Pril, Oreg[Pri], Breg[Pri])
Areg[Pri] := Creg[Pri]
purpose: to store a value in a location in an
outer workspace
to store a value in as vector of values
to store a value, using a value as a
pointer (indirection) - in this case

Oreg = 0
load non-local pointer
def: AtWord(Areg[Pril, Oreg[Pril], Areg[Pri])
purpose: to compute pointers to words in word

vectors and workspaces
equals constant
def: IF
Areg[Pri] = Oreg[Pri]
Areg[Pril] := MachineTRUE
TRUE
Areg[Pri] := MachineFALSE
purpose: to test that the Areg holds a constant value
to impiement logical
negation
to implement
a=¢ as eqc ¢
a<>c as eq c, eq O
Toad constant
def: SEQ

Creg[Pri] := Breg[Pril
Breg[Pri] := Areg[Pril
Areg[Pri] := Oreg[Pril
purpose: to load a value
add constant
def: Areg[Pril] := Areg[Pril] + Oreg[Pril

purpose: to add a value



Jump
def:
purpose:

conditional jump
def:

purpose:

call
def:

purpose:
adjust workspace
def:
purpose:

- 45 - 0145244

AtByte(IptrReg[Pri], Oreg[Pri], IptrReglPril)
to transfer control forwards or backwards,
providing loops, exits from loops,
continuation after conditional sections of
program

IF
Areg[Pri]l = 0
AtByte(IptrReg[Pril, Oreg[Pril], IptrReg[Pri]
Areg[Pri] < 0
SEQ
Areg[Pri] := Breg[Pril
Breg[Pri] := Creg[Pri]
to transfer control forwards or backwards
only if a zero value is loaded, providing

conditional execution of sections or program
and conditional loop exits

to facilitate comparison of a value against
a set of values

SEQ :
WIindexWord(WptrReg[Pril, -1, Creg[Pri])
WIndexWord(WptrReg[Pril, -2, Breg[Pril)
WIindexWord(WptrReg[Pri], -3, Areg[Pril)
WIndexWord(WptrReg[Pril, -4, IptrReg[Pri])
Areg[Pril] := IptrReg[Pri]
AtWord(WptrReg[Pri], -4, WptrReg[Pril
AtByte(IptrReg[Pril, Oreg[Pri], IptrReg[Pril)

to call a procedure

AtWord(Wptr[Pril, Oreg[Pril, Wptr[Pril)
to adjust the workspace pointer



Indirect Functions

ogerate

Definition:

Purpose:

Prefixing Functions

prefix
pefinition:

Purpose:

negative prefix

Definition:

Purpose:

- 46 - 0145244

operate (OREG[PRI]

perform an operation, using the
contents of the operand register
OREG[PRI] as the code defining the
operation required.

OREGLPRI] := OREG[PRI] << 4

to allow instruction operands which
are not in the range 0 - 15 to be
represented using one or more
prefix instructions

OREG[PRI] := (NOT OREG[PRI] << 4

to allow negative operands to be
represented using a single negative
prefix instruction followed by zero
or more prefix instructions



- 47 - 0145244

OPERATIONS FOR REGISTER MANIPULATION ETC

reverse
def: SEQ
" Oreg[Pri] := Areg[Pri]
Areg[Pri] := Breg[Pri]
Breg[Pril := Oreg[Pril
purpose: to reverse operands of asymmetric operations,
where this cannot conveniently be done in a
compiler
return
def: SEQ
RIndexWord(WptrReg[Pril, 0, IptrReg[Pri])
AtWord(WptrReg[Pril, 4, WptrReg[Pril)
purpose: to réthrn from a called procedure
general call
def: SEQ
Oreg[Pri] = IptrReg[Pril
IptrReg[Pril := Areg[Pri]
Areg[Pri] = Oreg[Pri]
purpose: to perform a procedure call, with

a new instruction pointer in Areg
general adjust workspace
def: SEQ
Oreg[Pril] := WptrReg[Pri]
WptrReg[Pril := Areg[Pri])
Areg[Pri] := Oreg[Pril
purpose: to change the workspace of the
current process

OPERATIONS FOR ADDRESSING

load pointer to instruction
def: AtByte(IptrReg[Pri], Areg[Pril, Areg[Pril)
purpose: to load a pointer to an instruction



byte subscript
def:

purpose:

word subscript
def:

purpose:

byte count
def:
purpose:

'word count
def:

purpose:

LOOPING

Toop end
def:

- 48 - 0145244
SEQ
AtByte(Areg[Pril, Breg[Pril, Areg[Pri])
Breg[Pri] := Creg[Pri]
to compute pointers to items in vectors
to convert a number to a byte pointer using,
for example, 1dc 0, 1dw n, bsub

SEQ
AtWord{Areg[Pril, Breg[Pri], AreglPril)
Breg[Pril := Creg[Pri]
to compute pointers to items in vectors
of words
to convert a number to a word pointer using,
for example, 1dc O, 1d1 n, wsub

Areg[Pril := Areg[Pril] * TraBytesPerWord

to convert a length measured in words to one
measured in bytes. TraBytesPerWord means the
number of bytes per word used by the microcomputer.

SEQ

Creg[Pri] := Breg[Pri]

Breg := bytepart(Areg)

Areg := wordpart(Areg)
to convert a pointer into a byte offset from 0
using went, bent, add

SEQ
RIndexWord(Breg[Pril, 1, Creg[Pril)
Creg[Pri] := Creg[Pri] - 1
WIndexWord(Breg[Pril, 1, Creg[Pril)



- 49 - 0145244

IF
CreglPril > 0
SEQ .
RIndexWord(Breg[Pri], 0, Creg[Pril)
Creg[Pri] := Creg[Pri] + 1
WIndexWord(Breg[Pril, 0, Creg[Pril)
AtByte(IptrReg[Pril, -Areg[Pril,
IptrReg[Pril)
TRUE
SKIP
purpose: to implement replicators
SINGLE BYTE OPERATIONS
load byte » _
def: RIndexByte(Areg[Pril, 0, Areg[Pril)
purpose: to Toad a single byte
store byte
def: SEQ
WindexByte(Areg[Pri, 0, Breg[Pril)
Areg[Pri] := Creg[Pril
purpose: to store a single byte

BYTE STRING OPERATIONS

copy message

def: SEQ
Copy[Pri] := 1 -- indicate block copy
Treg[Pri] := NotProcess.p -- indicate not input
or output
purpose: to set a vector of bytes to the value of

another block



- 50 - 0145244
COMPARISON

greater than
def: SEQ
IF
Breg[Pri] > Areg[Pril
Areg[Pri] := MachineTRUE
TRUE ‘
Areg{Pri] := MachineFALSE
Breg[Pril] := Creg[Pri]
purpose: to compare Areg and Breg (treating them as twos
complement integers), loading 1 (MachineTRUE) if
Breg is greater than Areg, 0 (MachineFALSE)
otherwise
to implement b < a by (rev, gt)
to implement b <= a as (gt, eqc 0), and Breg >= Areg
by (rev, gt, eqc 0)

BASIC ARITHMETIC

add
def: SEQ
Areg[Pril] := Areg[Pri] + Breg[Pril
Breg[Pril] := Creg[Pril
purpose: to lToad the sum of Breg and Areg
subtract
def: SEQ
Areg[Pri] := Breg[Pril] - Areg[Pri]
Breg[Pril] := Creg[Pri]
purpose: to substract Areg from Breg, loading
the result
to implement
a=> as sub, eqc 0
a <>b as sub, eqc 0, eqc O
ifa<x b .. as sub, eqc 0, cj, ...

ifa=b.. as sub, c¢j.



- 51 - 0145244

OPERATIONS FOR SCHEDULING

minimum integer
def: SEQ
Creg[Pri] :
Breg[Pri] := Areg[Pri]
Areg[Pri] := MostNeg
purpose: to access hard channels
to initialise soft channels

Breg[Pri]

L]

start process
def: SEQ
AtByte(IptrReg[Pril, Breg[Pril, Oreg[Pri])
WIndexWord(Areg[Pril, Iptr.s, Oreg[Pril
ProDescReg := Areg[Pril] \/ Pri
Run
purpose: to add a process to the end of the active
process list
end process

def: SEQ
RIndexWord(Areg[Pril, 1, Oreg[Pril)
IF
Oreg[Pri] = 1

SEQ
RIndexWord(Areg[Pri], 0, IptrReg[Pril)
WptrReg[Pril := Areg[Pri]
OreglPril] <« 1

SEQ
WindexWord({Areg[Pril, 1, Oreg[Pril-1)
SNP[Pri] := 1
purpose: to join two parallel processes; two words are

used, one being a counter, the other a pointer
to a workspace, when the count reaches 1,
the workspace is changed
run process
def: SEQ
ProDescReg := Areg[Pri]
Run



- 52 - 0145244

purpose: to run a process at a specified priority
stop process
def: SEQ

wIndexﬁord(WptrReg[Pri], Iptr.s, IptrReg[Pril)
SNP[Pril := 1

purpose: to deschedule the current process
Toad priority
def: SEQ

Creg[Pril := Breg[Pril
Breg[Pri] := Areg[Pri]
Areg[Pri] := Pri
purpose: to obtain the priority of the current process

OPERATIONS FOR MESSAGE COMMUNICATION

In the following description of input message and output message, hard
(Breg) is TRUE if Breg is a pointer to a hard channel (a process
location of a serial 1ink), FALSE otherwise. Similarly, soft {Breg)
is FALSE if Breg is a pointer to a a hard channel, TRUE otherwise.

input message

1, def: -- entered with

2. -- Areg = count

3. - Breg = channel

4, -- Creg = destination

5. IF

6. . hard(Breg[Pri])

7. LinkChannellInputAction

8. soft(Breg[Pri])

9. SEQ

10. RIndexWord(Breg[Pril, 0, Treg[Pril)
11. IF

12. Treg[Pri] = NotProcess.p
13. SEQ



© - 53- 0145244

14. WIndexWord(Breg[Pril], 0, WptrReg[Pril \/ Pri)

15. WIndexWord(WptrReg[Pril, Iptr.s, IptrReg[Pril)

16. . WIndexWord(WptrReg[Pri], State.s, Creg[Pri])

17. - SNPFlag[Pri] := 1

18. Treg[Pri] <> NotProcess.p

20. SEQ

21. WIndexWord(Breg[Pril, 0, NotProcess.p) -- reset channel
22. -- prepare for block copy

23. -- Treg already contains process descriptor

24. -~ Areg already contains count

25. Breg[Pri] := Creg[Pri] --destination

26. ProcPtrReg := Treg[Pri] /\ (NOT'1)

27. RIndexWord(ProcPtrReg.State.s, Creg[Pri]) -- source
28. CopyFlag[Pri] := 1 -- set copy flag

purpose: to input a block of bytes from a channel
output message

1. def: -- entered with

2. -- Areg = count

3. -- Breg = channel

4. - Creg = source

5. IF

6. hard(Breg[Pri])

7. LinkChannelOutputAction

8. soft(Breg[Pri])

9. . SEQ

10. RIndexWord(Breg[Pril, 0, Treg[Pri])

11. IF

12. Treg[Pri] = NotProcess.p

13. SEQ

14. WindexWord(Breg[Pril, 0, WptrReg[Pril \/ Pri)
15. WindexWord({WptrReg[Pri], Iptr.s, IptrReg[Pri])
16. WindexWord(WptrReg[Pri], State.s, Creg[Pri])
17. SNPFlag[Pri] := 1

18. Treg[Pri] <> NotProcess.p -- Ready

19, SEQ



- 54 - 0145244

20. ProcPtrReg := Treg[Pril \/ (NOT 1)

21. -- read the State location

22. RIndexWord(ProcPtrReg, State.s, Oreg[Pril)

23. -- check for Alternative process or Inpdt process

24. IF

25. Oreg[Pril] = Enabling.p

26. SEQ

27. WindexWord(ProcPtrReg , State.s, Ready.p)

28. WindexWord(Breg[Pril, 0, WptrReg[Pril \/ Pri)

29, WIndexWord(WptrReg[Pril, Iptr.s, IptrReg[Pril)

30. WIndexWord(WptrReg[Pri], State.s, Creg[Pril)

31. SNPFlag[Pri] := 1

32. Oreg[Pril = Waiting.p

33. SEQ

34, WIlndexWord(ProcPtrReg. State.s, Ready.p)

35, WIndexWord{Breg[Pril, 0, WptrReg[Pril \/ Pri)

36. WIndexWord(WptrReg[Pril, Iptr.s, IptrReg[Pril)

37. WIndexWord(WptrReg[Pri], State.s, Creg[Pril)

38. SNPFlag[Pril := 1

39. ProcDescReg := Treg[Pril

40. Run

41. Oreg[Pril] = Ready.p

42. SEQ

43, WIndexWord{Breg[Pril, 0. WptrReg[Pril \/ Pri)

44, WIndexWord{WptrReg[Pril], Iptr.s, IptrReg[Pril)

45, WindexWord(WptrReg[Pri], State.s, Creg[Pril)

46. . SNPF1ag[Pri] := 1

47. TRUE -- Oreg[Pri] contains a valid pointer

48, SEQ

49, -- Reset channel

50. WIndexWord(Breg[Pril, 0, NotProcess.p)

51. -- Set up registers for block copy:

52. -- Treg[Pri] already contains description
inputting process

53. CopyFlag[Pri] := 1 -- indicate block copy

54, Breg[Pri] := Oreg[Pri] -- destination

purpose:  to output a block of bytes to a channel



% 0145244

OPERATIONS FOR ALTERNATIVE INPUT

alternative start
1. def: WIndexWord(WptrReg[Pril, State.s, Enabling.p)
purpose: to initialise the process state location

prior to enabling alternative inputs
alternative wait

1. def: SEQ
2. WIndexWord(WptrReg[Pri], 0, -1)
3. RIndexWord(WptrReg[Pril, State.s, Areg[Pri])
4, IF
5. Areg[Pri] = Ready.p
6. SKIP
7. TRUE
8. SEQ
9. WIndexWord{WptrReg[Pril, State.s, Waiting.p)
10. WIndexWord(WptrReg[Pril, Iptr.s, IptrReg[Pril)
11. SNPFlag[Pri] := 1
purpose: to wait for one of a number of enabled )
channels
alternative end
def: SEQ
RIndexWord(WptrReglPril, 0, OreglPril)
2. AtByte(IptrReg[Pril], Oreg[Pril, IptrReg[Pri])
purpose: to start execution of the selected input

of an alternative process
enable skip

1. def: IF

2. Areg[Pri] <> MachineFALSE

3. WIndexWord(WptrReg[Pril, State.s, Ready.p)
4. Areg[Pri] = MachineFALSE

5. SKIP

purpose: to enable a SKIP guard



- 56 - 0145244

disable skip

def: SEQ
IF
Breg[Pri] <> MachineFALSE
IsThisSelectedProcess
Breg[Pri] = MachineFALSE
Areg[Pri] := MachineFALSE
Breg[Pri] := Creg[Pri]

purpose: to disable a SKIP guard
enable channel
1. def: SEQ
2. IF
3. Areg[Pri] = MachineFALSE
4. SKIP
5. Areg[Pri] <> MachineFALSE
6. SEQ
7. IF
8. soft(Breg[Pril)
9. SEQ
10. RIndexWord(Breg[Pril, 0, Oreg[Pril)
11. IF - |
12. Oreg[Pri] = NotProcess.p
13. WIindexWord(BreglPril, 0, WptrReg[Pril \/Pri)
14, Oreg[Pri] = (WptrReg[Pril] \/Pri)
15. SKIP
16. TRUE
17. WindexWord(WptrReg[Pril, State.s,Ready.p)
18. hard(Breg[Pril)
19, VAR PortNo, Ready :
20. SEQ



21.
22.
23.
24,
25,
26.
27.
28.
29.
30.

disable channel

1
2
3
4,
5.
6
7
8
9

10.
11.
12.
13.
14,
15,
16.
17.
18.
19.
20.
21.
22.
23.

On entry Areg

- 57 - 0145244

WordOffset(PortBase, Breg[Pri], PortNo)

Makel inkReadyStatusEnquiry(PortNo,Ready)
IF

Ready .
WIndexWord(WptrReg[Pril,State.s,Ready.p)
TRUE
SEQ
WIindexWord(Breg[Pril, O,WptrReg[Pril] \/Pri)
EnableLink{PortNo)

Breg[Pri] := Creg[Pri]

to enable a channel input

Instruction Offset
Guard
Channel

Breg
Creg

On exit IF

this was selected guarded process
Areg = MachineTRUE

otherwise
Areg = MachineFALSE

Breg[Pri] = MachineFALSE
Areg[Pri] : = MachineFALSE
Breg[Pri] <> MachineFALSE
IF

soft(Creg[Pril)
SEQ
RIndexWord(Creg[Pril. 0, Breg[Pril)
IF '
Breg[Pri] = NotProcess.p
Areg[Pri] := MachineFALSE
Breg[Pri] = (WptrReg[Pril]\/ Pri)
SEQ
WindexWord(Creg[Pri], 0, NotProcess.p)
Areg[Pri] := MachineFALSE



- 58 - 0145244

24, TRUE

25. IsThisSelectedProcess

26, hard(Creg[Pri])

27. VAR PortNo, Ready :

28. SEQ

29. WordOffset(PortBase, Creg[Pril], PortNo)
30. -- Check if 1link channel is Ready.

3L. o : -- This will cause channel to be disabled.
32. MakelLinkReadyStatusEnquiry(PortNo, Ready)
33. IF

34. Ready

35. - IsThisSelectedProcess

36. TRUE

37. Areg[Pri] := MachineFALSE

purpose: to disable an enabled channel
' to select one of a number of
alternative enabled inputs

It will be understood that the microinstruction ROM 13 contains
microinstructions corresponding to all the above listed functions and
operations whereby the processor is caused to carry out any of the
above actions as a result of microinstructions derived from the ROM 13.

Scheduling

The processor shares its time between a number of concurrent processes
executing at the two different priority levels 0 and 1. A priority 0
process will always execute in preference fo a priority 1 process if
both are able to execute. At any time only one of the processes is
actually being executed and this process which is the current process
has its workspace pointer (WPTR) in the WPTR REG 51 and an instruction
pointer (IPTR) in the IPTR REG 50 indicates the next instruction to be
executed from the sequence of instructions in the program relating to
that particular process. Any process which is not the current process
and is not awaiting execution is descheduled. When a process is
scheduled it either becomes the current process or is added to a list
or queue of processes awaiting execution. Such a 1ist is formed as a



- 59 - 0145244

linked 1ist with each process on the 1ist having a pointer in the 1ink
location 66 of its workspace to the workspace of the next process on
that 1ist. The instruction pointer (IPTR) of any process on the list
is stored in the IPTR location 65 of its workspace as shown in Figure
3.

In the present case, the processor maintains two lists of processes
which are waiting to be executed, one for each priority level. This
situation is shown in Figures 3 and 4. Figure 3 indicates the high
priority 0 1ist whereas Figure 4 shows a low priority 1 1ist at a time
when a priority 0 process is the current process as shown in Figure

3. As the current process in this case is a high priority O process,
the register bank selector 41 has selected the registers in bank 38
for use by the processor. Consequently WPTR REG (0) holds a pointer
to the zero location of the workspace 60 of the current process L as
indicated in Figure 3. The IPTR REG (0) contains a pointer 180 to the
next instruction in the program sequence 181 which is stored in
memory. The registers 54, 55; 56 and 57 indicated in Figure 3 contain
other values to be used during execution of the current process L. The
list of priority 0 processes which have been scheduled and are
awaiting execution is indicated in Figure 3 by the three processes M,
N and O whose workspaces are indicated diagrammatically at 61, 62 and
63. Each of these workspaces is generally similar to that indicated
for process L. The FPTR REG (0) marked 53 contains the pointer to the
workspace of process M which is the process at the front of this

list. The workspace of process M contains in its IPTR location 65 a
pointer to the next instruction in the program sequence which is to be
executed when process M becomes the current process. The 1ink
location 66 of process M contains a pointer to the workspace of
process N which is the next process on the 1ist. The last process on
the Tist indicated is process 0 which has its workspace indicated at
63. The BPTR REG (0) marked 52 contains a pointer to the workspace of
this last process 0. The workspace 63 of this process 0 is pointed to
by the contents of the 1ink location 66 of the previous process N but
in this case the link location 66 of process 0 does not contain any



- 60 - 0145244
pointer as this is the last process on the 1ist.

When a further process is added to the list a pointer to the workspace
of that further process is placed in the BPTR REG 52 and the Tink
location 66 of the process O then contains a pointer to the workspace
of the further process which is added to the list.

The priority 1 1ist is generally similar and this is indicated in
Figure 4. In this case the 1ist of priority 1 processes which have
been scheduled and are awaiting execution consists of the processes P,
Q and R. A further priority 1 process marked S is shown but this is
currently descheduled and does not form part of the 1ink 1ist. The
FPTR REG (1) contains a pointer to the workspace of process P which
forms the first process on the 1ist awaiting execution. The BPTR REG
{1)-contains a pointer to the workspace of process R which forms the
Tast process on the 1ist awaiting execution. Each of the processes P,
Q and R has an IPTR in its IPTR location pointing to the program stage
from which the next instruction is to be taken when that process
becomes the current process. The Tink Tocation of each process apart
from the last process on the 1ist contains a pointer to the workspace
of the next process on the 1list.

The position shown in Figure 4 is that the WPTR REG (1) marked 51 does
not contain a valid pointer to a process workspace on the assumption
that the current priority 0 process became the current process without
interrupting a priority 1 process prior to its completion.

When a process becomes ready to run, for example as a result of the
completion of some communication, it is either executed immediately or
it is appended to the appropriate 1ist. It will be run immediately
“if it is a priority O process and no priority 0 process is being
executed or if it is a priority 1 process and no process is being
executed at all. A process may continue to execute until it engages
in communication on a channel which requires descheduling of the
process or if it is a priority 1 process until it is temporarily



- 61 - 0145244

stopped or interrupted to allow a more urgent priority O process to
run.

When a priority O process is executed the PRI FLAG 47 is set to 0.
When the processor is executing a priority 1 process or has no
processes to run the PRI FLAG 49 has the value 1. If there are no
processes to run, the WPTR (1) register has the value Not Process p.
This will be the position for the WPTR REG 51 shown in Figure 4 where
there is a 1ist of priority 1 processes without any interrupted
priority 1 process. If a priority 1 process had been interrupted to
allow execution of a priority O process the workspace pointer of the
interrupted priority 1 process would remain in the WPTR REG (1).
Consequently when there are no more priority 0 processes to be run the
processor determines whether a priority 1 process was interrupted by
means of the contents of the WPTR (1) register, If this has the value
Not Process p then there was not an interrupted process and the
processor checks the priority 1 1ist by looking at the contents of the
FPTR REG (1). If however WPTR REG (1) still contains a workspace
pointer the processor can continue executing the interrupted process.
If there is no process waiting on either of the priority lists then
the appropriate FPTR REG will contain the value Not Process p.

New concurrent processes are created either by executing a “start
process” operation or by executing a "run process” operation. They
terminate either by executing a “end process” operation or by
executing a “stop process" operation.

A process may be taken from the top of a 1ist for execution by use of
the procedure "dequeue" which has been defined above. That
definition, together with various other definitions above, include
line numbers which are not part of the definition but merely
facilitate explanation. Line 1 of the definition of ProcedureDEQUEUE
merely gives the name of the procedure and line 2 indicates that a
sequence of events are to occur. According to line 3 the WPTR REG 51
of the appropriate bank 38 or 39 takes the pointer which has been held



- 62 - 0145244

in the FPTR REG 53 of the same bank. Line 4 indicates that a test of
certain conditions is to be carried out. Line 5 indicates that if the
contents of the BPTR REG 52 are found to be the same as the contents
of the FPTR REG 53 then in accordance with line 6 the value “Not
Process p" is loaded into the FPTR REG. Line 7 indicates that if the
condition of line 5 was not found to be the case then 1ine 7 applies
in that the FPTR REG 53 of the appropriate register bank is loaded
with the pointer currently stored in the 1ink location 66 of the
workspace previously pointed to by the contents of the FPTR REG.
Finally, in accordance with 1ine 9 the IPTR REG 50 is loaded with the
IPTR from the IPTR Tocation 65 of the workspace now pointed to by. the
contents of the WPTR REG 51.

The effect of this is to advance the 1ist by taking the front process
off and loading it into the -appropriate registers ready for executjon.

A current process may be descheduled by the procedure “start next
process" which has been defined above. A current process may execute
an instruction which involves setting th SNP FLAG 58 to the value 1
and in that case, when the processor responds to a microinstruction
requiring it to take the next action, the processor will execute the
procedure in accordance with the above definition. According to line
3 of the definition the processor initially clears the flag by setting
SNP FLAG 58 to the value 0. Line 4 requires the processor to test
whether the condition of line 5 is true. Provided the FPTR register
does not contain the value "Not Process p" then according to line 6
the dequeue procedure will occur so that the next process is taken off
the top list. If however line 5 had not been true this would indicate
that there was no process waiting on a 1ist for the current priority.
The processor would then check whether the condition of line 7 was
true. That involves testing whether the PRI FLAG 47 has the value 0.
If it does then we know that there is no priority O process waiting
due to the result of the test in line 5 and consequently the processor
goes on to the sequence commencing with line 9 of setting the priority



- 63 - 0145244

flag to 1. This causes the processor to examine the register bank for
the priority 1 processes and in accordance with lines 11 and 12 the
processor checks to see whether the WPTR REG (1) contains the value
“Not Process p" and that the FPTR REG (1) does not contain the value
"Not Process p". This means that there was no interrupted priority 1
process which has left its WPTR in the WPTR REG 51 and that there is a
waiting priority 1 process on the 1ist. Provided this condition is
true then according to Tine 13 the processor executes the procedure
dequeue which causes the next priority 1 process to be taken off the
front of the 1ist. If however the condition of 1lines 11 and 12 were
not correct then according to lines 14 and 15 the processor skips any
action. This means that if there had been a WPTR in the WPTR REG (1)
the processor will continue to execute that interrupted process. If
there had not been an interrupted process and there had been nothing
waiting on the priority 1 list then the processor will await
scheduling of a further process. If however the processor had found
that the condition in 1ine 7 was not correct but on the other hand the
priority was 1 then in accordance with Tines 16 and 17 the WPTR REG
(1) will take the value “Not Process p".

During message transition a process may be descheduled while waiting
for a communicating process to reach a corresponding stage in its
program. When the two communicating processes reach a corresponding
stage the procedure "run" may be used to schedule a process whose
descriptor is contained in the PROCDESC register 46. The action of
the processor can then be understood from the definition of the
procedure “run" set out above. In accordance with line 3 the priority
of the process indicated by the PROCDESC register 46 is calculated and
loaded into the PROCPRIFLAG 48. According to 1ine 4 the WPTR of the
process having its descriptor in register 46 is calculated and loaded
into the PROCPTR REG 45. The processor then tests to see whether the
conditions of line 6 apply. The current process has a priority of 0
or if the priority in the PROCPRIFLAG 48 is the same as the priority
in the PRIFLAG 47 and at the same time the WPTR REG 51 of the current
process contains a workspace pointer then the processor carries out



- 64 - 0145244

the sequence following line 7. Line 7 merely explains that the
sequence is that necessary to add a process to the queue. Line 8
requires that the processor carry out a test whether the condition of
1ine 9 is true. Provided that the FPTR REG of the priority indicated
by the flag 48 has the value “"Not Process p" then according to line 10
that FPTR REG is loaded with the pointer of register 45. That makes
the rescheduled process the top of the list. Line 11 indicates that
if the condition of 1ine 10 was not correct then the pointer contained
in register 46 is written into the 1ink location 66 of the last
process on the 1ist indicated by the BPTR REG of the appropriate
priority. That BPTR REG is then loaded with a pointer to the contents
of register 45. 1In other words the rescheduled process is added to
the end of the 1ist. Line 14 means that if the condition of Tine 6
was not the case then the sequence of 1ine 15 will occur. In this
case line 16 requires that the PRIFLAG 47 will take the value
currently in the PROCPRIFLAG 48 and according to line 17 the WPTR REG
of the appropriate priority will be loaded with the pointer from
register 45. Line 18 requires that the IPTR REG 50 of appropriate
priority will be loaded with the IPTR taken from the IPTR location 65
of the process indicated by the pointer in the WPTR REG 51. Line 19
inserts the value zero into the 0 register of the appropriate priority
bank.

Process to Process Communication -

One process may communicate with another using a soft channel provided
by one addressable word location in memory. Alternatively a process
on one microcomputer may communicate with a process on another
microcomputer through the serial links using hard input and output
channels. The serial links each have an input pin and an output pin
connected to corresponding pins of another microcomputer by a single
wire which forms a unidirectional non-shared communication path. For
both internal and external communication each outputting process
executes one “output message" operation as defined above for each
message to be output and each inputting process executes an "input



- 65 - 0145244

message” operation as defined above for each message to be input. 1In
accordance with this embodiment the message length to be transmitted
for each "output message" or “input message" operation may be of
variable length. Data is transmitted in one or more units of
specified bit length and in this case the bit length is 8 bits forming
1 byte. The message may therefore consist of one or a plurality of
units or bytes depending on the length of the message that is
required. In order to understand the manner in which communication is
effected various examples will now be described.

Example 1

Process Y wishes to output a message to process X on the same
microcomputer using a soft channel where both processes are of the
same priority. This is illustrated in the sequence of Figure 15.
Initially the channel 70 contains the value "Not Process p" as neither
process Y nor process X have yet executed an instruction which
requires use of that channel. When process Y reaches the point in its
program where it wishes to execute an output it loads into its AREG 54
a count indicating the number of bytes which constitute the message,
it loads into the BREG 55 the address of the channel to be used for
the communication and it loads into the CREG the source address which
is the memory address for the first byte of the message to be
transmitted. This is in accordance with lines 2, 3 and 4 of the
definition of the operation “output message". Further line number
references will relate to the definition of ouptut message given
above. Line 5 requires the processor to test the contents of the B
register to see whether the channel address given corresponds to that
of a hard channel. If it does then 1ine 7 of the definition requires
the processor to carry out the procedure "link channel output action"
which has been defined above. In the example of Figure 15 that is not
the case and consequently line 8 of the definition is found to be true
in that the B register contains the address of a soft channel.
Consequently the processor carries out the sequence following line 9.
In accordance with 1ine 10 the TREG 49 is loaded with the value



- 66 - 0145244

pointed to by the pointer from the B register with no offset i.e. the
channel content. Lines 11 and 12 then require the processor to check
whether the TREG contains the value Not Process p and this is of
course the case in Figure 15b. Consequently the processor carries out
the sequence of 1ines 14 to 17 of the output message definition. Line
14 requires the process descriptor for process Y to be written into
the channel 70. Line 15 requires the contents of the IPTR REG 50 to
be stored in the IPTR location 65 of the workspace for process Y and
T1ine 16 requires the source address to be written into the state
location 67 of the workspace of process Y. Line 17 requires the
SNPFLAG to be set to 1 indicating that process Y should be descheduled
by the next action of the processor. That is the position shown in
Figure 15c and remains the position until the inputting process X
executes an input instruction.

Again process X first loads into its A register 54 a count of the
number of bytes required for the message it is to input. It loads
into its B register the address of the channel to be used for the
input and its C register is loaded with the destination address in the
memory for the first byte to be input. This is in accordance with
lines 2, 3 and 4 of the definition of input message and is the
position shown in Figure 15d. Lines 5, 6 and 7 of the input message
‘definition require the processor to check whether the address in the B
register corresponds to a hard channel in which case the processor
would be required to execute the 1ink channel input action procedure.
That is not the case in Figure 15 as the B register points to the soft
channel 70. Consequently the condition of line 8 is true and the
sequence Tollowing 1ine 9 occurs. Firstly the T register 49 for
process X is loaded with the value pointed to by the pointer in thez B
register with no offset i.e. the channel content. If that value had
been "Not Process p" then the processor would have followed lines 13
to 17 which would have resulted in descheduling process X. However,
in the present case the T register is found to meet the requirement of
Tine 18 of the definition in that it does not contain "Not Process

p". In accordance with 1ine 21 of the definition the processor then
resets the channel 70 by writing the value "Not Process p" into the



- 67 - 0145244

channel 70 as shown in Figure 15e. Lines 22 to 24 merely contain the
explanation that the processor will now be prepared to carry out a
block .copy of data from one memory location (source) to another memory
Tocation (destination) while the T register 49 now contains the
process descriptor of process Y and the A register contains the count
of the number of bytes to be transmitted. Line 25 of the definition
requires that the B register for process X is now loaded with the
destination address which was previously is the C register. According
to 1ine 26 the PROC pointer register 45 is loaded with the WPTR of
process Y which is derived by taking the process descriptor from
register T and removing the priority bit. Line 27 requires that the C
register for process X is loaded with the source address taken from
the state location 67 of the workspace for process Y. Line 28 then
requires the copy flag of the appropriate priority to be set to 1 so
that at its next action the processor carries out the procedure "Block
copy step" which has been defined above. This causes the processor to
transfer one byte at a time from the source memory address to the
destination memory address and it repeats this exercise progressively
altering the source and destination addresses as each byte is
transferred and progressively decreasing the count in the A register
of the number of bytes remaining to be transferred. When the count is
zero the descheduled process Y is rescheduled by the procedure run.
This can be seen from the definition of block copy step. Line 2
defines the sequence that is to occur. The first step is line 3 which
reads into the O register the byte from the source address in memory
indicated by the C register. Line 4 then writes that byte of data
from the 0 register into the destination memory address pointed to by
the B register. Line 5 then clears the 0 register. Line 6 creates a
new source pointer which is advanced by one byte and 1ine 7 creates a
new destination address which is advanced by one byte. Line 8 causes
the count in the A register to be reduced by one. Line 9 then
requires a test to be carried out to find whether in accordance with
1ine 10 the A register now contains a zero count in which case the
block copy has been completed. If the A register does not contain a
zero count then the condition of line 21 is met. However, as the copy



- 68 - 0145244

flag is still set to 1 the processor will continue to take an
appropriate next action. If the priority of the process involved in
the block copy is a low priority process and a high priority process
has become ready to run then the processor may interrupt the block
copy after transmitting one or a number of bytes prior to completion
of the full message transfer in order to execute the higher priority
process. However, assuming that there is no higher priority process
awaiting then on reaching line 22 of the block copy step, the
processor will repeat the sequence commencing from line 2 as the copy
flag is still set. Conseuently it will repeat the procedure of lines
3 to 8 of the block copy step until the count is zero. Line 13 then
requires the copy flag to be cleared and reset to zero. Lines 14 and
15 require the processor to check whether the T register 49 has a
value other than Not Process p. In the present case it will have the
process descriptor of the descheduled process Y. Consequently the
sequence beginning at 1ine 16 will occur and the process descriptor
register 46 will be loaded with the process descriptor of process Y
which was previously contained in the T register. The previously
described procedure run will then be effected in order to rescheduie
process Y. Lines 19 and 20 merely indicate that if the T register had
not contained the process descriptor of a descheduled process then the
action would have been skipped.

ExamEIe 2

Figure 16 shows in the sequence message communication between an
outputting process Y on a first microcomputer 251 communicating with
an inputting process X on a second microcomputer 252. The output pin
27 of an output channel 90 for process Y is connected by a single wire
253 to the input pin 26 of the input channel 91 for process X.

With all processes executing output or input using a hard channel the
process is descheduled after executing the appropriate output or input
instruction. The transfer of the required number of bytes from the
source address in the memory of one microcomputer to the destination



- 69 - 0145244

address in the memory of the other microcomputer is carried out under
the control of the 1ink units described in Figures 10, 11, 12, 13 and
14, The transfer of bytes is carried out independently of action by
the processor so that the processor of both microcomputers can be
executing current processes independently of the message transfer.
When the links have reached a stage in the message transfer which
require further action by the processor they make suitable requests to
the processor. Each 1ink channel has a channel address which consists
of one addressable word in memory called the process word. The
addresses of these hard channel process words are chosen so that the
processor recognises them as hard channels needing separate
connections to the 1inks. In each of Figures 16, 17, 18 and 19 a
similar format has been used for indicating the output channel 90 for
process Y and the input channel 91 for process X. The channel has its
associated process word 256 marked with the abbreviation PW. The
output channel has registers 254 which have been described above in
Figure 12 and a location 257 in which the state of the transfer state
machine 113 is indicated. For the input channel 91 the process word
location 256 is shown as well as the input channel registers 255 which
have already been described in Figure 13 and a location 258 shows the
states of the three state machines from Figure 13. In Figure 16 both
processes have similar priority and the outputting process Y attempts
to output a message before process X attempts to input a message. 1In
accordance with 1ines 2 to 4 of the definition of "output message”
process Y loads into the A register 54 the count of the number of
bytes to be transmitted in the message, into the B register 55 the
address of the channel to be used and into the C register 56 the
source address in memory for the first byte to be copied. As is shown
in Figure 16a at this time the output channel is idle whereas the
input channel has the states data absent, idle and disabled. After
Figure 16a process Y executes the operation “output message" and in
accordance with 1ine 6 of the definition of that operation the
processor finds that the channel is a hard channel and consequently in
accordance with line 7 the procedure "link channel output action” is
carried out. The definition of that procedure "link channel output



. 0145244

action" indicates that the current IPTR for process Y is taken from
the IPTR REG 50 and stored in the IPTR location of the workspace for
process Y. Line 5 requires that the process descriptor of process Y
is written into the process word location 256 of the output channel
90. Line 6 sets the port number for the output channel and line 7
requires the procedure "cause 1ink output" which has been described
above. That transfers into the channel registers 254 the count source
and priority from the appropriate registers in use in execution of the
process Y. An input request is also made to the 1link channel so that
the first byte of data is transmitted. According to line 8 the
SNPFLAG is set to 1 so that the next action by the processor requires
process Y to be descheduled as previously described. The position is
as shown in Figure 16b

When process X is about to execute input message it loads the A
register 54, B register 55 and C register 56 with the count channel
and destination required for the input as shown in Figure 16c. When
process X executes the operation “input message", it finds in
accordance with 1ine 6 of the definition that the channel is a hard
channel and consequently it performs the procedure “1ink channel input
action". This carries out the same sequence as has been described for
Tink channel output action. It stores the IPTR of X in the IPTR
Tocation 65 of the workspace of process X and writes the process
descriptor for process X into the process word 256 of the input
channel 91. It loads the count destination and priority of X into the
registers 255 of the input channel 91. In this case line 7 of the
procedure link channel input action makes an output request to the
1ink so that an acknowledge packet is sent from the output channel
assocated with process X to the input channel associated with process
Y. The position is as shown in Figure 16b.

A plurality of data bytes in data packets are then sent each followed
by an acknowledge packet as has already been described with reference
to Figure 14. When the final acknowledge packet has been sent from
process X the 1ink for process X makes a run request on line 84e as
described with reference to 13 so that the processor of microcomputer



- 71 - 0145244

258 reschedules process X by adding it to the end of the 1ist if there
is already a list. This is the position shown in 1l6e. After 16e the
final acknowledge packet is received by the input channel for process
Y and a run request signal is generated on line 84b of Figure 12 so
that the processor when asked to take next action adds process Y to
the end of the 1ist of appropriate priority. The position is then as
shown in Figure 16f.

Process Input from Alternative Input Channels

An alternative process is one which selects one of a number of
channels for input and then executes a corresponding component process
of the alternative process. The selection of the channel from the
alternatives available is performed by the inputting process examining
all the channels to determine if one or more are ready for input in
the sense that it has an outputting process already waiting to output
through that channel. If no channel is found to be ready the
inputting process is descheduled until one of the channels becomes
ready. If at least one of the channels was found to be ready, or if
the inputting process is rescheduled due to action by an outputting
process, the process selects one of the inputs which is now ready and
performs the input through that channel. During the selection of the
input channel the state location 67 of the process workspace can take
only the special values enabling p, waiting p, and ready p.

In order to allow an inputting process input from one of a number of
alternative channels it is important that the inputting process can be
descheduled if none of the alternative input channels are ready when
the inputting process first reaches the stage in its program where it
wishes to input from one of those alternatives. This is particularly
important where the processor is operating with different priority
processes. Otherwise a high priority process wishing to effect
alternative input could hold up indefinitely low priority processes
while it remains scheduled merely repeatedly testing the state of the
various alternative input channels awaiting an output process on one
of them. Consequently the present embodiment allows the inputting



-72 - 0145244

process to be descheduled if none of the alternative input channels
are ready when they are first tested by the inputting process. If the
inputting process has descheduled in this way a request may be made to
the processor to reschedule the process as soon as ‘one of the channels
becomes ready due to action by an outputting process. However it may
occur that more than one outputting channel becomes ready before the
inputting process has been rescheduled and carried out its input.
Consequently as soon as any output process makes a channel ready at a
time when the inputting process is descheduled and waiting it is
necessary to prevent more than one request being made to the processor
to reschedule the inputting process. This is achieved by use of
instructions incorporating the above defined operations alternative
start, enable channel, alternative wait, disable channel, alternative
end and input message. Any process wishing to effect an alternative
input must first execute an alternative start followed by the
operation enable channel once for each of the possible alternative
channels. This is followed by alternative wait, disable channel and
alternative end. After this the process will need to execute some
load instructions in order to give count channel and source
information for use in “input message" as previously described.

Various examples which involve the instructions for alternative input
will now be described.

Example 3

This relates to communication between an outputting process Y on one
microcomputer passing message through a serial 1ink to an inputting
process X on a different microcomputer. Process X commences the input
operations before Y executes any output instructions. None of the
alternative inputs is ready at the time the process X commences. It
further assumes that once one of the channels becomes ready due to
output action by process Y none of the other alternative channels
becomes ready. Initially process X executes "alternative start" and
in accordance with the definition of that operation it writes



- 73 - 0145244

*enabling p" into the state location 67 of the workspace of process

X. The state machines of the output channel 90 and input channel 91
are as shown in Figure 17a. Process X then executes the operation
"enable channel”. It does this for each of the possible input
channels but Figure 17b shows the result of this operation on the
particular channel which will be used by process Y. As is shown in
the definition of enable channel, process X initially loads a guard
value into the A register and this is checked before proceeding with
the operation. Lines 8 to 17 specify the sequence to be followed if
the channel is a soft channel. In the present case the address of the
channel corresponds to that of a hard channel and consequently the
sequence from 1ines 21 to 29 are followed. Line 21 calculates the
port number of the channel and line 22 causes the processor to make a
status enquiry for that channel. Lines 23 to 25 indicate that if the
channel had been ready, the value ready p would have been written into
the state location 67 for the process X. However that is not the case
and consequently the sequence from lines 27 to 29 apply. The process
descriptor for process X is written into the process word location for
the channel in accordance with 1ine 28 of the definition and Tine 29
requires the procedure enable 1ink which has been defined above. This
sets the priority flag of the input channel to the priority of the
process X and causes an enable request to the 1link channel. This
causes the state of the channel to be changed to “enabled" as shown in
Figure 17b. Process X then executes an alternative wait. In
accordance with 1ine 2 of the definition of alternative wait this sets
the value -1 into the zero location of the workspace for process X.
Lines 3 and 4 check the content of the state location 67 to see if it
is ready p. As it is not, the sequence of lines 8 to 11 are carried
out. In other words the value waiting p is written into the state
locations 67 for process X. The IPTR for process X is stored in the
IPTR Tocation 65 and process X is descheduled as a result of setting
the SNPFLAG to 1. This is shown in Figure 17c. After this process Y
begins an output operation by effecting output message. In the usual
way and as has been described above, this will cause process Y to be
descheduled and the output 1ink will send the first data byte. The



-74 - 0145244

arrival of that byte will cause the input link for process X to make a
ready request to the processor for process X. This is the position
shown in Figure 17d. Process X then becomes rescheduled and carries
out the operation "disable channel" which selects one channel and
disables the rest. As can be seen from 1ine 1 of the definition of
disable channel, the A register is loaded with an instruction offset
which is necessary to derive the address of the next instruction to be
executed by the inputting process after the operation ALTEND. The B
register has a guard value and the C register is loaded with the
channel address. It will be understood that this instruction is
repeated for each of the possible alternative input channels. Lines 9
and 10 deal with checking the guard values. Providing this test is
satisfactory the processor tests according to lines 13 and 14 whether
the channel address is that of a soft channel. However in the present
case line 26 applies in that the address of the channel is that of a
hard channel. Line 29 calculates the port number of the channel and
Tine 32 causes a status enquiry to be made to the 1ink by the
processor, If the channel is found to be ready in accordance with
1ine 34 the above defined procedure “is this selected process" is
carried out. According to line 4 of that definition this loads into
the 0 register the contents of the zero location of the workspace of
process X. According to lines 5 and 6 this is tested to see if it is
-1 and if so the contents of the A register are written to the memory
location indicated by the WPTR REG and the A register has the value
machine TRUE indicating that this is the selected process. In
accordance with 1ine 10 if the 0 register had not contained the value
-1 then this would not be the selected process. Figure 17e shows the
state of the two processes immediately before executing disable
channel and Figure 17f shows the position after executing disable
channel. After Figure 17f process X executes the operation ALTEND
which from 1ine 1 of its definition loads the 0 register with the
contents of the memory address indicated by the pointer in the WPTR
register. It then puts a pointer into the IPTR register which has



- 75 - 0145244

the previous value of the IPTR register together with the offset
contained in the 0 register. This enables the process to continue at
the desired position in its instruction sequence. After executing
ALTEND, process X may load the appropriate values for the message
transmission and execute input message which will carry out the
sequence illustrated in Figure 16 from Figure 16c onwards.

Although the above example related to use of alternative hard
channels, the sequence is generally similar where a process carries
out an alternative input through one of a number of alternative soft
channels. Initially execution of "alternative start" loads the
special value “"enabling p" to the state location of the process in
order to indicate that the process is carrying out an alternative
input. The operation “enable channel" is then carried out on each

" channel in order to test the state of the channel. Lines 12, 14 and
16 of the definition of “enable channel" check the contents of the
channel. 1In accordance with 1ine 12, if no workspace pointer is found
in the channel the value “Not Process p" is written into the channel.
In accordance with line 17, if the workspace pointer of the outputting
process is found in the channel the value "Ready p" is written into
the state location of the inputting process. This is done for each
channel in order to check whether any is already "ready" as a result
of an instruction executed by an outputting process and for any
channels which are not found to be ready the workspace pointer of the
inputting process is left in the channel. The inputting process then
executes "alternative wait" which effects the inputting process rather
than the channel. In accordance with line 2 of the definition it
lToads the value -1 into the zero location of the workspace for the
inputting process and lines 5 and 7 of the definition of "alternative
wait" check on the contents of the state location of the inputting
process. If it finds value "Ready p" then the inputting process is
not descheduled but if it does not find "Ready p" then according to
1ine 9 of the definition it writes "waiting p" into the state location
of the process and 1ines 10 and 11 of the definition lead to
descheduling of the inputting process. If the inputting process was



- 16 - 0145244

not descheduled then it will carry on with its next instruction which
will be "disable channel". If on the other hand it had been"
descheduled it will in due course be rescheduled as a result of an
outputting process attempting to use one of the alternative channels
and when the inputting process is rescheduled it will resume with its
next instruction which will be "disable channel”. It will carry out
this operation for each of the alternative channels and prior to each
operation the A register will be loaded with an offset number to
indicate the instruction offset necessary to locate the next
instruction in the program sequence for that process should that
channel be chosen for the input. Lines 18, 20 and 24 indicate
respective tests on whether or not the channel contains the value "Not
Process p", a pointer to the inputting process, or a pointer to an
outputting process. If in accordance with line 24 it is found that
the channel contains a pointer to an outputting process line 25
requires the procedure "is this selected process". According to the
definition of this procedure, the zero location of the workspace of
the process is checked to see that it still has the value -1 and
provided it does this then becomes the selected channel for the input
and the procedure removes the value -1 and writes into the zero
location of the workspace the instruction offset necessary. When
further "disable channels" operations are carried out on the remaining
channels some may be found to be "ready" by holding a pointer to an
outputting process but when the procedure "is this selected process”
is carried out it will no longer locate the value -1 in the zero
location of the workspace of the inputting process and consequently it
will be apparent that a channel has already been selected and
consequently no further channel is to be selected. Any channels which
are still found to contain a pointer to the inputting process will
meet the condition of line 20 of the "disable channel" definition and
this will lead to the sequence following line 22 in which the channel
is changed back to "Process p". After the "disable channel" operation
has been carried out on all the alternative channels, the inputting
process carries out the operation "alternative end" which transfers
the instruction offset from the zero location of the workspace of



e 0145244

the inputting process and causes the offset to be added to the
instruction pointer for the process so that the continuing program for
that process is picked up at the correct point in its instruction
sequence.

Exam21e 4

This example illustrated in Figure 18 has process Y performing an
output operation on one microcomputer in order to communicate with
process X on another microcomputer which performs alternative input
operations on a number of channels of which the one used by process Y
is the only input channel which is ready. Initially process Y
executes output message in accordance with the sequence described for
Figures 16a and 16b. This is the position which has been reached in
Figure 18a. Process X then executes an alternative start operation
and is about to execute enable channel and the position is shown in
Figure 18b. After executing enable channel the position moves to that
illustrated in Figure 18c. Process X then executes alternative wait
but continues and is not descheduled and the position as process X is
about to execute disable channel is shown in Figure 18d. Having
executed disable channel, the processes continue as previously
described with reference to Figure 17 after execution of disable
channel.

Example 5

Figure 19 illustrates two processes X and Y of the same priority of
the same priority on the same microcomputer in the situation where
process X carries out an alternative input operation prior to output
process Y commencing an output operation. The sequence will be the
same if process Y was at a higher priority than X. Initially process
X executes alternative start and this is the position shown in Figure
19a. It merely writes “"enabling p" into the state location of the



-7 - 0145244

workspace for process X. Process X then executes enable channel and
this moves on to the position shown in Figure 19b in which the process
descriptor of process X is located in the channel. 1In order to move
to Figure 19c process X executes an alternative wait operation and as
the state location of process X contains enabling p the location is
updated to waiting p and process X is descheduled. When process Y
wishes to output it commences as shown in Figure 19d by loading its
registers and executes output message. It finds that the channel
contains the process descriptor of the waiting process X and process Y
reads the state location 67 of the workspace for process X and finds
that it contains the value waiting p. This indicates that process X
is involved in an alternative input operation. This causes the state
Tocation of X to be set to ready p, the channel is loaded with the
process descriptor of process Y. The workspace of process Y is used
to save the IPTR value for Y and the source address. Process Y sets
the SNPFLAG to 1 and schedules process X. This is the position shown
in Figure 19e. As the SNPFLAG is set to 1, process Y is descheduled.
Process X now that it is scheduled is about to execute disable channel
operation as shown in Figure 19f. After executing the disable
operation the position is as indicated in Figure 19g. After that
process X executes the operation alternative end which is followed by
further load instructions and input message as previously described.

Example 6 -

The exampie shown in Figures 20a, 20b and 20c illustrate how a high
priority process Y which is executed by the same microcomputer as a
Tower priority process X can cause interruption of process X. Process
X is a low priority 1 process which during the course of its execution
created process Y. As process Y has priority 0 which is the high
priority process X was interrupted leaving its WPTR in the priority 1
WPTR REG 51. At the position shown in Figure 20a process Y is the
current process with the priority flag 47 set to indicate a priority 0
process and in the example shown no processes are waiting on a 1ist
for either priority 1 or priority 0. During execution of process Y



- 79 - 0145244

it may wish to perform an output message using a link. This will
cause setting of the SNPFLAG to 1 as shown in Figure 20b and process Y
will be descheduled. The start next process procedure will clear the
SNPFLAG 58 and the processor will test the FPTR (0) to determine if
there was another process on the priority 0 1ist. As there is not
(because the FPTR REG (0) contains the value Not Process p) the
processor will set the PRIFLAG 47 to 1 and as the WPTR REG (1)
contains a valid workspace pointer for the process X the procedure
start next process performs no further action. The processor as its
next action checks that there are no requests from links and the
SNPFLAG (1) is not set and consequently it restarts execution of
process X. This is the position in Figure 20c. At some later stage
the link through which process Y was outputting a message will have
received the final acknowledge at the end of the succession of bytes
which were incorporated in the message. At that time the 1link used by
process Y will make a run request to the processor. On completion of
the current action the processor will decide what action next to
perform. The SNPFLAG (1) is not set and there is a run request for a
channel priority O which is higher than that of priority X which is
the current process. The processor therefore performs the procedure
“handle run request" which copies the process descriptor of the
waiting process Y into the PROCDESC REG and performs the run
procedure. The run procedure loads the process workspace pointer of
process Y into the PROCPTR REG and the priority of Y into the
PROCPRIFLAG. As the priority of Y is higher than that of the priority
indicated in the PRIFLAG of the current X process an interrupt
occurs. The PRIFLAG is set to 0 and the WPTR REG (0) is set to the
process workspace of Y and the IPTR REG (0) is loaded. The position
has now returned to that shown in Figure 20a The next action of the
processor will be to execute the next instruction process Y which is
the instruction following the output message instruction.



- 80 - 0145244

Examg]e 7

Figures 2la, 21b and 21c illustrate the register and flag changes
during a message passing between an output process Y and a higher
priority process X which is carrying out an alternative input. 1In
this particular example process X has aiready commenced an alternative
input and has executed alternative wait so that process X is
descheduled with its process descriptor in the channel. When process
Y executes output message, it finds the process descriptor of X in the
channel and therefore reads the state location of the workspace of
process X where it finds the value waiting p thereby indicating that
process X is performing an alternative input. Process Y therefore
causes its process descriptor to be located in the channel and the
IPTR of Y is written into the IPTR location of the workspace of Y and
the source of the first byte of the message is written into the state
Tocation of the workspace of Y. The SNPFLAG (1) is then set to 1 as
shown in Figure 2la. This will later cause process Y to be
descheduled. The process descriptor of X will be written into the
PROCDESC register and the processor will carry out a run procedure for
process X. However, as the processor is now scheduling process X
which is of priority O and the processor is currently at priority 1 it
will cause an interrupt of priority 1 and starts to execute process
Xbefore starting the procedure Start Next Process. The state after
completion of the run procedure is shown in Figure 21b. Process X
then performs the disable channel operations and selects the channel
which is used by process Y. Process X then continues to execute an
input message--instruction which resets the channel to the value “Not
Process p", loads the TREG with the process descriptor of process Y
and sets the copy flag to 1. The processor then will cause the
message to be copied and finally process Y to be scheduled. The run
procedure will cause the process Y to be placed on the priority 1
queue. Eventually process X will deschedule by setting the SNPFLAG
(0). The processor then decides what action to perform next and since
the SNPFLAG (0) is set it will execute start next process and this
will cause the machine to return to priority 1 and this is the state



- 81 - 0145244

shown in Figure 21c. As the SNPFLAG (1) is still set the processor
will execute the procedure start next process which will deschedule
process Y. However process Y is still on the priority 1 1ist and will
eventually be scheduled.

Instruction Sequence for Example Programs

In our European Patent Specification 0110642 there are described two
example processes one dealing with the variable “"rotations” and the
other with variable "miles" and the instruction sequences to carry out
two example programs for those processes has been given. The same two
examples are set out below. Both programs are the same as were set
out in European Patent Specification 0110642 and are again written
using OCCAM language. Below each of the example programs is the
instruction sequence formed by use of a compiler to convert the OCCAM
statements into the machine instructions. In this case the machine
instructions are in accordance with the functions and operations
defined above.

Line numbers have been added to the program and instruction sequence
for each example and the line numbers are for reference purposes only.

Example 1

1. VAR rotations :

2. WHILE TRUE

3. SEQ

4, rotations := 0

5. WHILE rotations < 1000

6. SEQ

7. rotation 7 ANY

8. rotations := rotations + 1
9. mile . ANY



- 82 - . 0145244

Instruction Sequence Program in OCCAM language
Function '
code Data

VAR rotations:

WHILE TRUE
SEQ

1. L1:
2. idc 0 7 0 rotations := 0
3. stl 0 1 0
4, L2: WHILE rotations < 1000
5.
6. pfix 3 14 3 -
7. pfix 14 14 14 SEQ
8. 1dc 1000 7 8
9. 1dl1 0 0 0
10. opr gt 13 13
11. cj L3 10 11
12. 1dlp 3 2 3 rotation ? ANY
13. 1d1 1 0 1
14, ide 1 7 1
15. opr bent 13 7
16. pfix 1 14 1
17. opr in 13 6
18. 1dl 0 0 0 rotations :=
19. adc 1 1 rotations + 1
20. stl 0 1 0
21, nfix 1 15 1
22. . j L2 9 15
23. L3:
24. 1dlp 3 2 3 mile ! ANY
25. 11 2 2
26. 1de 1 7 1
27. opr bent 13 7
28. pfix 1 14 1
29. opr out 13 7
30. nfix 1 15 1
31. J L1 9 5



- 83 -

0145244

Program in OCCAM language

Example 2
1. VAR miles :
2. SEQ
3 miles := 0
4 WHILE TRUE
5. ALT
6 mile 7 ANY
7 miles := miles + 1
8 fuel 7 ANY
9 SEQ
10. consumption . miles
11. miles := 0
Instruction Seguence

Function

code Data

1. lde 0
2. stl 1
3. L1
4. pfix 1 14 1
5. opr alt 13 8
6. 1d1 3 0 3
7. ide 1 7 1
8. pfix 1 14 1
9. opr enbc 13 13
10. 1d1 4 0 4
11. 1de 1 7 1
12. pfix 1 14 1
13. opr enbc 13 13
14, pfix 1 14 1
15. opr altwt 13 9
16. 1dl1 3 0 3
17. 1de 1 7 1

YAR miles :
"SEQ
miles := 0
WHILE TRUE
ALT



- 84 - 0145244

Instruction Sequence Program in OCCAM language
Function
code Data
18. 1de  (L2-12) 7
19. pfix 1 14 1
20. opr disc 13 14
21. 1dl 4 0 4
22. 1de 1 7 1
23. 1dc  (L3-12) 7 10
- 24, pfix 1 14 1
25, opr disc 13 14
26. pfix 1 14 1
27. opr altend 13 10
28, L2:
29. 1dlp 2 2 miles 7 ANY
30. 1d1 3 3
31. ldc 1 7 1
32. opr bent 13 7
33. pfix 1 14 1
34. opr in 13 6
35. 1d1 0 1
36. adc 8 1 miles := miles + 1
37. stl 1 1
38. J L4 9 12
39. L3:
40, “1dip 2 2 fuel 2 ANY
41. 1dl1 4 4 SEQ
42, 1de 1 7 1
43, opr bent 13 7
44, pfix 1 14 1
45, opr in 13 6
46. 1dip 1 2 1 consumption . miles
47. 1d1 5 5
48, opr bent 13 7



- 85 - 0145244

Instruction Sequence Program in OCCAM language
Function
code Data
49, pfix 1 14 1
50. opr out 13 7
51. 1dc 0 7 0 miles := 0
b2. stl 1 1 1
53. L4:
54. nfix 3 15 3
- 55, J L1 9 15

It will be seen that these two programs now produce different
instruction sequences from those referred to in European Patent
Specification 0110642 as they use functions and operations as set out
above.

Example 1

It can be seen that 1ine 7 of the program requires an input from a
channel “rotation" and this causes line 12 of the corresponding
instruction sequence to load the destination address for the data to
be input. Line 13 loads a pointer to the channel to be used. Line 14
loads a count of the number of words to be input. Line 15 converts
the count from words to bytes. Lines 16 and 17 load the operation
“input message" by use of the pfix function. Similarly line 9 of the
program requires an output through a channel and in the corresponding
instruction sequence line 24 loads a pointer to the source of data to
be output. Line 25 loads a pointer to the channel to be used. Line
26 loads the count of the output message in words. Line 27 converts
this count to bytes. Again lines 28 and 29 use a pfix instruction in
order to carry out the "output message" instruction.



- 86 - 0145244

Examgle 2

This example includes an alternative inputting operation which
commences at line 5 of the program. This requires an alternative
input either from the channel "mile" in accordance with line 6 of the
program or from channel "fuel" in accordance with 1ine 8 of the
program. In the corresponding instruction sequence it can be seen
that the alternative input operation begins at line 5. Line 5
requires the operation "alternative start". Line 6 loads a pointer to
the channel “mile". Line 7 loads a guard value "true". Lines 8 and 9
use as pfix function in order to operate “"enable channel” for the
channel "mile". Line 10 loads a pointer to the channel “fuel" and
line 11 loads a guard value “true". Lines 12 and 13 use the pfix
function in order to carry out the operation "enable channel" for the
channel “fuel®. Lines 14 and 15 use a pfix function in order to
operate "alternative wait" for this process. Line 16 loads a pointer
to the channel "mile" and 1ine 17 loads a guard value "true". Line 18
loads the instruction offset which will be necessary if the process
inputs through the channel "mile". In this case the offset required
js 0. Lines 19 and 20 use the pfix function to carry out the
operation “"disable channel" on the channel "mile". Line 21 loads a
pointer to the channel "fuel" and 1ine 22 loads a guard value "true".
Line 23 loads the instruction offset which will be necessary if the
process inputs through the channel "fuel". Lines 24 and 25 use the
pfix function in order to operate “"disable channel" on the channel
“fuel". Lines 26 and 27 use the pfix function in order to operate
"alternative end". -

The alternative end operation will load the appropriate instruction
offset depending on the channel through which input has been effected
so that the process then proceeds to carry out the instruction
sequence between the reference markers L2 to L3 if the channel "mjle"
was used for the input. Alternatively the instruction offset will
cause the process to carry out the instruction sequence between the
reference points L3 to L4 if the channel "fuel" was selected.



- 87 - 0145244

NETWORKS OF VARIABLE WORDLENGTH

As has been described above, the message transmission between
processes on the same microcomputer or different microcomputers takes
place in any number of data packets of standard length. Consequently
any message length can be chosen. As each packet contains a byte of
data communication can occur between microcomputers of different
wordlengths and it is merely necessary to supply the appropriate
number of bytes in each message to make up a complete number of words
for the microcomputer involved in the message transmission. Such a
network is illustrated in Figure 22 in which a plurality of
microcomputers having wordlengths of 16 bits, 24 bits or 32 bits are
shown. Each microcomputer is generally as described above.

Microcomputer 260 has registers of 16 bit wordlength whereas
microcomputers 261 and 262 have registers of 24 bit wordlength.
Microcomputer 263 has registers of 32 bit wordlength. The above
described message transmission instructions will operate in the same
way regardless of the wordlength of the microcomputer involved in the
network.

The invention is not limited to the details of the foregoing examples.



S 0145244
CLAIMS:

1. A microcomputer comprising memory and a processor arranged to
execute a plurality of concurrent processes, each in accordance with a
program consisting of a plurality of instructions for sequential
execution by the processor, each instruction designating a required
function to be executed by the processor, said processor comprising
(1) a plurality of registers and data transfer means for use in data
transfers to and from said register (2) means for receiving each
instruction and loading into one of the processor registers a value
associated with the instruction, and (3) control means for controlling
said data transfer means and registers in response to each instruction
received to cause the processor to operate in accordance with the
instruction, wherein the microcomputer includes:-

(1) scheduling means to enable the processor to share its processing -
time between a plurality of concurrent processes, said scheduling
means comprising:-

(a) wmeans for identifying one or more processes to form at
least one collection awaiting execution by the processor

(b) means for descheduling a process by interrupting execution
of the current process

(c) means for scheduling a process by adding it to a
collection awaiting execution, and

(2) communication means to permit data transmissidn from one process
to another by use of communication channels when both processes are at
corresponding stages in their program sequences, an outputting process
operating to output data and an inputting proces§ operating to input
data in response to message instructions which identify one or more
channels for use in the data transmission, said communication means
including:-

(a) a plurality of channels each comprising store means for
holding a value indicating whether a process has executed
an instruction to effect data transmission using that
channel,



- 89 - 0145244

(b) means responsive to execution of a message instruction
by one of the processes involved in the data transmission
when said one process is the current process for testing
the contents of the or each channel identified by the
instruction and arranged to operate said means to deschedule
the current process if no channel is found containing a
value indicating that the other process involved in the data
transmission has reached a corresponding program stage, and
(c) means to allow an inputting process to input through one of
a plurality of alternative channels, and comprising:
(1) means responsive to execution of a message instruction by the
inputting process to test the contents of each of the alternative
channels and to load into each channel a value indicating that the
inputting process has executed the message instruction if the channel
does not already contain a value indicating that an outputting process
has executed a message instruction using that channel,
(2) selection means arranged to select one of the alternative input
channels when an outputting process has executed a message instruction
on one of the alternative channels, and
(3) means to remove from the alternative channels which are not
selected the value loaded therein by the inputting process.

2. A microcomputer according to claim 1 in which the means for
descheduling a process is responsive to the operation of testing the
channels to deschedule an inputting process if, on execution of the
message instruction by the inputting process, none of the alternative
channels contains a value indicating that an outputting process has
executed a message instruction using that channel.

3. A microcomputer according to claim 2 wherein the said scheduling

means is arranged to respond to execution of a message instruction by
an outputting process using a channel containing a value indicating a
descheduled inputting process, to reschedule the inputting process.



o0 0145244

4. A microcomputer according to claim 3 wherein the selection means
is responsive to descheduling of an inputting process to delay
selection of one of the alternative channels until the inputting
process has been rescheduled.

5. A microcomputer according to any one of the preceding claims
wherein the communication means is arranged to permit data
transmission beiween processes which are executed on the same
microcomputer and said channels comprise memory locations.

6. A microcomputer according to any one of the preceding claims
wherein the communication means is arranged to permit external data
transmission between process which are executed on different
microcomputers and said channels comprise memory locations some of
which form part of external communication 1inks.

7. A microcomputer according to any one of the preceding claims

wherein means is responsive to execution of a message instruction to
input through one of a plurality of alternative channels to store in a )
memory location associated with the process a first special value
indicating that the process has commenced an alternative input
operation.

8. A microcomputer according to claim 7 wherein the said means for
testing the contents of each of the alternative channels is arranged
to store a second special value in a memory location associated with
the inputting process if the test of any one of the channels locates a
value indicating that an outputting process has executed a message
instruction using that channel.

9. A microcomputer according to claim 7 or claim 8 wherein means are
provided for checking the contents of the memory locations associated
with the process and to deschedule the inputting process if said
second special value is not located, said means further locating third
and fourth special values into memory locations associated with the
process one of which values indicates that the process is descheduled



- 91 - , 0145244

to indicate that the process is involved in an alternative inputting
process.

10. A microcomputer according to claim 9 wherein said selection means
is arranged to test the contents of each of said alternative channels
and to select for the input the first channel tested which contains a
value indicating that an outputting process has executed a message
instruction using that channel, said selection means being arranged to
remove said third special value from the memory location associated
with the inputting process whereby the selection means does not select
any further channel which may contain a value indicating that an
outputting process has executed a message instruction using that
channel.

11. A microcomputer according to claim 10 including means responsive
to selection of a channel to store in a memory location associated
with the inputting process an offset value to indicate an offset
necessary in the program sequence for that process when that channel
is selected.

12. A microcomputer according to claim 10 including means for storing
a pointer to the stage in the instruction sequence of a process if the
process is descheduled and means for adding to said pointer the said
offset on selection of one of a plurality of alternative input
channels.

13. A microcomputer according to any one of the preceding claims
including scheduling means for adding or removing a process from one
of a plurality of collections of processes having different priority
and awaiting execution,

14, A microcomputer according to any one of the preceding claims in
which said memory provides for each process a workspace having a
plurality of addressable locations including locations for recording
variables associated with the process and in which one of said



- 92 - 0145244

processor registers is arranged to hold a workspace pointer value
identifying an address of the workspace of the current process.

15. A microcomputer according to claimlt wherein the workspace for
each process includes a location for storing one of a plurality of
special values indicating the state of the process for use in
effecting message input through one of a plurality of alternative
channels.



0145244

143

-——

|
&;

!

SNId

RE
¢z a g wa f54 L
T s ¥ iy v AV
1/
501D
! " [JDg1 0N [ / _ nmam
HiooL_DVREIN |/ Nd) aasss || i 13534
NS 3R WO IA3S [Lnani[M
P YY)
L WD Sy,
IVIEAUN : N /2
N o o
A N s 2
smod |3snd] | .- — VIS %
SNWMI0D[3SN4|Wod | WYY i NN H.wm
BT o
ANVONNGR | | oIl /7
] | .-QN
o \Mﬁlﬁlilllllyﬂllg




llll
v

lllll

ooooo

0145244

45

< = 2y
AN A iy N R m—
/- f\rF¥5jéE%§4;77 =44
Fia2 MEMORY | INTERFACE SYNC 0
G<. . INTERFACE |CONTROL LOGIC| | COGIC |-
) | | Y
R0 s (L |
P oamoT 1
3. .
B L ominy
| 49 = TREG L 1o | REGISTER BANK
E”T;‘{ IPIRREGTITT;] ] |
511~ L
}52 +=[ WPTR REG (1] | !
| 7] |
;53\\‘“‘1 BPTR REG(1] }=+ | |
] ]
| PR RGAITL] T |
| c3 | ¥ 85 &2,
RANKLER | | T3 B REG 1] |
b B ARGOYT T
] [W
I | 2% - l -
| L LT ORE AL T ¢ P
1 ] 58| 1| 1. ——{_DECODER ] | gp
l . [ SNPFLAG [1] I«»' i L-1
{ | i
. 25 i
|
| 1| | [COPYFLAG [i7k1 |
| ] ' :
L H i
'IT N N I
[ 3/ 1999
[ ! 30, 735 CONDITION -
AW 4}7 MULTH;LEXO
{_____/:l RN
YBUS"/ 1 PROC PRI FLAG l MIR J
¥ 31 :
<[ PRI FLAG - MICRO LI
46 9 INSTRUCTION
4~[PROC DESC REGI=] ¢ ROM
wh PROC PTR REG =™ REGISTER ! f gl_
0~L_________;]-H' ~1 BANK
A% TEMP RE ) SR Gl jm
B ) R v =/ REGISIE
X85 o Di%USBUS =—BUS (ONTROL
L~ [CONSTANTS BOXl L L SWITCHES



§/%

0145244

LIST OF PRIORITY O
PROCESSES
WORK SPACE OF PROCESS L

ADDRESS CONTENTS
10300 CHANNEL
| &%
|
10202] VECTOR VARIABLE 2
10201] VECTOR VARIABLE 1
10200] VECTOR VARIABLE 0
| -4
]
10100]  VARIABLE N
4'
1
|
PRIORITY [0] |
REGISTERS 44 0002]  VARIABLE 2
A REG [0] 10001 VARIABLE 1
55 10000 VARIABLE 0
" B REG [0] 9999 IPTR S 65
96— ¢ Res (0] 9998 LINK S 66
5] 9997 STATE S &7
" WPTR REG [0]
IPTR REG [0] 30 %) PROGRAM
0 REG [0] {57 y _
- 43
F PTR REG (0] P )
B PTR REG [0] | N .-
Y4 L j
0 /8/
6.3 "




443

lllll

.
IIIII

0145244

PROGRAM

-/8/

PRIORITY 1
PROCESS
WORK SPACES
PRIORITY 1
REGISTERS { P
534 F PTR REG [1]
524 B PTR REG [1] 1 Q
A REG [1] R
B REG [1]
C REG [1] <
45/-  WPTR REG [1]
IPTR REG [1]
0 REG [1]

Fig.4.




rrrrr

0145244
5123

WORD ADDRESS

\
)
. POINTER BYTE SELECTOR
Fig .5.
WQIR
N
/I
, PROCESS DESCRIPTOR PRIORITY
F Ig ‘ 6 INDICATOR
FUN}C\T!ON D/f[A
e ' N
. INSTRUCTION
Fig.
DATA
7 /\ -\
111 0
Fig .8.

110

F/g .9 AcknowLEDGE




OOOOO

lllll

4103 0145244

5
INTERFACE
CONTROL 78
. LOGIC 72
MADDR ) L Bz
DATA BUS 767
~——= MEMORY
F | WTERRAGE | G
/4 Lo Y r /70
. 27
Py, | I
q LINK 0
43 ', 7
—-—) ] 7 17
& 11 LINK 1
n— SN i
LOGIC g +7
82, 074 17 LINK 2
X e
gd P
| 67 411+ LINK 3 -
*— .‘*7‘5
8/
Z-BUS | 1
STATUS |
(g5~



qqqqq

ccccc

| SERIAL OUT
| 27
|

|

SERIAL iN
| 2%

B Y |
Z-BUS ! . \? 44 4
RESET X : OUTPUT ACK
Lo/ | %
, OUTPUT
&4 | R
OUTPUT REQ) I
OUTPUT DATA
QUTPUT PRI oun L 7 95
BUTPUT RUN l ™ OUTPUT DATA”
REQ L93 VALID =
d4p | Ll CLOCK - : %
| B g =
| MY Y <
l N g7 -
P £5b| - INPUT DATA
INPUT REQ) | | ”’ INPUT DATA
NABLE | VALID
SE___%TATUS ENQUR INPUT g%
+
NPT FEADY B FIC|  HANNEL %
N R INPUT ACK
STATUS OUT 5 1 / &,
207 | 9de T —
“ i cLock 22 & CLOCK

|
|
|
|
i

Fig.11.



0145244

T T T T T — — T 71 934 NnY
ﬁywld o | 1ndlno
cepp C =
Z) b1y | 1 aNv “ s,
sl 1N0 1id
_ £/ A \ 1nd1n0
) _ s1nd1no Y74 24
“GITVA VIva 10dlno] N0 e NN |
P | Py P S F e |
Viva 1ndino/ | LT |
G | 1 —l |
-tu“mv } Vo C c “
0IMONNIY | T ] )
- indino | J ] | 9587
N _ _ RERY
N | | 1NdLno
_ I “
_ I R,
| ) [ 13s3Y
| . N N ZE
43.1NIOd 43INNOD 31A8 J+' [Alriomd] |
| g\ 7\ J ! |
_ , _
1 B O R S N sng-Z
A A
aleq 41  |1%




07~

< r - - ""F"—""—"- """"""\"}"=—-—-"F—"- """\ """~~~/ "~~~ — -
~E N.@u\_ ) | 5478 AN0SNIVLS
S S5 , B 55/, | 038 Nng
SR 2% ” 21 " inaN
KNI ONV DZ<T
ST £ er| | oen o % | 9o I 105
...... - /2 o s B s B [ | ) _m 03y
4 2 51N0d.1N0 SINdLN0 4% 65 \@%_ AQV3Y
INTHIVW INIHIVW J
VGSUIN/)} 3LV1S JLVIS L£0) | 47
| [ __u3dSNval IAILYNGILTY | HI0W
“ P SLNdNI S “ o
o ] | ) \&u&%& | s 72
X || ] | - 587 058 L\ 78N
: a4, SINd1No — S " E
26,7 T 3NIHIVKW- ‘ 269 AS%_
xluowj} 3LVIS - . |
AQV3Y bcs
;.a:<>... _ SINdNI
- “L%
T T =
QQ% \%V _ .- \%\ e _ ¢ ¢ y \Q\v
D S— 227 R 13534
%% | 43LNIOd [ 43INNCD 3148 Alldomd] |
_ _ —
- — = — — Sng-Z
1740« B4



vvvvv

' ’ 0145244
a A S st o 4
9611 Bmmn Ny 49 15,
READY L ' =1 AND 194
FLIP OUTPUT REGISTER ’
FLOP ~! OR —7
jart 150, 27
AND, y . PN /55 /410 /5./
i /67 / U
68l 160
/69, . g og%LEJT g‘——L-
170 s S vacrine |3f 43
N A %z
'LATCH :T ] ‘Jl: F3—ILOCK
ATC BIT COUNTER
! ) /4
y A ~| AND
/75 BIT COUNTER |
T 1z
/78
- e % e W K7,
—T { a STATE =
/77 |3 MACHNE |Z| /77
/767 J
147 o9
545 /45) |
READY ’ 26
FLIP INPUT REGISTER ? S, N
FLOP : —/0/
g‘zt,"'::;%TTAD[:TAgtul/Npuf osa FIG . T4, RESET
T [ VALID |



nnnnnn

ooooo

0145244

123
OUTPUT PROCESS Y CHANNEL INPUT PROCESS X
r~{NOT PROCESS -2
. FigT5a.
|
Y EXECUTES i
OUTPUT |
REGISTERS 541 Fi75h
Al COUNT '
B[ CHANNEL R“' 1g.120.
C| SOURCE |, 55 |
96
WORK YSPACE

. .- "PROC DESCRIPTOR] 7
IPTRY 165 Y

SOURCE__|-47 Fig.15¢

70 X EXECUTES

| INPUT
PROC DESCRIPTOR]—- | REGISTERS
Y | |A[__COUNT |54
) L-B| CHANNEL |55
: C |DESTINATION|-56
F/g. 15d T -9
70
NOT PROCESS P REGISTERS
N (OUNT |-54
: B] DESTINATION-55
Flg. 15e [ SOURCE |-4¢
PROC
T DESCRIPTOR |9




vvvvv

0145244

W43
OUTPUT PROCESS Y ~* INPUT PROCESS X
REGISTERS ][ OUTPUT CHANNEL | 245 [ INPUT CHANNEL
COUNT _ % 3
CHANNEL | [P¥] = 1256
/SOURCE / | g/
V4 1
Lss 55 54 Y
90 e 2 STATE 125
DATA  ABSENT
IDLE IDLE
257 — DISABLED
- C
Fig.16.a. ~%¢
OUTPUT PROCESS Y INPUT PROCESS X
OUTPUT CHANNEL INPUT CHANNEL
[PWIPROC. DESC er [PW] ]
.. [_CoUNT
WORKSPACE SOURCE Y%
Y Y PRI
0 LOCATION
STATE STATE i
PTR Y o 90| pata presnT [
WAIT OUTPUT IDLE
| ACK DISABLED
7 1 ,
60 67 65 Fig 16.b.
g 5
OUTPUT PROCESS Y INPUT PROCESS X |
OUTPUT CHANNEL INPUT CHANNEL ||REGISTERS /
‘ COUNT
[PW[PROC.DESC. Y | PW RANNEL
COUNT ] /DESTINATION
WORK SPACE SOURCE f 55 (56
Y Y PRI ]
O _LOCATION STATE STATE )
IPTR Y, 90 | DATA PRESENT
71| WAIT oUTPUT IDLE
C 71| AcK DISABLED

o Fig. 16.c.



OUTPUT PROCESS Y

803

-----

0145244

INPUT PROCESS X

OUTPUT CHANNEL INPUT CHANNEL
[PW]PROC DESC Y | [PW]PROC DESC X]

ﬂ COUNT A COUNT

WORKSPACE SOURCE DEST|NAT!0N WORKSPA[E
Y Y PRI X PRI X
0 LOCATION STATE STATE 0 LOCATION
IPTR Y T | oatA ABSENT \ IPIRX
CHECK FINISHED| 9/-T AWAIT BYTE \

DISABLED

Z Fig.16.d & 60

OUTPUT PROCESS Y

INPUT PROCESS X

OUTPUT PROCESS Y

OUTPUT CHANNEL INPUT CHANNEL
PW[PROC DESC Y | PW] ]
7
WORKSPACE SOURCE Vv WORKSPACE
Y Y PRI X
O LOCATION SINTE. 40 STATE 0 ILSTCQT‘)(()N
 IPTR Y WAIT OUTPUT | g/ | DATA ABSENT
| ACK IDLE
/ DISABLED
{ . 1
.65 Fig. 16. e 65

OUTPUT PROCESS X

OUTPUT CHANNEL INPUT CHANNEL
[PW] 1 [PW
R
WORKYSPACE WORK SPACE
X
0 LOCATION STATE STATE 0 LOCATION
IPTR Y — 19 - IPIR X
IDLE g/—t DATA ABSENT
65 Fig. 16.f ‘65




0145244

1443
OUTPUT PROCESS Y INPUT PROCESS X
OUTPUT CHANNEL | ¢~ [ TNPUT_CHANNEL
P il W i
9/
v WORK)§MCE
STATE. (| 257 STATE 0 LOCATION
-244 DATA ABSENT
IDLE DLE
1 DISABLED ) F.NABLING‘P7
2577 Flg 17a . 2% 677 60
OUTPUT PROCESS Y | INPUT PROCESS X
OUTPUT CHANNEL INPUT CHANNEL
[PW] | [PW]PROC DESC X |
It
v WORK SPACE
X PRI X
STATE STATE O LOCATION
DATA ABSENT
IDLE IDLE
ENABLED ENABLING P,
% Fig-17b. @ é7
OUTPUT PROCESS Y INPUT PROCESS X
OUTPUT CHANNEL INPUT CHANNEL
[PW] 1 !lpw PROC DESC X
|
I WORK SPACE
| PRI X X
STATE STATE —1
DATA ABSENT 1 IPTR X
IDLE IDLE
ENABLED WAITING P

90°  Fig.17c. =9 & 67



OUTPUT PROCESS Y
OUTPUT CHANNEL

| PW|PROC.DESC. Y ]l

0145244

COUNT ]
SOURCE |
Y Y PRI ] X PRI

1513
OUTPUT PROCESS Y INPUT PROCESS X
OUTPUT CHANNEL INPUT CHANNEL
[PW]PROC DESC. Y] PW]PROC. DESC. X
COUNT
WORK SPACE SOURCE Y WORKSPACE
Y Y PRI X PRI X
O_LOCATION STATE STATE —1
IPTR Y DATA PRESENT IPTR X
WAIT OUTPUT IDLE
ACK DISABLED /WAITlNG P,
65 60/ L0 Fig 17d < & 67
OUTPUT PROCESS Y INPUT PROCESS xffjg
OUTPUT CHANNEL INPUT CHANNEL REG!STERS\‘
OFFSET
[PWPROCDESC Y| [PWIFROCL.OESC X ]| (5 7rie 32
COUNT A C| CHANNEL/
WORK SPACE SOURCE WORKSPACE
Y Y PRI X PRI X
0 LOCATION STATE STATE ~
IPTR Y. DATA PRESENT
WAIT QUTPUT IDLE
ACK DISABLED READY P,
. . r , ( .
65 90 F/g77e g/ 67

INPUT PROCESS X

INPUT CHANNEL

![Pw PROC.DESC. X

WORKSPACE WORKXSPAC E
O _LOCATION .STATE. . STATE_ OFFSET
PIRY WAIT OUTPUT' %At-[rfA PRESENT
| ACK —_ DISABLED READY P ,
65 8%, F/g. 17 f 9/- 67°




¢¢¢¢¢

00000

0145244
143
OUTPUT PROCESS Y INPUT PROCESS X
90| OUTPUT CHANNEL | 254 [ INPUT CHANNEL 4
[[PW]PROC DESC ﬂ/ [PW I 255
COUNT
WORKSPACE SOURCE v
Y Y PRI 255
O LOCATION STATE 254 | STATE . T
IPTR Y DATA PRESENT
WAIT QUTPUT : IDLE
. ACK DISABLED 248
e’ %7 Fig 18a
- 55
OUTPUT PROCESS Y INPUT PROCESS X 5}4
OUTPUT CHANNEL INPUT CHANNEL | [ REGISTER
Al TRUE
PWIPROCDESC. Y| - |FPW B CHANNEL
COUNT
WORK SPACE SOURCE v WORKSPACE
Y Y PRI X
OIIbOTCﬁmSN STATE STATE 0 LOCATION
DATE PRESENT
WAIT QUTPUT IDLE
| ACK DISABLED LENABLING P
-85 .~ . Cap /:,'g 18 b C9/ 57 &0/
OUTPUT PROCESS Y INPUT PROCESS X
OUTPUT CHANNEL INPUT CHANNEL
[PW[PROCDESC. Y|  |[PW
COUNT ql A k
WORK SPACE SOURCE WORKSPACE
Y YPRL -~ | L X
OILS_ggT?N ' STATE DATiTlgg O LOCATION
WAIT QUTPUT IDLE ESENT
ACK DISABLED READY P
65 Ca

F/g 18.c. ‘o

&7



ooooo

0145244

1743
OUTPUT PROCESS Y INPUT PROCESS X
OUTPUT CHANNEL INPUT CHANNEL |[ REGISTERS |44
V
PW[PROC. DESC. Y | PW g ?&GEET 195
COUNT ]F C|CHANNEL 436
WORKSPA CE SOURCE v WORK SPACE
Y Y PRI X
O _LOCATION STATE STATE il
IPTR Y * DATA PRESENT
WAIT QUTPUT IDLE
} /ALK DISABLED READY P
Y Fig 18.d tg/ 677



L8
OUTPUT PROCESS Y
CHANNEL
NOT PROCESS P
70 :
Fig.19a.
OUTPUT PROCESS Y.
CHANNEL
PROC_DESC X
. 07 .
- Fig.19b.
OUTPUT PROCESS Y
CHANNEL
- PROC_DESC X
Fig.19c
OUTPUT PROCESS Y
REGISTERS CHANNEL
S4T Al COUNT PROC DESC X
$5-1B] HANNEL |
$61C]| SOURCE: F,'g. 19

WORK ).%PACE

oooooo

-----

ccccc

0145244

INPUT PROCESS X

O LOCATION

[,

L/

ENABLING P}-47

INPUT PROCESS X

WORK )%PACE

O LOCATION

&0
L/

ENABLING P

-6/

INPUT PROCESS X

WORK >%PACE

&l

-1

s

IPTR X

65
W

WAITING P

&7

INPUT PROCESS X

WORK )%PACE

-1

IPTR X

WAITING P




1943
OUTPUT PROCESS Y
WORK SPACE
O LOCATION |, CHANNEL
T 1PIRY +%° [PROC DESCY
60 Lo
SOURCE  4-47 Fig19e
OUTPUT PROCESS Y
cHanneL 77
PROC DESC Y
WORK SPACE
0 LOCATION
/| TPRY —65
60 [—sowmee +¢7  Fig.19f

OUTPUT PROCESS Y

WDRKYSPACE

0 LOCATION

CHANNEL 77

50" IPTR Y

+£5 [PROC DESCY

== Fig19g

01

INPUT PROCESS X

WORK )%PACE

-1

45244

IPIRX

READY P 167

B| TRUE

C| CHANNEL

WORK SPACE

-1

READY P~

WORK)%PACE

OFFSET

A

INPUT PROCESS X

REGISTERS | 54
A[ OFFSET

55
56

60

X L/

2%

INPUT PROCESS X

&0
L/

READY P

6/




2013
PRI =0 PRI=1
59— IPTRY IPTR IPTRX —+40
5/ WPTR Y WPTR WPTRX -5/
43-/NOT PROCESS P FPTR  [NOT PROCESS P} 43
P
] A 3
47~
PRI 0
Fig.20a
PRI= 0 PRI=1
50— 1IPIR Y IPTR IPTRX |90
S~ WPiRY_] WPRR [ wPTRX I/
Z3_NOTPROCESSP]  FPTR  [NOTPROCESS P53
= SNP
B FLAG 028
PRI 0 Jd-47

Fig.20b.

0145244



0145244

Vi//4]
PRI=1
IPTR IPTRX +90
WPTR WPTRX -4/
FPTR  [NOT PROCESS P53
. SNP : 1
" FLAG I
PRI 1 47
Fig.20c.
PRI =0 PRI=1
X Y
50— IPTR X IPTR IPTRY +-40
S/ WPTR'X WPTR WPTRY %/
43 -NOT PROCESS P FPTR  [NOT PROCESS PF-53
COPY
591 0 FLAG 0 1 s
PRI 7

1,
Fig.2

la.



PR;( =0
30-1  1IPTR X
5/ WPTR X

$3-NOT PROCESS P

B 0
590
PRI
PRI

0145244

23

PRI =1

Y
IPTR IPTRY |50
WPTR WPTRY |4/
FPTR  [NOT PROCESS P53
SNP
FLAG 147
COPY B
FLAG S
0 47
Fig.21h.

PRI=1
IPTR IPTRY }350
WPTR wPTRY &/
FPTR WPTRY F43
BPTR WPTIRY |42
SNP
FLAG 1}
COPY
FLAG .

—7 7

1
Fig 21c.



0145244

2323

- z7z2by
i) ﬁ M ﬁ _‘ ﬁ ﬁ
T Z2rA
HALNAWOIOIIN x H3LNAWOIOIIW
o——1Sy3151939 11d €] rWN ~ \m.. mmmm_o& 187
74 4/ A 774 Ll
Y4 9 Ll 8774
o— JANNVHY) [ [ T 7] TINNVHD
Z |
HLNdWODGRDIN 190 & x ANANL 31 OO0
| TBNNVHD TP 2T TENNVED
— Sy avz| NdNI W LC INdIN0  |S@sEw e
_ _ Yz 06 057 _ _




	bibliography
	description
	claims
	drawings

