(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 85102770.6

(51) Int. Cl.4: B 22 D 19/12

(22) Anmeldetag: 12.03.85

(30) Priorität: 23.03.84 US 592522

(4) Veröffentlichungstag der Anmeldung: 25.09.85 Patentblatt 85/39

84) Benannte Vertragsstaaten: DE FR GB 71) Anmelder: DEERE & COMPANY
1 John Deere Road
Moline Illinois 61265(US)

(72) Erfinder: Landphair, Donald Keith 3965 Wakonda Drive Bettendorf Iowa 52722(US)

72) Erfinder: Doering, James Peter 1921 - 45th Street Moline Illinois 61265(US)

74) Vertreter: Sartorius, Peter et al,
DEERE & COMPANY European Office, Patent
Department Postfach 503 Steubenstrasse 36-42
D-6800 Mannheim 1(DE)

(54) Verfahren zur Herstellung eines Kupplungsteiles.

Ein Kupplungselement weist einen Kupplungsteil (11) zur Aufnahme einer Kupplungskugel (12) auf, die mittels eines Gießverfahrens in den Kupplungsteil integrierbar ist. Hierzu wird die Kupplungskugel (12) auf einen Gießkern (52) aufgebracht und dann der Gießkern in einen Hohlraum (56) für einen kreisförmigen Ring (20) eingesetzt, wobei die Außenoberfläche der Kupplungskugel die Lagerfläche (16) für die Kupplungskugel (12) in dem Ring bildet, wenn das flüssige Gußeisen in den Hohlraum (56) zur Bildung des Ringes (20) eingegeben ist. Nach dem Gießvorgang ist die Kupplungskugel (12) in den ring (20) allseitig frei beweglich eingelassen.

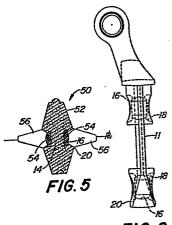


FIG. 2

EUROPEAN OFFICE

35

Verfahren zur Herstellung eines Kupplungsteiles

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Kupplungsteiles mit einer vom Guβteil umgebenen, eine Bohrung aufweisenden Kupplungskugel.

Es ist bereits ein Gießverfahren bekannt (John Deere Zeichnung AE 36262 von 1975), bei dem in einen Formkasten mit einem Hohlraum ein Gießkern eingesetzt ist, der aus einem speziellen harten Sand geformt ist. Die Herstellung des Gießkernes sowie das Einbringen und die Plazierung des Gießkernes erfordern jedoch viele einzelne Verfahrensschritte, so daß dieses Gießverfahren sehr aufwendig ist.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, Kupplungselemente mit in diesen fest eingeschlossenen, 15 drehbar gelagerten Kugelelementen mittels eines einzigen Gießverfahrens mit wenigen Verfahrensschritten herzustellen. Diese Aufgabe wird durch folgende Verfahrensschritte gelöst:

- 20 a) Es wird ein Gieβkern in eine Gieβform mit der Kupplungskugel eingebracht, in der ein Hohlraum gebildet ist.
- Der Hohlraum wird als kreisförmiger Ring mit einer inneren Lagerfläche gebildet, die durch die ballige Auβenoberfläche der auf den Gießkern aufgebrachten Kupplungskugel definiert bzw. begrenzt ist, deren Oberfläche bzw. deren Lagerfläche zwischen der Bohrung der Kupplungskugel und dem Ring vorgesehen ist, wobei die Mittelachse rechtwinklig zum Ring verläuft.
 - c) Das flüssige Gußeisen wird in den ringförmigen Hohlraum derart eingegeben, daß nach Abkühlen der Gußmasse die Kupplungskugel zu ihrem Mittelpunkt in jede
 Richtung in dem Ring drehbar aufgenommen ist.

EUROPEAN OFFICE

Mittels eines einzigen Gießkernes, auf den vor dem Gießvorgang eine Kupplungskugel aufgebracht wird, läßt sich in vorteilhafter Weise der Gießkern zusammen mit der Kupplungskugel in einen Gieβkasten leicht montieren, in dem 5 zuvor ein ringförmiger Hohlraum gebildet ist. Dieser Hohlraum wird dann mit flüssigem Gußeisen ausgefüllt, so daß um die Kupplungskugel ein ringförmiger Kupplungsteil gebildet wird, wobei die auf den Gießkern aufgebrachte Kupplungskugel beim Gießvorgang gleichzeitig die ballige La-10 gerfläche bildet. Nach dem Gieβvorgang braucht lediglich der die Kupplungskugel aufnehmende Kern zerstört zu werden, und der Kupplungsteil ist nach einigen Reinigungsarbeiten einsatzfähig. Da die Kupplungskugel aus einem anderen Material besteht als der ringförmige Kupplungsteil, wird 15 beim Abkühlungsvorgang des Kupplungsteiles ein Zwischenraum zwischen der Oberfläche der Kupplungskugel und der balligen Lagerfläche des Kupplungsteiles gebildet, so daß die Kupplungskugel um ihre Achse in jeder Richtung frei schwenkbar ist. Hierzu ist es gemäß der Erfindung vorteil-20 haft, daß die Gießkerneinrichtung aus einem Hartsandkern hergestellt wird, der in die zentrisch verlaufende Bohrung der Kupplungskugel eingeführt wird.

In weiterer Ausgestaltung der Erfindung ist es vorteilhaft, daβ während der Herstellung des Gießkernes der Gießkernein-25 richtung die Kupplungskugel mittels Magnetelementen auf lose eingebrachten Stützelementen im Kernkasten gehalten wird. Hierdurch läßt sich auf einfache Weise die Kupplungskugel auf den Gießkern aufbringen.

30

35

Um eine Verbindung zwischen der Kupplungskugel und dem ringförmigen Kupplungsteil zu vermeiden, ist es vorteilhaft, daβ die Kupplungskugel aus Stahl hergestellt ist. Hierzu kann es außerdem vorteilhaft sein, daß die Kupplungskugel mit einem Überzug versehen ist, der verhindert, daß das Gußeisen sich mit der Stahlkugel verbindet, und daß der Kupplungsteil zur Aufnahme der Kupplungskugel aus

25

30

35

eine hohe Elastizität aufweisendem Guβeisen hergestellt ist.

Im folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert. Es zeigt:

- Fig. 1 eine Seitenansicht eines Kupplungselementes mit zwei zugehörigen Kugeln, die aus einem eine hohe Elastizität aufweisenden Grauguβ hergestellt sind und die um ihre Achsen frei drehbar gelagert sind,
- Fig. 2 eine Draufsicht des Kupplungselementes

 gemäß Fig. 1,
 - Fig. 3 einen Schnitt entlang der Linie 3 3 gemäβ
 Fig. 1,
- 20 Fig. 4 einen Schnitt entlang der Linie 4 4 gemäβ Fig. 1,
 - Fig. 5 eine Schnittansicht gemäß Fig. 4 mit dem zugehörigen Kern für den Gießereiprozeß.

In der Zeichnung ist mit 10 ein Kupplungselement eines in der Zeichnung nicht dargestellten Kraftfahrzeuges, beispielsweise eines Schleppers, bezeichnet, das nach dem erfindungsgemäßen Gießverfahren hergestellt wird. Das Kupplungselement 10 weist einen Kupplungsteil bzw. Tragteil 11 auf, in dem zwei Kupplungskugeln 12 mit einer mittig angeordneten Bohrung 14 angeordnet sind. Eine jede Kupplungskugel 12 läßt sich um ihre Mittelachse 15 drehen bzw. allseitig verschwenken. Hierzu ist die Kupplungskugel 12 in einem ballig ausgebildeten Lager 16 aufgenommen (siehe Fig. 3).

Wie aus den Figuren 2 und 3 hervorgeht, befindet sich das Lager 16 zwischen zwei Aussparungen 18, die beiderseits in den Tragteil 11 eingelassen sind. Die Aussparungen 18 bilden einen kreisförmigen bzw. ovalen Ring 20, dessen Achse koaxial zur Bohrung bzw. zu deren Mittelachse verläuft. Wie aus Fig. 3 hervorgeht, läβt sich die Kupplungskugel 12 frei in dem Lager 16 um die Mittelachse 15 drehen bzw. schwenken.

- Die Kupplungskugel 12 ist mittels des erfindungsgemäßen Gießverfahrens in das Kupplungselement eingelassen bzw. eingegossen. Wie aus Fig. 5 hervorgeht, wird hierzu eine Gießkerneinrichtung 50 erstellt, die zur Aufnahme der Kupplungskugel 12 innerhalb der Gießkerneinrichtung bzw. eines aus Hartsand hergestellten Gießkernes dient. Der Gießkern 52 verläuft durch die Bohrung 14 der Kupplungskugel 12. Die äußere Oberfläche der Gießkerneinrichtung bildet später die Oberfläche der Kupplungskugel 12.
- Die Gießkerneinrichtung 50 wird erstellt, um die aus Stahl hergestellte Kupplungskugel 12 in einer Lage auf einem Kernkastenlosteil (nicht dargestellt) zu halten, indem ein magnetischer Preßteil (nicht dargestellt) an dem Losteil angebracht wird. Der Losteil wird dann in den Hohlraum des Kernkastens (nicht dargestellt) eingebracht, so daß die Bohrung 14 der Kupplungskugel 12 den Gießsand aufnehmen kann, wenn der Kernkasten gefüllt wird, um die Gießkerneinrichtung 50 zu erstellen (Fig. 5).
- Wenn die Vorbereitungen zur Erstellung der Gießkerneinrichtung getroffen worden sind, wird die Gießkerneinrichtung im Gießkasten entsprechend plaziert (siehe hierzu die Linie PL gemäß Fig. 5), um den entsprechenden Gießhohlraum 56 zu bilden. Der Gießhohlraum 56 bildet den Ring 20 mit der inneren Lagerfläche 16, die die Außenfläche 54 der Kupplungskugel 12 definiert.

Ist die Gießkerneinrichtung 50 entsprechend plaziert, so werden die Formhälften zusammengebracht und bilden somit die Formsandteilfuge PL (Fig. 5). Danach wird das flüssige Gußeisen in den Gießhohlraum 56 eingebracht. Der Gußteil 5 wird dann abgekühlt, die Gießform entfernt und dann die Oberfläche entsprechend bearbeitet und gereinigt. In der Zeit des Abkühlvorganges des Gußeisens schrumpft das Gußeisen zusammen, und ein Zwischenraum wird zwischen der Lagerfläche 16 und der eingeschlossenen Kupplungskugel 12 10 geschaffen, so daβ die Kupplungskugel 12 um die Mittelachse 15 frei drehen kann. Obwohl es möglich ist, eine mit einem Material überzogene oder mit einem Anstrich versehene Stahlkugel zu verwenden, hat sich herausgestellt, daß kein Überzug für die Kupplungskugel 12 notwendig ist, der 15 verhindern sollte, daβ flüssiges Guβeisen an der Oberfläche der Kupplungskugel haftet, bevor das Gußeisen erstarrt. Obwohl die Kupplungskugel 12 nunmehr durch die Lagerfläche 16 eingeschlossen bzw. eingefangen ist, kann sie jedoch in dieser Lagerfläche bzw. in diesem Lagerring frei drehen. 20 Wird die Kupplungskugel anfänglich innerhalb der Lagerfläche 16 tiefgekühlt, so kann sie durch Einfügen eines Stemmhebels in die Bohrung 14 und durch die hierdurch auftretenden Hebelkräfte gelöst werden, so daß die Kupplungskugel 12 frei drehen kann.

25

Der beschriebene Gießprozeß trägt zur Kostenreduzierung bei, da sehr aufwendige, kostenträchtige Bearbeitungsschritte eingespart werden können, die beispielsweise bei einem herkömmlichen Verfahren notwendig sind, wie beispielsweise 30 die Erstellung eines Gießkernes für die Kupplungskugel 12. Verbindungselemente jeglicher Art für genormte Lenker von Schleppern mit Kupplungskugeln können mit dem beschriebenen Gießverfahren hergestellt werden. 5

25

30

35

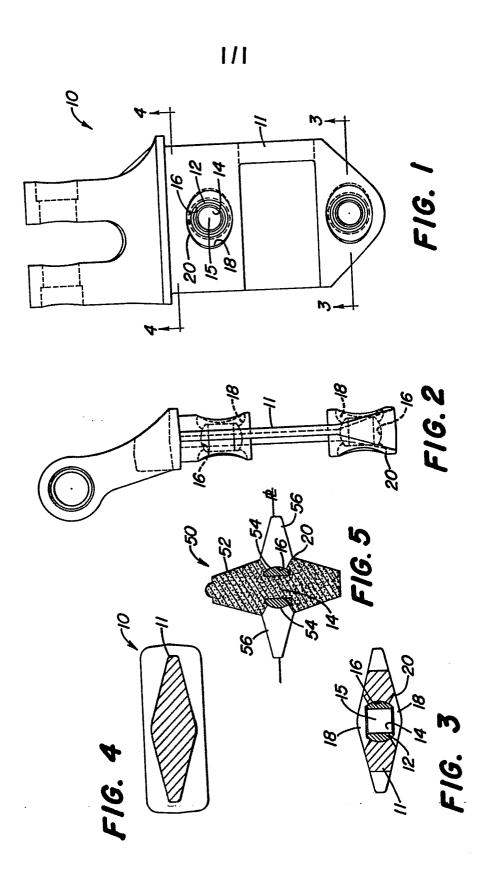
Patentansprüche

1. Verfahren zur Herstellung eines Kupplungsteiles mit einer vom Gußteil umgebenen, eine Bohrung (14) aufweisenden Kupplungskugel (12), gekennzeichnet durch folgende Verfahrensschritte:

a) Es wird ein Gießkern (52) in eine Gießform mit der Kupplungskugel (12) eingebracht, in der ein Hohlraum (56) gebildet ist.

- Der Hohlraum (56) wird als kreisförmiger Ring
 (20) mit einer inneren Lagerfläche (16) gebildet,
 die durch die ballige Auβenoberfläche der auf
 den Gieβkern (52) aufgebrachten Kupplungskugel
 (12) definiert bzw. begrenzt ist, deren Oberfläche bzw. deren Lagerfläche (16) zwischen der
 Bohrung (14) der Kupplungskugel und dem Ring (20)
 vorgesehen ist, wobei die Mittelachse (15) rechtwinklig zum Ring (20) verläuft.
- Das flüssige Gußeisen wird in den ringförmigen
 Hohlraum (56) derart eingegeben, daß nach Abkühlen der Gußmasse die Kupplungskugel (12) zu ihrem
 Mittelpunkt in jede Richtung in dem Ring (20)
 drehbar aufgenommen ist.

Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Gießkerneinrichtung (50) aus einem Hartsandkern hergestellt wird, der in die zentrisch verlaufende Bohrung (14) der Kupplungskugel eingeführt wird.


Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß während der Herstellung des Gießkernes (52) der Gießkerneinrichtung (50) die Kupplungskugel (12) mittels Magnetelementen auf lose eingebrachten Stützelementen im Kernkasten gehalten wird.

- 4. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daβ die Kupplungskugel (12) aus Stahl hergestellt ist.
- 5 5. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Kupplungskugel (12) mit einem Überzug versehen ist, der verhindert, daß das Guβeisen sich mit der Stahlkugel verbindet.

10

15

6. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Kupplungsteil (11) zur Aufnahme der Kupplungskugel (12) aus eine hohe Elastizität aufweisendem Gußeisen hergestellt ist.

