(19)
(11) EP 0 168 582 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
22.01.1986  Patentblatt  1986/04

(21) Anmeldenummer: 85105890.9

(22) Anmeldetag:  14.05.1985
(51) Internationale Patentklassifikation (IPC)4D01D 10/02, D06B 17/00, D06C 7/02, D02G 1/20
(84) Benannte Vertragsstaaten:
DE FR GB IT

(30) Priorität: 22.05.1984 DE 3418942

(71) Anmelder: BAYER AG
51368 Leverkusen (DE)

(72) Erfinder:
  • Reinehr, Ulrich, Dr.
    D-4047 Dormagen 1 (DE)
  • Hirsch, Rolf-Burkhard, Dipl.-Ing.
    D-4047 Dormagen 1 (DE)
  • Wagner, Wolfram, Dr.
    D-4047 Dormagen 1 (DE)
  • Hilgeroth, Erich, Dipl.-Ing.
    D-5630 Remscheid 1 (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren und Vorrichtung zum Konditionieren von Synthesefasermaterial


    (57) Das Konditionieren von Synthesefasermaterial zu einwandfreien Produkten mit niedrigen Restlösungsmittelgehalten unter Verbrauch vergleichsweise geringer Dampfmengen gelingt in einer dampfdichten Konditioniervorrichtung aus mehreren Zonen mit einem umlaufenden Siebband unter Verwendung von überhitztem Dampf von 105 bis 150°C und einer Verweilzeit des Materials in der Vorrichtung von über 3 Minuten.


    Beschreibung


    [0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Konditionieren von Kabeln oder Vliesen aus synthetischen Fasern mit Hilfe von Dampf, insbesondere Fäden und Fasern aus Acrylnitrilpolymerisaten mit mindestens 40 Gew.-% Acrylnitrileinheiten, gegebenenfalls nach vorhergehendem Kräuseln.

    [0002] Einrichtungen zum Dämpfen von kontinuierlich gefördertem synthetischem Fasermaterial sind vorzugsweise Siebtrommel- und Siebbanddämpfer (z.B. in DE-OS 2 060 941 oder GB-PS 1 208 792). Ferner sind Dampfröhren, -tunnel und U-förmige Dämpfstiefel, vgl. z.B. Textilpraxis international Dez. 1981, Seite 1410 oder Chemiefasern/ Textilindustrie Nov. 1981, Seite 821 bzw. Febr. 1982, Seite 96 bekanntgeworden. Ebenso sind Kombinationen von Kräuselvorrichtungen mit anschließender Fixierkammer (z.B. US-PS 2 865 080) in vielfältigsten Formen und Ausführungen, namentlich für Texturier- und Fixierprozesse, beschrieben. Diese Dämpfaggregate dienen zum Trocknen und Schrumpfen von Faserkabeln, sowie zur Stabilisierung von Kräuselung und Spinnfärbung der Fasern.

    [0003] In der EP-OS 98 477 wird erstmals ein kontinuierlich arbeitendes Trockenspinnverfahren für Acrylnitrilfäden und -fasern beschrieben, bei dem das Spinnkabel von 100.000 dtex und mehr kurz vor oder direkt nach Verlassen der Spinnschächte präpariert, dann verstreckt, gekräuselt und anschließend fixiert wird, ohne daß das Kabel mit einer Extraktionsflüssigkeit für das Spinnlösungsmittel, wie beispielsweise Wasser, in Kontakt tritt. Der größte Teil des Spinnlösungsmittels wird bei diesem Verfahren bereits in den Spinnschächten ausgetrieben. Der Lösungsmittelgehalt der Fäden liegt bei Verlassen der Spinnschächte in der Regel unter 10 Gew.-%, bezogen auf den Faserfeststoffgehalt, jedoch über 1 Gew.-%.

    [0004] Für dieses Verfahren sind die bekannten Konditioniervorrichtungen nicht geeignet. Entweder waren die benötigten Dampfmengen zu hoch oder es traten Rohtonschädigungen oder Verfilzungen der Faserkabel auf.

    [0005] Aufgabe der vorliegenden Erfindung war es, für das kontinuierliche Trockenspinnverfahren eine geeignete Konditioniervorrichtung zur Verfügung zu stellen, wobei ein vorgeschalteter Kräuselprozeß integriert werden kann. Die Konditioniervorrichtung hat dabei die Aufgaben zu erfüllen, die Kräuselung zu stabilisieren, den durch den Streckvorgang aufgebauten Schrumpf abzubauen und die restlichen Anteile an Spinnlösungsmittel zu entfernen. Dabei sollten Verfahren und Vorrichtung für die Konditionierung von Kabeln und Vliesen geeignet sein.

    [0006] Die Aufgabe wird dadurch gelöst, daß in einer dampfdichten Konditioniervorrichtung das Synthesefasermaterial auf einem umlaufenden Siebband mindestens zweistufig überhitztem Dampf von 105 bis 150°C ausgesetzt wird und in der Konditioniervorrichtung eine Verweilzeit von über 3 Minuten hat.

    [0007] Gegenstand der Erfindung ist daher ein Verfahren zum Konditionieren von Synthesefasermaterial, insbesondere Synthesefaserkabeln oder -vliesen, dadurch gekennzeichnet, daß das Synthesefasermaterial in einer dampfdichten Konditioniervorrichtung auf einem umlaufenden Siebband mindestens zweistufig überhitztem Dampf von 105 bis 150°C ausgesetzt wird und in der Konditioniervorrichtung eine Verweilzeit von über 3 Minuten hat.

    [0008] Unter dem Begriff "dampfdicht" wird verstanden, daß an den Ein- und Ausgängen des Synthesefasermaterials die unkontollierten Dampfverluste zusammen weniger als 1 % betragen. Ist eine Kräuselvorrichtung in die Konditioniervorrichtung absolut dampfdicht integriert, so gilt als Eingang für das Synthesefasermaterial der Eingang in die Kräusel. Dabei sind Stauchkammer- und Blaskräusel bevorzugt.

    [0009] Der überhitzte Dampf wird zweckmäßigerweise im Gegenstrom zum Fasermaterial geführt und in den einzelnen Behandlungsstufen mit Hilfe von Ventilatoren dem Fasermaterial mehrfach zugeführt. Die Erzeugung des überhitzten Dampfes erfolgt vorzugsweise in der Konditioniervorrichtung, in die Sattdampf eintritt, der mit Hilfe von Wärmetauschern überhitzt wird.

    [0010] Die Temperatur des überhitzten Dampfes beträgt vorzugsweise 120 bis 140°C, die Verweilzeit vorzugsweise 5 bis 15 Minuten. Bei einer Belegdichte des Siebbandes bis zu 15 kg/m2, vorzugsweise bis zu 10 kg/m2, arbeitet das Verfahren effizient. Die Belegdichte läßt sich leicht aus der belegbaren Oberfläche des Siebbandes, der Verweilzeit und dem Durchsatz (kg/h) berechnen.

    [0011] Das Verfahren ist besonders für das Konditionieren von Spinnkabeln aus Acrylfasern mit mindestens 40 Gew.-% Acrylnitrileinheiten, vorzugsweise mindestens 85 Gew.-% Acrylnitrileinheiten geeignet, die nach einem kontinuierlichen Trockenspinnverfahren erhalten werden, in dessen Verlauf sie nicht mit einer Extraktionsflüssigkeit für das Spinnlösungsmittel in Kontakt getreten sind.

    [0012] Bei deren Konditionierung wird nach dem erfindungsgemäßen Verfahren in der erfindungsgemäßen Vorrichtung eine stabile Kräuselung, ein Restlösungsmittelgehalt unter 1 Gew.-% und eine kochschrumpffreie Acrylfaser bei einem Dampfverbrauch erzeugt, der geringer als 1 kg pro kg durchgesetztes Fasermaterial ist.

    [0013] Ein weiterer Gegenstand der Erfindung ist eine Konditioniervorrichtung, in der das erfindungsgemäße Verfahren durchgeführt werden kann. Die Konditioniervorrichtung wird in den Fig. 1 bis 3 gezeigt.

    [0014] 

    Fig. 1 zeigt einen Längsschnitt durch die Vorrichtung

    Fig. 2 zeigt einen Querschnitt durch die Vorrichtung in Höhe der Dämpfzone B

    Fig. 3 zeigt einen Querschnitt durch die Vorrichtung in Höhe der Dämpfzone C.



    [0015] Die erfindungsgemäße Vorrichtung besteht aus einem Siebbanddämpfer, der dampfdicht verschlossen und in mehrere Zonen A bis D aufgeteilt ist, wobei die einzelnen Zonen voneinander abgetrennt sind, die Zonen B und C mehrfach vorkommen können, und die Zone A eine Einlaufvorrichtung und eine Absaugung für lösungsmittelbeladenen Dampf, die Zone B einen Ventilator, einen Wärmetauscher und eine Absaugung für lösungsbeladenen Dampf, die Zone C einen Ventilator, einen Wärmetauscher und eine Dampfzufuhr und die Zone D eine Absaugung für lösungsmittelbeladenen Dampf aufweisen.

    [0016] Gegebenenfalls schließt sich eine Zone E an, in der das Synthesefasermaterial gekühlt wird, bevor es der weiteren Verwendung, der Ablage, der Verpackung oder der Schneide zugeführt wird.

    [0017] In Fig. 1 ist eine Stauchkammerkräusel (1) in die Konditioniervorrichtung (2) integriert. über den geschlossenen Kanal (3) und eine Changiervorrichtung (4) wird das gekräuselte Faserkabel (5) auf ein Förderband (6), beispielsweise ein Loch- oder Siebband, aufgetäfelt. Nach Durchlaufen der Eingangszone (A), in der keine zwangsweise Umwälzung des Dampfes erfolgt, gelangt das gefaltete Faserkabel durch die Abdichtklappe (7) in die Dampfzonen (B) und (C). Beide Zonen sind durch Leitbleche voneinander abgetrennt und mit Umwälzventilatoren (8) ausgerüstet. Gleichzeitig wird Frischdampf bei (10) in die Dämpfzone (C) über einen Wärmetauscher (11) eingeleitet, so daß die Dampftemperatur wenigstens 105°C beträgt. Der Prozeßdampf durchströmt das gefaltete Faserkabel und wird anschließend mittels Ventilatoren (8) abgesaugt, über den Wärmetauscher (10) wieder aufgewärmt und erneut durch das Faserkabel geschickt. Ein Teilstrom des Dampfes der Dampfzone (C) gelangt entgegengesetzt zur Laufrichtung des Faserkabels in die Dampfzone (B). Hier wird der Dampf erneut durch Ventilatoren (8) über Wärmetauscher (12) geschickt, durch das Faserkabel geführt und ein mit restlichem Spinnlösungsmittel beladener Teilstrom über die Absaugung (13) ausgekreist. Bandabdichtungen in Form von schleifenden Abdichtklappen (7) in Höhe des gefalteten Faserkabels und Abdichtstreifen (14) des umlaufenden Siebbandes (6) verhindern weitgehend einen Dampfaustritt. Die Dampfmengen, die dennoch durch die Abdichtklappen (7) und Abdichtstreifen (14) entweichen, werden in der Eingangszone (A) und der Austrittszone (D) über Absaugungen (13), die mit einstellbaren, in der Figur nicht gezeigten Drosselklappen versehen sind, weggeführt. Das gefaltete Faserkabel wird anschließend über eine Kühlzone (E) geschickt. Durch die Kühlzone wird Luft von Raumtemperatur mittels eines Ventilators (15) geblasen. Anschließend wird das Faserkabel einer Schneidvorrichtung zugeführt und zu Stapelfasern weiterverarbeitet bzw. als Endlosband in Kartons eingetäfelt.

    [0018] Fig. 2 und Fig. 3 zeigen an Hand von Querschnitten durch die Dämpfzonen B und C den Weg des Prozeßdampfes durch die Konditioniervorrichtung. Der Frischdampf, der über die Eintrittsstelle (10) in Dämpfzone (C) gelangt, durchströmt den Wärmetauscher (11) und erfährt eine Uberhitzung. Anschließend durchströmt der Dampf das aufgetäfelte Faserkabel (5), wird über einen Ansaugkanal (16) mittels Ventilatoren (8) über einen Druckkanal (17) wieder dem Wärmetauscher zur erneuten Umwälzung zugeführt. Ein Teilstrom des Dampfes gelangt aus Dämpfzone (C) in die umgewälzte Dampfmenge der Dämpfzone (B), wo der Dampf wie in Dämpfzone (C) umgewälzt, über den Wärmetauscher (12) nacherhitzt und als Teilstrom über die Absaugung (13) ausgekreist wird.

    [0019] In weiterer Ausgestaltung der Erfindung kann ein Kräuselprozeß mit der Konditionierung verbunden werden.

    [0020] Für eine kontinuierliche Faserherstellung hat sich die unmittelbare Kopplung von Kräusel- und Konditioniervorrichtung als äußerst vorteilhaft erwiesen. In einem besonders bevorzugten Falle wird eine Stauchkammer (1) direkt über einen geschlossenen Kanal (3) nach Fig. 1 direkt mit der Kontitioniervorrichtung verbunden. Neben einer Stauchkammer hat sich auch der Einsatz einer Blasdüsenkräusel, welche analog mit der Konditioniervorrichtung gekoppelt ist, namentlich bei hohen Produktionsgeschwindigkeiten, als sehr günstig herausgestellt.

    Beispiel 1



    [0021] Die 30 gew.-%ige Spinnlösung eines Acrylnitrilcopolymerisates aus 93,6 % Acrylnitril, 5,7 % Acrylsäuremethylester und 0,7 % Natriummethallylsulfonat vom K-Wert 81 (Fikentscher, Cellulosechemie 13, (1932), Seite 58) in Dimethylformamid wurde aus 1264-Lochdüsen mit 0,2 mm Düsenlochdurchmesser bei einer Abzugsgeschwindigkeit von 60 m/min an einer 20-schächtigen Spinnanlage trocken versponnen. Die Verweilzeit der Spinnfäden in den Spinnschächten betrug 4 Sekunden. Die Schachttemperatur lag bei 210°C und die Lufttemperatur betrug 380°C. Die durchgesetzte Luftmenge betrug 40 m3/h für jeden Schacht, die am Kopf des Schachtes in Längsrichtungen zu den Fäden eingeblasen wurde.

    [0022] Das Spinngut vom Gesamttiter 267.000 dtex, welches noch einen Restlösungsmittelgehalt von 9,3 Gew.-%, bezogen auf den Feststoffgehalt, besaß, wurde unmittelbar vor Verlassen der Spinnschächte mit einer 80 bis 90°C warmen, wäßrigen, ölhaltigen, antistatischen Präparation derart benetzt, daß der ölgehalt der Fäden 0,25 Gew.-%, der Gehalt an Antistatikum 0,06 Gew.-% und die Feuchte 1,2 Gew.-%, bezogen auf den Feststoffgehalt, ausmachten. Die Dosierung der Präparation geschah über Zahnradpumpen. Dann wurde das warme Kabel über ein induktiv auf 150°C beheiztes Walzenpaar geschickt, wobei durch mehrfaches Umschlingen über eine Beilaufrolle eine Kontaktzeit von ca. 2 Sekunden erzielt wurde. Das Kabel nahm dabei eine Bandtemperatur von 112°C, gemessen mit dem Strahlungsthermometer KT 15 (Hersteller: Firma Heimann GmbH, Wiesbaden, BRD) an. Das Kabel wurde um 450 % verstreckt, wobei als zweiter Klemmpunkt ein Streckseptett mit kühlbaren Walzen diente. Die Bandtemperatur nach dem Streckvorgang betrug 61°C. Unmittelbar hierauf wurde das Kabel in einer Stauchkammer (1), welche mit der Konditioniervorrichtung (2) durch einen geschlossenen Kanal (3) verbunden war, mechanisch gekräuselt und über einer Changiervorrichtung (4) auf ein umlaufendes endloses Siebband (6) aufgetäfelt. Die Kräuselgeschwindigkeit betrug 270 m/min. Nach Durchlaufen der Eingangszone (A) gelangte das gefaltete, gekräuselte Faserkabel in die Dämpfzonen (B) und (C) von je 1 m Länge und 0,4 m Breite. Beide Dämpfzonen waren durch Leitbleche voneinander abgeschottet und mit Umwälzventilatoren (8) ausgerüstet. Gleichzeitig gelangte Frischdampf, der über ein Ventil in der Menge geregelt wurde, im Gegenstrom zur Faserkabelrichtung über die Dampfeintrittsstelle (10) in die Dämpfzone (C). Die eingespeiste Dampfmenge betrug 48 kg/h bei einem berechneten Faserkabeldurchsatz von 96,1 kg/h, so daß sich ein spezifischer Dampfverbrauch von 0,5 kg Dampf pro kg Faserkabel einstellte. Der eingeströmte Frischdampf und der umgewälzte Dampf, der über Wärmetauscher (11) bzw. (12) auf 135°C erhitzt wurde, durchströmte das gefaltete, gekräuselte Faserkabel und ein Teilstrom, der in die Dämpfzone (B) gelangte, wurde anschließend mittels Ventilatoren (8) über einen Ansaug- (16) und Druckkanal (17) abgesaugt, über Wärmetauscher nacherhitzt und erneut über das Faserkabel geschickt. Ein Teilstrom, der mit dem restlichen Spinnlösungsmittel Dimethylfomamid beladen war, wurde an der Dampfaustrittsstelle (13) der Dämpfzone (B) ausgekreist und einer Destillationskolonne zugeführt. Bandabdichtungen in Form von schleifenden Abdichtklappen (7) in Höhe des gefalteten Faserkabels und Abdichtstreifen (14) in Höhe des umlaufenden Siebbandes verhinderten weitgehend einen unnötigen Dampfaustritt. Kleinere Dampfmengen, die in der Eingangszone (A) und der Austrittszone (B) gelangten, wurden dort ebenfalls ausgekreist und der Destillationskolonne zugeführt. Die Verweilzeit des gefalteten Faserkabels in den Dämpfzonen (B + C) der Konditioniervorrichtung betrug 5,0 Minuten. Hieraus errechnete sich eine spezifische Belegdichte von ca. 10 kg/m2. Das Faserkabel wurde nach Verlassen der Konditioniervorrichtung zur Stabilisierung der Kräuselung über eine 1,5 m lange Kühlzone (E) geschickt. Durch die Kühlzone wird Luft von Raumtemperatur mittels eines Ventilators (15) geblasen. Anschließend wird das fertig ausgeschrumpfte Faserkabel zu Stapelfasern von 60 mm Schnittlänge geschnitten, verblasen und einer Packpresse zugeführt. Die auf diese Art und Weise in einem kontinuierlichen Prozeß hergestellten Acrylfasern sind schrumpffrei und haben einen Einzelfaserendtiter von 3,3 dtex. Die Faserfestigkeit beträgt 2,9 cN/dtex und die Dehnung 39 %. Der Gehalt an Restlösungsmitteln in der Spinnfaser liegt bei 0,62 Gew.-%. Aus den Fasern auf einer Hochleistungskarde mit 120 m/min hergestellte Garne besitzen bei einer Garnfeinheit von 278 dtex eine Garnfestigkeit von 15,3 RKM, eine Dehnung von 18,9 % und einen Garnkochschrumpf von 2,4 %.

    [0023] In der folgenden Tabelle wird für Spinnkabel vom gleichen Gesamttiter 267.000 dtex. welches unterschiedliche Restlösungsmittelgehalte an Dimethylformamid aufwies und unter verschiedenen Dämpfbedingungen durch die Konditioniervorrichtung lief, Bandaufmachung und Laufweise in der Sekundärspinnerei beurteilt. Die unterschiedlichen Restlösungsmittelgehalte im Faserkabel wurden durch Variation der Spinnlufttemperatur und Spinnluftmengen bei sonst gleichen Versuchsbedingungen wie im Beispiel 1 erzielt. Variiert wurden die Dämpfertemperatur, die pro kg Faserkabel durchgesetzte Dampfmenge und die Verweilzeit in der Konditioniervorrichtung.

    [0024] Wie aus der Tabelle hervorgeht, ist überhitzter Dampf bei Temperaturen bis 140°C wesentlich besser als Sattdampf unter sonst gleichen Bedingungen zur Restlösungsmittelentfernung aus dem Faserkabel geeignet. Je niedriger der Restlösungsmittelgehalt im Faserkabel vor der Konditioniervorrichtung ist, um so niedriger ist naturgemäß der Restlösungsmittelgehalt im Faserkabel nach Durchlaufen der Konditioniervorrichtung bei sonst gleichen Bedingungen. Ferner ist aus der Tabelle ersichtlich, daß bei Faserkabeln mit Lösungsmittelgehalten um 10 Gew.-% im allgemeinen Dampfmengen kleiner 1 kg pro kg Faserkabel völlig ausreichend sind, um den Restlösungsmittelgehalt bei Verweilzeiten von ca. 5 Minuten deutlich unter 1 Gew.-%, bezogen auf Faserkabel, abzusenken. Alle Fasern waren wiederum schrumpffrei. Bei höheren Lösungsmittelgehalten im Faserkabel kommt man durch entsprechende Anhebung der Dampfmenge und der Verweilzeit in der Konditioniervorrichtung ebenfalls zu niedrigen Restlösungsmittelgehalten. Wie die Versuche weiterhin zeigen, ist nur dann eine gute Verarbeitung in der Sekundärspinnerei gewährleistet, wenn keine unaufgelösten Schnittverbände infolge Bandstarre im Faserkabel auftreten. Diese Bandstarre, worunter man die teilweise Verbackung bzw. Verklebung von mehreren gekräuselten Einzelkapillaren zu einem verdichteten Kräuselpaket versteht, wird immer dann vermieden, wenn der Restlösungsmittelgehalt im Faserkabel unter 2 Gew.-% liegt.




    Beispiel 2



    [0025] Ein Teil des Faserkabels nach Beispiel 1 wird nach dem Strecken anstelle einer Stauchkammer einer Blasdüse zugeführt, welche mit der Konditioniervorrichtung ebenfalls durch einen geschlossenen Kanal (2) verbunden ist. In Abänderung zur Fig. 1 ist die Blaskräusel, die mit überhitztem Dampf von 140°C betrieben wird, vor der Konditioniervorrichtung so aufgebaut, daß die Blasdüsenaustritts- öffnung und der anschließende Kanal ohne Knickung in die Konditioniervorrichtung führt. Alle übrigen Bedingungen entsprechen den Angaben von Beispiel 1. Die auf diese Art und Weise in einem kontinuierlichen Prozeß hergestellten Acrylfasern haben einen Einzelfaserendtiter von 3,3 dtex. Die Faserfestigkeit beträgt 2,8 cN/dtex und die Dehnung 33 %. Der Gehalt an Restlösungsmittel in der Spinnfaser liegt bei 0,58 Gew.-%. Die Fasern waren wiederum schrumpffrei. Aus den Fasern auf einer Hochleistungskarde mit 140 m/min hergestellte Garne besitzen bei einer Garnfeinheit von 283 dtex eine Garnfestigkeit von 16,1 RKm, eine Dehnung von 18,4 % und einen Garnkochschrumpf von 2,4 %.

    Beispiel 3



    [0026] Ein Teil des Faserkabels aus Beispiel 1 wurde nach dem Kräuseln in einer Stauchkammer mit einer Rotorschneide zu Stapelfasern für 60 mm Stapellänge geschnitten und über eine Einzugswalze auf die Konditioniervorrichtung aufgetragen. Die übrigen Bedingungen entsprechen wieder den Angaben aus Beispiel 1. Am Ende der Kühlzohne (E) wird das Faservlies über eine trichterförmige Absaugung mittels Ventilator verblasen und zu einer Packpresse geführt. Einzelfaserendtiter 3,3 dtex; Faserfestigkeit 2,5 cN/dtex; Dehnung 34 %. Der Gehalt an Restlösungsmitteln in der Spinnfaser liegt bei 0,43 Gew.-%. Es wurde wiederum kein Faserkochschrumpf festgestellt. Garnwerte: Garnfestigkeit 15,8 Rkm bei einer Garnfeinheit von 290 dtex; Dehnung 18,1 %; Garnkochschrumpf 2,7 %; Kardiergeschwindigkeit 120 m/min.


    Ansprüche

    1. Verfahren zum Konditionieren von Synthesefasermaterial, insbesondere Synthesefaserkabeln oder -vliesen, dadurch gekennzeichnet, daß das Synthesefasermaterial in einer dampfdichten Konditioniervorrichtung auf einem umlaufenden Siebband mindestens zweistufig überhitztem Dampf von 105 bis 150°C ausgesetzt wird und in der Konditioniervorrichtung eine Verweilzeit von über 3 Minuten hat.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur des überhitzten Dampfes 120 bis 140°C die Verweilzeit 5 bis 15 Minuten und die Belegdichte des Siebbandes bis 15 kg/m2 betragen.
     
    3. Vorrichtung zur Konditionierung von Synthesefasermaterial, bestehend aus einem Siebbanddämpfer, der dampfdicht verschlossen und in mehreren Zonen A bis D aufgeteilt ist, wobei die einzelnen Zonen voneinander abgetrennt sind, die Zonen B und C mehrfach vorkommen können, und die Zone A eine Einlaufvorrichtung und eine Absaugung für lösungsmittelbeladenen Dampf, die Zone B einen Ventilator, einen Wärmetauscher und eine Absaugung für lösungsbeladenen Dampf, die Zone C einen Ventilator, einen Wärmetauscher und eine Dampfzufuhr und die Zone D eine Absaugung für lösungsmittelbeladenen Dampf aufweisen.
     
    4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß eine Kräuselvorrichtung dampfdicht in die Konditioniervorrichtung integriert ist und sich eine Kühlzone E an die Konditioniervorrichtung anschließt.
     




    Zeichnung