(19)
(11) EP 0 168 600 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
22.01.1986  Patentblatt  1986/04

(21) Anmeldenummer: 85106418.8

(22) Anmeldetag:  24.05.1985
(51) Internationale Patentklassifikation (IPC)4C25B 1/46, C25B 9/04, C25B 11/06, C25B 13/00
(84) Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI NL SE

(30) Priorität: 01.06.1984 DE 3420483

(71) Anmelder: HOECHST AKTIENGESELLSCHAFT
65926 Frankfurt am Main (DE)

(72) Erfinder:
  • Staab, Rudolf, Dr.
    D-6233 Kelkheim (Taunus) (DE)
  • Hannesen, Kurt
    D-6233 Kelkheim (Taunus) (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Bipolarer Elektrolyseapparat mit Gasdiffusionskathode


    (57) Bei diesem Elektrolyseapparat ist die Anode und Gasdiffusionskathode durch eine Trennwand voneinander getrennt angeordnet. Zwischen zwei endständigen Halbschalen (1, 2), von denen eine eine Anode (4) und die zweite eine Kathode (5) trägt, ist mindestens ein Element (6) angeordnet, das die Form einer Doppelwanne besitzt. Diese wird aus einem gemeinsamen Boden (7) und einer durch den Boden in ihrer Höhe geteilten seitlichen Wand (8) gebildet, deren Ränder mit Flanschen (9, 10) versehen sind. Die Anode (4) und die Kathode (5) sind mit der Wand (8) und Streben (13), die beidseitig senkrecht aus dem Boden herausragen, elektrisch leitend verbunden. Damit zwischen Trennwand (14) und Kathode (5) ein Hohlraum (16) entsteht, ist zwischen beiden ein Dichtungselement angeordnet.




    Beschreibung


    [0001] Die vorliegende Erfindung betrifft einen bipolaren Elektrolyseapparat mit Sauerstoffverzehrkathode zum Herstellen von Chlor und Natronlauge aus wässeriger Alkalichloridlösung mit Einrichtungen zum Zuführen des Elektrolysestromes und der Elektrolyseeingangsprodukte und zum Abführen der Elektrolyseausgangsprodukte, bei dem Anode und Kathode durch eine Trennwand voneinander getrennt angeordnet sind.

    [0002] Die wäßrige Natriumchlorid-Elektrolyse ist ein wichtiges Verfahren zur Herstellung der Schwerchemikalien Chlor und Natronlauge. Eine moderne Variante wird in einer Membranzelle durchgeführt. Bei diesem Verfahren besteht die Elektrolyse-Zelle aus einem Anodenraum mit einer Anode und einem Kathodenraum mit einer Kathode,sowie einer Kationenaustauscher-Membran, die beide Elektrolyseräume voneinander trennt. Speist man in den Anodenraum eine gesättigte Natriumchlorid-Lösung ein, so werden unter der Einwirkung des elektrischen Stromes die Chloridionen an der Anode zu elementarem Chlor entladen. Gleichzeitig findet an der Kathode eine Wasserzerlegung unter Bildung von elementarem Wasserstoff und Hydroxidionen statt. Etwa in gleichem Maße wie Hydroxidionen erzeugt werden, wandern Natriumionen aus dem Anodenraum durch die Kationenaustauscher-Membran in den Kathodenraum. Die zugrundeliegende chemische Reaktion entspricht der folgenden Gleichung:

    Für den Anodenraum einer Elektrolysezelle in der ein Alkalichlorid wie beispielsweise Natriumchlorid, Kaliumchlorid oder Lithiumchlorid elektrolysiert werden soll, muß ein Werkstoff verwendet werden, der beständig ist gegen das korrosive Medium, das hohe Chloridionenkonzentrationen und elementares Chlor enthält. Stand der Technik ist die Verwendung von Titan, Iridium oder Edelmetalle, bevorzugt ist Titanmetall, welches oberflächlich mit einem Mischoxid aktiviert sein kann, um die Chlorüberspannung zu verringern und gleichzeitig die Sauerstoffüberspannung zu erhöhen. Die Anode besteht ebenfalls aus Titan, welches durch übergangsmetalloxide wie Rutheniumoxid oder Iridiumoxid aktiviert sein kann, um die Chlorüberspannung zu erniedrigen und gleichzeitig die Sauerstoffüberspannung zu erhöhen.

    [0003] Für den Kathodenraum kann der Werkstoff Titan nicht verwendet werden, da durch den gebildeten Wasserstoff eine Versprödung des Titanmetalls verursacht würde. Der Kathodenraum wird deshalb aus Normalstahl, Edelstahl, Nickel oder vernickeltem Stahl gefertigt. Die Kathode besteht ebenfalls aus diesen Materialien, kann aber zusätzlich durch Edelmetalle oder andere Elektrokatalysatoren wie beispielsweise Raney-Nickel oder schwefelhaltigem Nickel aktiviert sein. Elektrochemische Zellen für die Alkalichlorid-Elektrolyse enthalten zusätzlich ein Diaphragma oder eine Kationenaustauschermembran, die Anoden-und Kathodenraum voneinander trennen. Bevorzugt werden Kationenaustauscher-Membranen, das sind perfluorierte Membranen, die Sulfonsäure- oder Carboxylgruppen enthalten, verwendet, wenn hochreine Natronlauge erhalten werden soll. Die Membranen sind kationenselektiv, lassen also bei der Natriumchlorid-Elektrolyse nur die Natriumionen durch, wohingegen die Chloridionen im Anodenraum verbleiben.

    [0004] In der Praxis werden aus solchen Elektrolysezellen, die aus Anodenraum mit Anode, Kathodenraum mit Kathode und Kationenaustauscher-Membran bestehen, größere Elektrolyseure zusammenstellt, die aus einer Vielzahl von Einzelzellen bestehen können. Solche Elektrolyseure können monopolar oder bipolar geschaltet sein. Bevorzugt ist die bipolare Schaltung, da hiermit sehr große Zelleneinheiten betrieben werden können.

    [0005] Schwierigkeiten treten aber beim Stromübergang von Zelle zu Zelle auf. Wegen der unterschiedlichen Materialien von Kathodenraum und Anodenraum, über deren jeweilge Rückwand die Stromleitung erfolgt, und vor allem wegen der Passivierung des Titans in Luftatmosphäre, treten große übergangswiderstände und damit erhebliche Spannungsverluste auf.

    [0006] Es bestannd daher die Aufgabe, eine elektrochemische Zelle zur Verfügung zu stellen, die aus einfachen Bausteinen besteht und zu großen Elektrolyseuren zusammengestellt werden kann, und die bei bipolarer Schaltung eine optimale Stromleitung von Zelle zu Zelle gewährleistet.

    [0007] Die Erfindung, wie sie in den Patentansprüchen gekennzeichnet ist, löst die Aufgabe dadurch, daß zwischen zwei Halbschalen mit als Flansch ausgebildeten Rändern, von denen eine eine Anode und die zweite eine Kathode trägt, mindestens ein Element mit der Form einer Doppelwanne angeordnet ist, die aus einem gemeinsamen Boden und einer durch den Boden in ihrer Höhe geteilten seitlichen Wand gebildet wird, deren Ränder mit Flanschen versehen sind, die Anode und die Kathode, die durch den Boden räumlich voneinander getrennt sind, mit der Wand und Streben die beidseitig senkrecht aus dem Boden herausragen elektrisch leitend verbunden sind, zwischen den Flanschen der Halbschalen und des Elements die Trennwände eingeklemmt und Dichtungselemente so angeordnet sind, daß zwischen Trennwand und Kathode ein Hohlraum entsteht.

    [0008] In einer Ausgestaltung können zwischen den Halbschalen zwei und mehr Elemente angeordnet sein. Zwischen den Flanschen der Elemente ist die Trennwand eingeklemmt und ein Dichtungselement so angeordnet, daß zwischen Trennwand und Kathode ein Hohlraum entsteht. Zwischen Trennwand und Kathode kann ein Abstandshalter angeordnet sein und das Dichtungselement Ausnehmungen aufweisen, die den Hohlraum zwischen Trennwand und Kathode mit Einrichtungen zum Zu- und Abführen des Katholyten verbindet. Für die Halbschalen und Elemente kann Titan als Werkstoff verwendet werden. Als Anode eignet sich Titan, das mit einem Oxid oder Mischoxid der Metalle der 8. Nebengruppe des Periodensystems aktiviert ist.

    [0009] Im folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert. Es zeigt

    Figur 1 einen Schnitt durch einen Elektrolyseur der aus drei bipolaren Zellen besteht (zwei Elemente gemäß Figur 2 zwischen den Halbschalen)

    Figur 2 einen Schnitt durch ein Element

    Figur 3 einen vergrößerten Ausschnitt "Z" von Figur 1



    [0010] Zwischen den Halbschalen 1 und 2, deren Ränder als Flansche 3 und 3 a ausgebildet sind und von denen die eine eine Anode 4 und die andere ein Gasdiffusionskathode 5 trägt, wie sie beispielsweise in der deutschen Patentanmeldung P 33 32 566.9 beschrieben ist, ist mindestens ein Element 6 angeordnet. Das Element 6 besitzt die Form einer Doppelwanne, die aus einem gemeinsamen Boden 7 und einer durch den Boden in inrer Höhe geteilten seitlichen Wand 8 gebildet wird. Der Boden 7 kann auch asymmetrisch angeordnet sein, so daß die Wannen unterschiedlich tief ausfallen. Die Ränder der Wand, also die freien Enden sind mit Flanschen 9 und 10 versehen. Der Flansch 9 bzw. das an ihn angrenzende Wandteil trägt jeweils eine Anode 4 und der Flansch 10 bzw. das daran angrenzende Wandteil jeweils eine Kathode 5. Der durch die Anode 4 und die Wanne gebildete Raum ist der Anodenraum 11 und der durch die Kathode 5 und die Wanne gebildete Raum der Gasraum 12. Im Anodenraum 11 und Gasraum 12 sind Streben 13 angeordnet, die senkrecht aus dem Boden herausragen und die Elektroden 4 und 5 elektrisch leitend mit dem Boden 7 verbinden. Zwischen den Flanschen 3, 3a, 9, 10 der Halbschalen 1,2 und der Elemente 6 sind Trennwände 14 wie Ionenaustauschermembranen, Diaphragmen etc. und Dichtungselemente 15 angeordnet. Das Dichtungselement besteht aus einem laugebeständigen Material, bevorzugt PTFE. Das Dichtungselement 15 ist bezüglich seiner Dicke so bemessen, daß zwischen Trennwand 14 und Kathode 5 ein Hohlraum 16, der Kathodenraum entsteht. Es kann zweckmäßig sein, zwischen Trennwand 14 und Kathode 5 im Hohlraum 16 einen Abstandshalter 17 anzuordnen, der einen gleichmäßigen Abstand der Kathode von der Trennwand einstellt. Der Abstandshalter besteht aus einem laugebeständigen Material wie beispielsweise PTFE oder Nickel. Bevorzugt ist eine Kathodenraumtiefe von etwa 2 bis 3 mm, besonders bevorzugt 0,5 bis 1 mm. Das Dichtungselement 15 kann mit Ausnehmungen 18 versehen sein, die den Hohlraum 16 mit Einrichtungen 19 zum Zu-und Abführen des Katholyten verbinden. Anolyt wird über die Leitungen 20 zu- bzw. abgeführt und Gas (Luft, Sauerstoff) für die Sauerstoffverzehrkathode über die Leitungen 21. Die Halbschalen 1, 2 und die Elemene 6 werden mittels in Büchsen 22 aus elektrisch isolierendem Material geführten Schrauben 23 verbunden. Die Stromzuführungen sind mit plus und minus gekennzeichnet. Die Trennwand 14 kann auf der Anode 4 aufliegen.


    Ansprüche

    1. Bipolarer Elektrolyseapparat mit Sauerstoffverzehrkathode zum Herstellen von Chlor aus wässeriger Alkalichloridlösung mit Einrichtungen zum Zuführen des Elektrolysestromes und der Elektrolyseeingangsprodukte und zum Abführen der Elektrolyseausgangsprodukte, bei dem Anode und Kathode durch eine Trennwand voneinander getrennt angeordnet sind, dadurch gekennzeichnet, daß zwischen zwei Halbschalen (1,2) mit als Flansch (3,3a) ausgebildeten Rändern, von denen eine eine Anode (4) und die zweite eine Kathode (5) trägt, mindestens ein Element (6) mit der Form einer Doppelwanne angeordnet ist, die aus einem gemeinsamen Boden (7) und einer durch den Boden in ihrer Höhe geteilten seitlichen Wand (8) gebildet wird, deren Ränder mit Flanschen (9,10) versehen sind, die Anode (4) und die Kathode (5), die durch den Boden (7) räumlich voneinander getrennt sind, mit der Wand (8) und Streben (13), die beidseitig senkrecht aus dem Boden (7) herausragen, elektrisch leitend verbunden sind, zwischen den Flanschen (3,3a, 9, 10) der Halbschalen (1,2) und des Elements (6) die Trennwände (14) eingeklemmt und Dichtungselemente (15) so angeordnet sind, daß zwischen Trennwand (14) und Kathode (5) ein Hohlraum (16) entsteht.
     
    2. Elektrolyseapparat nach Anspruch 1, dadurch gekennzeichnet, daß zwei Elemente (6) zwischen den Halbschalen (1,2) angeordnet sind und zwischen den Flanschen (10,11) der Elemente (6) eine Trennwand (14) eingeklemmt und ein Dichtungselement (15) so angeordnet ist, daß zwischen Trennwand (14) und Kathode (5) ein Hohlraum (16) entsteht.
     
    3. Elektrolyseapparat nach Anspruch 1 oder 2,dadurch gekennzeichnet, daß zwischen Trennwand (14) und Kathode (5) ein Abstandshalter (17) angeordnet ist und das Dichtungselement (15) Ausnehmungen (18) aufweist, die den Hohlraum (16) zwischen Trennwand (14) und Kathode (5) mit Einrichtungen (19) zum Zu- und Abführen des Katholyten verbindet.
     
    4. Elektrolyseapparat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß für die Halbschalen (1,2) und die Elemente (6) als Werkstoff Titan verwendet wird.
     
    5. Elektrolyseapparat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Anode (4) eine Titananode verwendet wird, die mit einem Oxid oder Mischoxid der Metalle der 8. Nebengruppe des Periodensystems aktiviert ist.
     
    6. Elektrolyseapparat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Kathode 5 eine Gasdiffusionskathode verwendet wird, die aus einem Stromkollektor aus Nickelgewebe besteht, welches mit einem porösen kolloidalen Silberkatalysator, welcher auf Polytetrafluorethylen abgeschieden ist, beschichtet ist, und auf der Langseite eine hydrophile Deckschicht besitzt.
     




    Zeichnung