① Veröffentlichungsnummer: 0 169 463

12

EUROPÄISCHE PATENTSCHRIFT

Veröffentlichungstag der Patentschrift: 30.03.88

(51) Int. Cl.4: F 16 B 5/00

- Anmeldenummer: 85108753.6
- Anmeldetag: 12.07.85

- Verbindungsvorrichtung für zwei Bauteile.
- Priorität: 25.07.84 DE 3427414
- Veröffentlichungstag der Anmeldung: 29.01.86 Patentblatt 86/5
- Bekanntmachung des Hinweises auf die Patenterteilung: 30.03.88 Patentblatt 88/13
- Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI NL SE
- Entgegenhaltungen: DE - B - 1 295 280 DE-B-2061995 GB - A - 1 216 011 US - A - 3 197 552

US - A - 4 047 266

- Patentinhaber: Fehrensen, Hans, Dr., Eisenbahnstrasse 1, CH-4900 Langenthal (CH)
- Erfinder: Fehrensen, Hans, Dr., Eisenbahnstrasse 1, CH-4900 Langenthal (CH) Erfinder: Stell, Karl-Wilhelm, Dr., Schoppenkamp 3, D-4424 Stadtlohn (DE)
- Vertreter: Habbel, Hans-Georg, Dipl.-Ing., Postfach 3429 Am Kanonengraben 11, D-4400 Münster (DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents im Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

Die Erfindung bezieht sich auf eine Verbindungsvorrichtung für zwei gegeneinander bewegliche Bauteile gemäss dem Oberbegriff des Hauptanspruches.

Eine gattungsbildende Einrichtung wird in der US-A-3 197 552 beschrieben. Diese bekannte Einrichtung ist für eine Antennenfixierung, z.B. für Unterseeboote, bestimmt und kann nur relativ kleine Abwinklungen ausführen. Wenn grosse Abwinklungen angestrebt werden, sind mehrere hintereinandergeschaltete Aggregate - wie zeichnerisch in der US-A-3 197 552 dargestellt — erforderlich.

Das eine Bauteil stützt sich dabei gegen ein sphärischen Trägerteil ab, und es ist eine die beiden Bauteile verbindende Zugstange vorgesehen, die im Zentrum der Bauteile angreift und im Zentrum einer Feder angeordnet ist, wobei im Auslenkungsablauf der zwischen dem Abstützpunkt und der Wirkungslinie der Feder bestehende Hebelarm grösser als 0 ist, so dass die Federkraft gleichzeitig zur Erzeugung des Rückstellmomentes ausgenutzt werden kann. Die bekannte Anordnung hat den Nachteil, dass nur kleine Abwinklungen möglich sind und dass sofort bei Auslenkung ein «Maulklaffen» eintritt, so dass bei Bauteilen, die leicht zugänglich sein müssen, Verletzungen der Bedienungspersonen auftreten können. Die bekannte Einrichtung weist weiterhin einen gleichbleibenden Hebelarm zwischen dem Abstützpunkt und dem Kraftangriffspunkt der Zugstange auf und weiterhin nur einen geringen Federspannweg, so dass keine hohen «Rückstellkräfte» erzielbar sind.

Der Erfindung liegt die Aufgabe zugrunde, die gattungsbildende Einrichtung dahingehend zu verbessern, dass im Ruhezustand eine sehr stabile Halterung erreichbar ist und im abgewinkelten Zustand eine hohe Rückstellkraft erzielt wird.

Diese der Erfindung zugrundeliegende Aufgabe wird durch die Lehre des Hauptanspruches gelöst.

Mit anderen Worten ausgedrückt, wird bei der erfindungsgemässen Vorrichtung so vorgegangen, dass die beiden Bauteile, nämlich Arbeitsteil und Trägerteil, geometrisch derart angepasste gemeinsame Berührungsflächen oder Berührungsschalen besitzen, dass diese die statischen Elemente des Keils (Einspannung, stabiler Sitz und hohe Kraftaufnahme) einerseits mit den dynamischen Elementen des nach der Initialkraftaufnahme wirksam werdenden Kugelgelenks andererseits zu besonderer Wirkweise verbinden, wobei die dynamischen Elemente des Kugelgelenks in einem elastischen Nachgeben und wieder Rückstellen mit Hilfe einer Feder in einem zwangsgeführten sicheren Bewegungsablauf ohne «Maulklaffen» der Verbindungsteile erreichen.

Zusammen mit der freien Lagerung der Schalen und der speziellen Konstellation vom Kraftangriffspunkt zur Widerlagerebene, vergleichbar etwa mit einer Konstruktion — Wirkung der Schwerkraft vorausgesetzt - bei der der Schwerpunkt tief unten liegt und die Auflager (weit) oberhalb des Schwerpunktes angeordnet sind, ergeben sich zusätzliche neue Eigenschaften dieser Verbindungsvorrichtung, nämlich die Beherrschbarkeit grosser Neigungswinkel über den ganzen relevanten Bereich bis nahe 90° und nunmehr das im Bewegungsablauf doppelt wachsende Rückstellmoment — als Funktion des Winkels der Auslenkung: grösser werdender Hebelarm und wegen des bei Auslenkung zu beschreibenden sehr langen Weges doppelt steigende Federkraft mit dem Resultat geringerer erforderlicher Federkraft und kleinerer Baugrösse der Vorrichtung, die für schwere Baukonstruktionen erst dadurch wirtschaftlich werdende Konstruktionen zulassen.

Schliesslich eröffnet die neue drei- bzw. die raumdimensionale Rückstellung, also in der x-, y- und z-Achse, neue Anwendungsbereiche.

Die erfindungsgemäss definierte Vorrichtung bewirkt in der Ruhelage einen definierten, in drei Richtungen beständigen Sitz, der wegen seiner partiellen keilähnlichen Form der beiden Bauteile in seiner Wirkung einem eingespannten Träger gleicht und in der Bewegung einen definierten gesteuerten Bewegungsablauf über einen grossen Neigungswinkel mit sicherer Führung der Innenschale in der Aussenschale unter Vermeidung des gefährlichen Maulklaffens dieser Vorrichtung ermöglicht.

Erst mit den neuen Eigenschaften einer Verbindungseinrichtung werden Forderungen, wie die der Erhöhung der passiven Sicherheit im Strassen- und Kraftverkehr, technisch wirtschaftlich realisierbar, z.B. Überlastsicherungen für kleine, mittlere und grosse Schilder und dreidimensionale automatische Repositionierung in stabilen und dennoch leichten Konstruktionen.

Das hohe Rückstellmoment ist in der Lage auch schwere und insbesondere lange Bauteile nach einer 90°-Auslenkung wieder aufzustellen.

Vorteilhafte Ausgestaltungen der erfindungsgemässen Einrichtung sind in den Unteransprüchen er-

Eine wesentliche neue technische Anwendung findet die erfindungsgemässe Verbindung durch den Rückstelleffekt in Kombination mit elektrischen oder elektronischen Kontaktabgaben, die einerseits zu einer oder einer mehrfachen Meldung von Ereignissen, z.B. Gefahren, herangezogen werden können und andererseits sogar zur Steuerung von Vorgängen benutzbar sind, z.B. wenn das Objekt, wie eine Markise od. dgl., ganz oder teilweise aus der Gefährdung herausgesteuert werden soll. So ist es beispielsweise möglich, Markisen bei zu hohen Windbelastungen ganz oder schrittweise teilweise einzufahren.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen erläutert. Die Zeichnungen zeigen in

Fig. 1 schematisch eine erste Ausführungsform der Vorrichtung, in

Fig. 2 die in Fig. 1 dargestellte Vorrichtung in einer grossen Abwinklung, die zwar für diese Ausführungsform nicht vorgesehen ist, aber den Bewegungsablauf derselben erläutert,

Fig. 3 bis 6 zeigen verschiedene Ausführungsformen zur Verdeutlichung der unterschiedlichen Lage der Feder zum einen innerhalb zum anderen ausserhalb der Haubenform; sowie Variationen von flächigen und linienförmigen Widerlagern; sowie schliesslich kegel- oder rotationsförmige, daneben pyramidenförmige und endlich profilförmige Ausführungen der Verbindungsvorrichtung, in

Fig. 3 wird die Profilausführung mit innerhalb der

25

35

Haubenform untergebrachter Feder und «linien-» festen Widerlager dargestellt, in

Fig. 4 wird die in Fig. 1 als rotationsförmige Ausführung vorgestellte Form als Pyramidenform dargestellt, in

Fig. 5 wird die für grosse Neigungswinkel bei Vermeidung des Maulklaffens vorgesehene Ausführungsform dargestellt, die sowohl Kegel- als auch Pyramiden- als auch eine einfache Profilform haben kann und in

Fig. 6 wird die Profilausführung mit innerhalb der Haubenform untergebrachter Feder aber anders als Fig. 3 mit flächigen (variablen) Widerlager gezeigt.

In Fig. 1 ist schematisch eine Verbindungsvorrichtung für zwei Bauteile A und B dargestellt, wobei in der nachfolgenden Erläuterung das Bauteil A als Trägerteil 1 und das Bauteil B als Arbeitsteil 2 bezeichnet sind. Das Trägerteil 1 ist mit dem Arbeitsteil 2 über eine Zugstange 3 verbunden, die mittels eines Kugelendes 4 an der Innenseite des Trägerteiles 1 anliegt, wobei in der Kegelspitze des Trägerteiles 1 Schlitze 5 ausgearbeitet sind, die eine Abwinkelung der Zugstange aus der in Fig. 1 dargestellten Lage, beispielsweise in die in Fig. 2 dargestellte Lage, ermöglichen. Innerhalb des Arbeitsteiles 2 ist eine Schraubenfeder 6 vorgesehen, die einenendes an einer entsprechenden Ringlagerfläche 7 des Arbeitsteiles 2 anliegt, anderenendes sich an der Unterseite einer Widerlagerscheibe 8 abstützt, die von der Zugstange 3 getragen wird.

Das untere Ende des Arbeitsteiles 2 übergreift haubenartig ein glockenförmig und kegelstumpfartig ausgebildetes Bauteil des Trägerteiles 1. Das Trägerteil 1 weist bei dieser Konstruktion ein umlaufendes Widerlager 9 auf, an dem sich bei Kippbewegungen des Arbeitsteiles 2 das untere Ende der Haube 10 abstützen kann.

In der in Fig. 1 dargestellten eigentlichen Arbeitslage liegt die Haube 10 dicht dem rotationssymmetrischen Kegelstumpf 11 des Trägerteiles 1 an.

Bei Krafteinwirkung auf das Arbeitsteil 2, beispielsweise in Richtung des Pfeiles \underline{K} in Fig. 1, kann nummehr das Arbeitsteil 2 ausweichen, indem sich das untere Ende der Haube 10 an dem Widerlager des Trägerteiles 1 abstützt, wobei gleichzeitig die Feder 6 gespannt wird und die Zugstange 3, wie in Fig. 2 dargestellt, aus ihrer in Fig. 1 dargestellten Lage in die in Fig. 2 dargestellte Lage auswandert, wobei der Neigungswinkel des Arbeitsteiles 2 abhängig ist von der auf das Arbeitsteil 2 einwirkenden Kraft K. Hier wird aber nochmals ausdrücklich darauf hingewiesen, dass die in Fig. 2 für diese Ausführungsform dargestellte Extremlage nur als Vergleich zur Erklärung des unterschiedlichen Bewegungsablaufes bei Fig. 5 dient, deren Ausführungsform — wie weiter unten beschrieben — für grosse Abwinklungen bei fester Führung geeignet ist. Die Begrenzung der Wirkweise auf die zulässige Abwinklung der Ausführungsform bei Fig. 1 und 2 wird durch die Begrenzung des Federweges erreicht.

Bei Nachlassen der Kraft K bewirkt die Feder 6 eine Rückstellung des Arbeitsteiles 2 in die Ausgangs-

Aus der vorausgehenden Beschreibung des in den Fig. 1 und 2 dargestellten Ausführungsbeispieles ist ersichtlich, dass dann, wenn der Kegelstumpf 11 an seiner Aussenfläche mit in der Zeichnung nicht dargestellten gewindegangartigen Führungsflächen ausgerüstet ist, an denen sich die Haube 10 führt, bei Drehbewegungen des Arbeitsteiles 2 gegenüber dem ortsfest angeordneten Trägerteil 1 ein Hochschrauben des Arbeitsteiles 2 unter Spannung der Feder 6 erfolgt, so dass dann bei Nachlassen dieser Drehkraft das Arbeitsteil 2 sich wieder in die Ausgangslage zurückstellt.

Entscheidend bei der erfindungsgemässen Einrichtung ist, dass die Abstützung des Arbeitsteiles 2 im Bereich des Widerlagers 9 am Trägerteil 1 derart ist, dass bei Kippbewegungen des Arbeitsteiles 2 gegenüber dem ortsfest angeordneten Trägerteil 1, der Hebelarm des Widerlagers 9 für das Arbeitsteil 2 vom Angriffspunkt der Feder am Trägerteil, d.h. also von der Anlage des Kugelendes 4 an dem Scheitel des Kegelstumpfes 11 im relevanten Bereich bei Auslenkung sogar grösser wird. Hierdurch wird sichergestellt, dass stets bei Auslenkbewegungen des Arbeitsteiles 2 gegenüber dem Trägerteil 1 das erforderliche Rückstellmoment zur Verfügung steht.

Fig. 3 zeigt eine abgeänderte Ausführungsform der Erfindung mit einem Trägerteil 1a und einem Arbeitsteil 2a, wobei nunmehr die beiden Teile trogartig ineinanderfassen und damit das linienfeste Widerlager 9a im Bereich des oberen Randes des Troges des Trägerteiles 1a gebildet wird. Hier liegt die Feder als Spiralfeder innerhalb der Haubenform. Die Halterung der Zugstange 3a erfolgt dabei verstellsicher am Trägerteil 1a, es ist damit aber keine feste Führung des innenliegenden Bauteils an der Zugstange gegeben.

Die Fig. 3 und 4 verdeutlichen auch, dass es für die Wirkung der erfindungsgemäsen Einrichtung vollkommen unabhängig ist, ob sich die Feder 6 innerhalb des Arbeitsteiles 2 oder innerhalb des Trägerteiles 1 befindet bzw. mit anderen Worten sich innerhalb oder ausserhalb der Haubenform befindet.

Fig. 4 soll die pyramidenartige Ausführung analog zu Kegel- bzw. Rotationsform entsprechend Fig. 1 zeigen. Auch bei dieser Ausführung sind die benannten Wirkungen der Verbindungseinrichtung gegeben.

Fig. 5 zeigt eine wichtige Ausführungsvariante, die einen sehr grossen (ca. 90 Grad) Neigungswinkel bei fester Führung des innenliegenden Bauteils durch die Schalenkontur des äusseren Bauteils im Bewegungsablauf zulässt unter gleichzeitiger Vermeidung des für viele Konstruktionen gefährlichen Maulklaf-

Das geschieht — anders als in Fig. 1, in der im Bewegungsablauf das sich bewegende Bauteil nur aus der Schalenform herausbewegt wird (s. Fig. 2) mit einem Herausbewegen und einem Eintauchen des innenliegenden Bauteils, d.h. im Bewegungsablauf ist nur zu Beginn ein Herausheben wie bei Fig. 1 gegeben, danach aber folgt ein Herausheben auf der einen Seite mit dem gleichzeitigen Wiedereintauchen auf der anderen Seite.

Schliesslich zeigt die Fig. 6 die Ausführung als Profilabschnitt, analog zur kegelförmigen Ausführung der Fig. 1 mit flächiger Anlage und analog zur Ausführungsform Fig. 3 als Profilabschnittausführung. In diesem Beispiel dient das eigentliche Arbeitsteil

3

65

10

als Schilderträger. Die für die Erfindung benannten Wirkungen werden auch hier erreicht, d.h. auch diese Form kann nicht nur die Kippkräfte in Drehmomente umwandeln, sondern auch Drehkräfte aufnehmen und eine räumliche (XYZ) Reorientierung nach Beendigung der Störkraft wiederherstellen.

Patentansprüche

- 1. Verbindungsvorrichtung für zwei gegeneinander bewegliche Bauteile (A, B), bei welcher ein ortsfestes Trägerteil (1, 1a, 1b) sich gegen ein dazu entgegen der Rückstellkraft einer Feder verschwenkbares Arbeitsteil (2, 2a, 2b) über einander abstützende Auflager unter Zwischenschaltung einer die Bauteile verbindenden, im Zentrum der Bauteile und der Feder (6) angeordneten Zugstange (3) abstützt und im Auslenkungsablauf der zwischen dem Abstützpunkt und der Wirkungslinie der Feder bestehende Hebelarm grösser als Null ist, so dass die Federkraft gleichzeitig zur Erzeugung des Rückstellmomentes ausgenutzt ist, dadurch gekennzeichnet, dass
- a) eines der Bauteile (A oder B) im Querschnitt Uförmig mit divergierenden Schenkeln und das andere Bauteil (B oder A) als vom Steg her die divergierenden Schenkel übergreifendes Haubenteil ausgebildet ist,
- b) der Kraftangriffspunkt der Zugstange an dem einen Bauteil (A oder B) — in Wirkrichtung der Federkraft — von der Ebene der Auflage entfernt liegt und
- c) dass die Zugstange (3) sich innerhalb des durch die Feder (6) gebildeten freien Innenraums quer zur Längsachse der Zugstange (3) in ihrer unausgelenkten Lage bewegen kann, wobei ein Ende der Zugstange die Position auf der nicht ausgelenkten Längsachse beibehalten kann.
- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Feder (6) innerhalb des Arbeitsteiles (2) untergebracht ist (Fig. 1 und 6).
- 3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Feder (6) innerhalb des Trägerteiles (1) untergebracht ist (Fig. 5).
- 4. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass die Zugstange (3) beweglich mit dem Trägerteil (1) verbunden ist (Fig. 1, 2, 5).
- 5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Zugstange (3a) fest mit dem Trägerteil (1a) verbunden ist (Fig. 3).
- 6. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eines der Bauteile (A oder B) als rotationssymmetrischer glockenförmiger Kegelstumpf (11) und das andere Bauteil als den glockenförmigen Kegelstumpf (11) übergreifende Haube (10) ausgebildet ist, wobei die Konturen im Schnittbild durch den Radius um das Widerlager gezeichnet gebildet werden.
- 7. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das als glockenförmiger Kegelstumpf ausgebildete Bauteil (A) an seiner Aussenfläche mit gewindegangartigen Führungsflächen versehen ist und das übergreifende Bauteil (B) im Schnitt mit Zentrierungsflächen (Kreis mit Sekanten) versehen ist, um neben Kippbewegungen auch Drehbewegungen des

einen gegenüber dem anderen Bauteil in Abstandsänderung des einen zum anderen Bauteil unter sich vergrössernder Spannung der Feder (6) umzuwandeln.

- 8. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontur des glockenförmigen Kegelstumpfes im Schnitt dem Radius nicht bis zum Ende folgt, sondern in eine Tangente übergeht, die in beiden Bauteilen keine rotationssymmetrische Form, sondern ebene Flächen enthält.
- 9. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden miteinander zusammenwirkenden Bauteile (A, B) auf Drehbeanspruchungen mit einer Rückstellbewegung antworten.
- 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass zwei in Drehrichtung arretierte, gegenläufige Gewindehülsen im Schaft des Arbeitsteiles untergebracht sind, die in der Lage sind, grosse, d.h. über 45° gehende Drehbewegungen des einen gegenüber dem anderen Bauteil in sich vergrössernde Spannung der Feder umzuwandeln.
- 11. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die sich durch Fremdeinwirkung wiederholende Positionsveränderung des Arbeitsteiles zum Trägerteil zu einer elektrischen Kontaktsteuerung benutzt wird, die wiederum andere Funktionen indiziert oder beendet.

Claims

30

35

45

50

- 1. Connection device for two antagonistically movable members (A, B), wherein a fixed base part (1, 1a, 1b) is supported, via mutually supporting bearing elements and an interposed tension bar (3) which connects the members and is disposed at the centre of the members and of the spring (6), against a working part (2, 2a, 2b) which can be swivelled relative to said base part against the restoring force of a spring, and wherein in the course of deflection the lever arm present between the fulcrum point and the line of action of the spring is greater than zero, so that the force of the spring is simultaneously used to generate the restoring torque, characterised in that
- a) one of the members (A or B) has a U-shaped cross-section with diverging legs and the other member (B or A) has the form of a cap component overlapping the diverging legs from the web,
- b) the point of application of force of the tension bar on one member (A or B) in the direction in which the force of the spring acts is remote from the plane of the bearing and
- c) that within the free inner space formed by the spring (6) perpendicular to the longitudinal axis of the tension bar (3), said tension bar (3) can move in its undeflected position, one end of the tension bar being able to maintain the position on the undeflected longitudinal axis.
- 2. Device according to Claim 1, characterised in that the spring (6) is accommodated inside the working part (2) (Figs. 1 and 6).
 - 3. Device according to Claim 1, characterised in

5

10

15

25

30

35

40

50

55

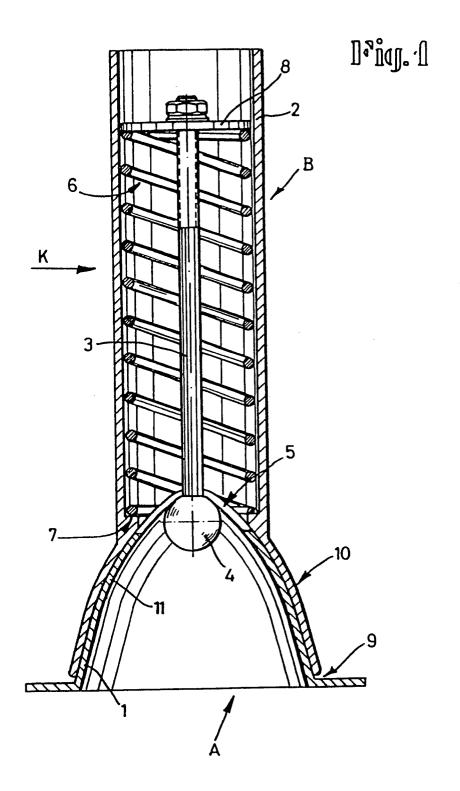
that the spring (6) is accomodated inside the base part (1) (Fig. 5).

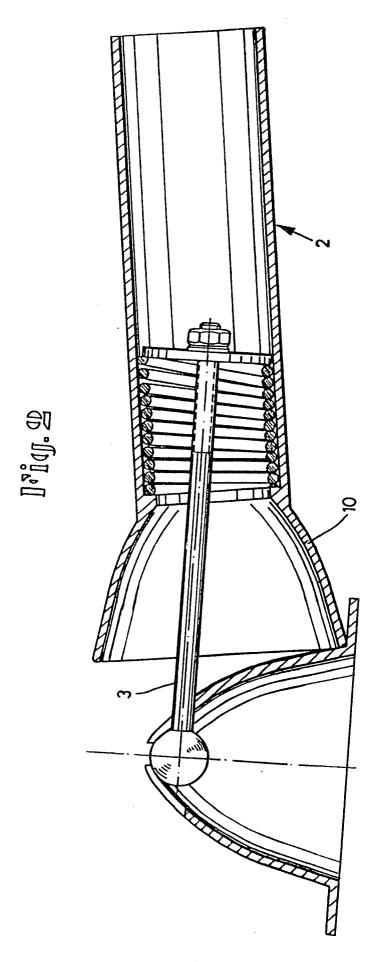
- 4. Device according to Claim 1, characterised in that the tension bar (3) is movably linked to the base part (1) (Figs. 1, 2 and 5).
- 5. Device according to Claim 1, characterised in that the tension bar (3a) is fixedly linked to the base part (1a) (Fig. 3).
- 6. Device according to one or more of the preceding claims, characterised in that one of the members (A or B) is constructed as a rotationally symmetric, bell-shaped truncated cone (11) and the other member as a cap (10) overlapping the bell-shaped truncated cone (11), the contours in the cutaway view being formed by the radius drawn about the abutment.
- 7. Device according to one or more of the preceding claims, characterised in that the member (A) constructed as a bell-shaped truncated cone is provided on its outer face with thread-type guide faces and the overlapping member (B) is provided in section with centring faces (circle with secants), in order to convert not only rocking motions but also slewing motions of one member relative to the other by altering the distance of one member from the other while the tension of the spring (6) increases.
- 8. Device according to one or more of the preceding claims, characterised in that in section the contour of the bell-shaped truncated cone does not follow the radius right to the end, but changes to a tangent, the shape of which in both members is not rotationally symmetric but contains plane faces.
- 9. Device according to one or more of the preceding claims, characterised in that the two cooperating parts (A, B) respond to torsional strains with a restoring movement.
- 10. Device according to Claim 9, characterised in that two countercurrent threaded sleeves which are arrested in the direction of rotation are accomodated in the shaft of the working part and are adapted to convert large slewing movements of one member relative to the other, i.e. exceeding 45°, into increasing tension of the spring.
- 11. Device according to one or more of Claims 1 to 10, characterised in that the externally induced, repeated change of position of the working part to the base part is used to control an electric contact which in turn indicates or terminates other functions.

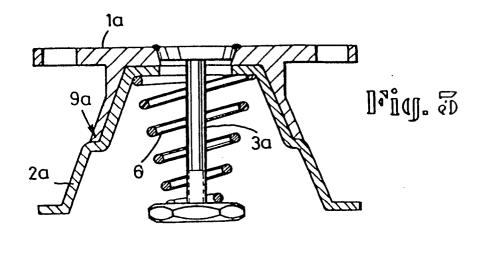
Revendications

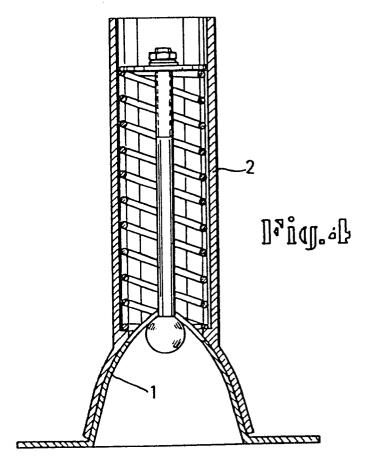
1. Dispositif d'assemblage pour deux éléments (A, B) mobiles l'un par rapport à l'autre, dans lequel un élément support fixe (1, 1a, 1b) s'appuie contre un élément travaillant (2, 2a, 2b), qui peut pivoter à l'encontre de la force de rappel d'un ressort, par l'intermédiaire de portées qui prennent appui l'une sur l'autre, et avec interposition d'un tirant (3) qui réunit les deux éléments et qui est disposé dans l'axe des éléments et du ressort (6), et dans lequel au cours du mouvement d'excursion, le bras de levier formé entre le point d'appui et la droite d'action du ressort est supérieur à zéro, de sorte que la force du ressort est utilisée simultanément pour produire le couple de rappel, caractérisé en ce que

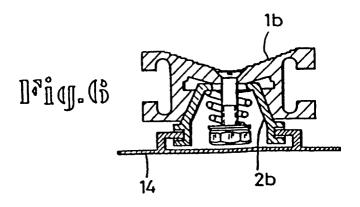
a) l'un des éléments (A ou B) présente en section une forme en U à branches divergentes et l'autre élément (B ou A) est constitué par une partie en forme de calotte qui emboîte les branches divergentes à partir de l'âme,


8


- b) le point d'application de la force du tirant sur l'un (A ou B) des éléments est éloigné du plan de portée - dans la direction de l'action de la force du ressort — et
- c) le tirant (3) peut se déplacer à l'intérieur du volume intérieur libre formé par le ressort (6), transversalement à l'axe longitudinal du tirant (3) dans sa position non déviée, une extrémité du tirant pouvant conserver sa position sur l'axe longitudinal non dévié.
- 2. Dispositif selon la revendication 1, caractérisé en ce que le ressort (6) est logé à l'intérieur de l'élément travaillant (2) (figures 1 et 6).
- 3. Dispositif selon la revendication 1, caractérisé en ce que le ressort (6) est logé à l'intérieur de l'élément support (1) (figure 5).
- 4. Dispositif selon la revendication 1, caractérisé en ce que le titant (3) est relié à l'élément support (1) par une liaison autorisant un déplacement (figures 1, 2, 3).
- 5. Dispositif selon la revendication 1, caractérisé en ce que le tirant (3a) est relié rigidement à l'élément support (1a) (figure 3).
- 6. Dispositif selon une ou plusieurs des revendications précédentes, caractérisé en ce qu'un des éléments (A ou B) est constitué par un tronc de cône (11) en forme de cloche et présentant une symétrie de révolution tandis que l'autre élément est constitué par une calotte (10) qui emboîte le tronc de cône (11) en forme de cloche, les profils étant formés, dans une vue en coupe, par l'arrondi centré sur la butée.
- 7. Dispositif selon une ou plusieurs des revendications précédentes, caractérisé en ce que l'élément (A) constitué par un tronc de cône en forme de cloche est muni sur sa surface externe, de surfaces de guidage en forme de filets de vis tandis que l'élément (B) qui l'emboîte est muni, vu en coupe, de surfaces de centrage (un cercle avec des sécantes), pour transformer, non seulement les mouvements de basculement mais également les mouvements de rotation d'un élément par rapport à l'autre en une modification de l'écartement entre l'un et l'autre des éléments, avec accroissement de la tension du ressort (6).
- 8. Dispositif selon une ou plusieurs des revendications précédentes, caractérisé en ce que le profil du tronc de cône en forme de cloche, vu en coupe, ne suit pas l'arrondi jusqu'au bout mais se termine par une tangente qui, dans les deux éléments, limite non pas une forme de révolution mais des surfaces planes.
- 9. Dispositif selon une ou plusieurs des revendications précédentes, caractérisé en ce que les deux éléments (A, B) qui coopèrent entre eux répondent à des sollicitations de rotation par un mouvement de
- 10. Dispositif selon la revendication 9, caractérisé en ce que deux douilles filetées de sens opposés, bloquées en rotation, sont logées dans la tige de l'élément travaillant, ces douilles étant de nature à pouvoir transformer des mouvements de rotation de


grande amplitude, c'est-à-dire de plus de 45°, d'un élément par rapport à l'autre, en un accroissement de la tension du ressort.


11. Dispositif selon une ou plusieurs des revendications 1 à 10, caractérisé en ce que la modification


de la position de l'élément travaillant par rapport à l'élément support qui se répète sous l'action d'une influence extérieure est utilisée pour assurer une commande par contact électrique qui, à son tour, enclenche ou interrompt d'autres fonctions.

