Numéro de publication:

0 170 542 A1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 85401110.3

(51) Int. Cl.4: B 21 B 9/00

(22) Date de dépôt: 05.06.85

- 30) Priorité: 07.06.84 FR 8408903
- Date de publication de la demande: 05.02.86 Bulletin 86/6
- (84) Etats contractants désignés: AT BE CH DE FR GB IT LI LU NL SE
- 7) Demandeur: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE 75, Quai d'Orsay F-75321 Paris Cedex 07(FR)
- 72 Inventeur: Naud, Jean Michel 30, rue de Longwy F-54350 Mont-Saint-Martin(FR)
- 1, Place Notre-Dame
 F-38000 Grenoble(FR)
- (72) Inventeur: Goursat, Albert-Gilbert 17, rue Cézanne F-78190 Voisins-Le-Bretonneux(FR)
- (72) Inventeur: Wagner, Bruno 8, avenue de l'Argonne F-57000 Metz(FR)
- (74) Mandataire: Vesin, Jacques et al, L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE 75, quai d'Orsay F-75321 Paris Cédex 07(FR)

[54] Procédé de protection d'un métal solide contre l'oxydation - application au laminage.

(5) La présente invention concerne un procédé et une installation de protection d'un metal solide contre l'oxydation pendant une opération de laminage.

Cette installation est caractérisée en ce qu'elle comporte de enceintes d'inertage (7) alimentées en gaz inerte et

enfermant la table d'attente (3), dans le cas où le laminage est effectué au moyen d'un train à bande, ou situées de part et d'autre des cylindres pousseurs, autour des ébauches à laminer, lorsque le laminage est réalisé au moyen d'un laminoir planétaire.

" PROCEDE DE PROTECTION D'UN METAL SOLIDE CONTRE L'OXYDATION - APPLICATION AU LAMINAGE - "

La présente invention concerne un procédé et une installation de protection d'un métal solide contre l'oxydation pendant une opération de laminage.

Certains procédés métallurgiques, effectués sur les métaux solides chauffés et au contact de l'oxygène de l'air, entraînent la formation de couches d'oxyde qui nuisent à la qualité de surface du produit fini. Ce problème est bien connu dans le cas du traitement thermique où l'on utilise des atmosphères contrôlées réductrices constituées par un gaz porteur, tel que l'azote, l'argon ou un mélange de 10 ces gaz avec l'hydrogène, auquel on ajoute éventuellement un gaz actif (hydrocarbure). Ces atmosphères permettent soit de maîtriser l'état de surface du métal, soit de modifier la composition superficielle du métal, par exemple en le carburant, mais dans tous les cas elles évitent l'oxydation.

Dans le cas des traitements thermiques le problème de l'oxydation des métaux solides soumis à ces traitements est résolu grâce à l'existence d'un confinement de l'atmosphère dû au four. Toutefois, ce confinement n'existe pas dans le cas d'autres procédés métallurgiques tels que le laminage.

Dans le cas particulier du laminage les problèmes d'oxydation et de décalaminage qu'ils exigent sur une chaîne de laminage sont très importants. En effet, les opérations suivantes apparaissent successivement sur une telle chaîne de laminage:

- a) Entre le four et le train dégrossisseur, le décalaminage est réalisé
 25 mécaniquement et il est basé sur la différence de plasticité entre
 l'oxyde superficiel formé et le métal;
 - b) Au cours du dégrossissage, le décalaminage est réalisé au moyen de cages de décalaminage intercalées, fonctionnant avec de l'eau sous pression élevée de l'ordre de 100 à 150 bars;
- 30 c) En aval de la cage dégrossisseuse, un nouveau décapage hydraulique est effectué, avant la cage finisseuse, afin d'éliminer la calamine formée sur la table d'attente;
 - d) Enfin, un décapage à l'acide est réalisé après le refroidisseur, pour éliminer les défauts de surface.

35 Ces multiples opérations entraînent un certain nombre d'inconvénients, à savoir une perte de métal par oxydation, une consommation d'énergie supplémentaire due au décalaminage à l'eau sous

pression, une baisse sensible de la température du métal entraînée par le décalaminage à l'eau, et la recherche de débouchés pour les sulfates et chlorures de fer résultant du décapage acide.

Face à une telle situation, on observe actuellement une tendance à une évolution probable de l'opération de laminage. Par exemple, dans le cas du laminage à chaud, on envisage l'utilisation du laminoir planétaire qui permet de fortes réductions d'épaisseur en une seule passe. Cette technique impose une très faible vitesse d'entrée du métal dans le laminoir planétaire afin d'éviter d'atteindre des vitesses trop élevées en sortie. Toutefois, ceci favorise une réoxydation du métal avant son entrée dans le laminoir planétaire. Par ailleurs, un décalaminage mécanique par grenaillage n'est pas envisageable car il poserait des problèmes de conditions de travail, d'implantation et d'incrustation dans le métal.

La présente invention vise à remédier à ces inconvénients en procurant un procédé permettant d'obtenir, par des moyens très simples, une protection du métal contre l'oxydation pendant une opération de laminate.

15

25

A cet effet, ce procédé de protection d'un métal solide contre l'oxydation pendant une opération de laminage au moyen d'un train de laminage à bande ou d'un laminoir planétaire, est caractérisé en ce que l'on fait passer l'ébauche à laminer, en amont d'une ou des cages de laminage, à travers une enceinte dans laquelle est injecté en permanence un gaz inerte.

Dans le cas où le laminage est effectué au moyen d'un train à bande, on réalise l'inertage de l'ensemble de la table d'attente située en amont de la cage finisseuse.

Dans le cas où le laminage est effectué au moyen d'un laminoir planétaire, on réalise l'inertage dans des enceintes situées 30 respectivement en amont et en aval des cylindres pousseurs situés eux-mêmes en amont des cylindres de travail.

L'invention a également pour objet une installation pour la mise en œuvre du procédé suivant l'invention, caractérisée en ce qu'elle comporte des enceintes d'inertage alimentées en gaz inerte et enfermant la table d'attente, dans le cas où le laminage est effectué au moyen d'un train à bande, ou situées de part et d'autre des cylindres pousseurs, autour des ébauches à laminer, lorsque le laminage est réalisé au moyen d'un laminoir planétaire.

On décrira ci-après, à titre d'exemples non limitatifs, diverses formes d'exécution de la présente invention en référence au 5 dessin annexé sur lequel :

- la figure 1 est une vue en coupe verticale et longitudinale schématique d'une installation de laminage mettant en oeuvre le procédé suivant l'invention, dans le cas d'un train de laminage à bande;
- la figure 2 est une vue en coupe verticale et longitudinale schématique 10 d'une installation de laminage à laminoir planétaire;
 - la figure 3 est une vue en perspective partielle d'une chambre de répartition du gaz inerte;
 - la figure 4 est une vue en coupe verticale et longitudinale schématique de la partie amont d'une enceinte d'inertage enfermant une table d'attente d'un train de laminage à bande;

15

20

25

30

- la figure 5 est une vue en coupe verticale et transversale schématique faite suivant la ligne V-V de la figure 4 ;
- la figure 6 est une vue en coupe verticale et longitudinale schématique partielle d'une variante d'exécution d'une enceinte d'inertage.

Sur la figure 1, est représentée une installation de laminage de brames comportant successivement un four 1, une cage dégrossisseuse 2, une table d'attente 3, une cage finisseuse 4 et un refroidisseur 5, à travers lesquels passent successivement des brames 6 devant être laminées.

Suivant l'invention, l'ensemble de la table d'attente 3 est enfermé dans une enceinte d'inertage 7 qui comporte, au-dessus de la table proprement dite 3, plusieurs chambres de répartition de gaz inerte 8 disposées à la partie supérieure de l'enceinte d'inertage 7 et dirigeant, vers les brames 6 se trouvant sur la table d'attente 3, des courants de gaz inerte dont le débit peut être réglé individuellement ou globalement. Ces chambres de répartition 8 sont reliées ensemble, par l'intermédiaire de canalisations 9, à une source 10 de gaz inerte, lequel peut être de l'azote.

Le procédé suivant l'invention permet ainsi de limiter la formation de calamine sur les brames 6 se trouvant sur la table d'attente 3, avant leur passage dans le train finisseur 4.

Dans l'exemple illustré sur la figure 2, le procédé suivant l'invention est appliqué à l'inertage de brames laminées au moyens d'un laminoir planétaire. Ce laminoir comporte, à la sortie d'une décalamineuse mécanique 11, un premier ensemble de cylindres pousseurs 5 12, lequel est suivi d'un ensemble de cylindres de travail 13. Pour assurer la protection de la brame 14 en cours de laminage, on prévoit en outre des enceintes d'inertage 15 et 16 analoques, dans leur principe, à l'enceinte d'inertage 7, l'enceinte d'inertage 15 étant disposée entre la décalamineuse 11 et l'ensemble de cylindres pousseurs 12 tandis que 10 l'autre enceinte d'inertage 16 est disposée entre les cylindres pousseurs 12 et l'ensemble de cylindres de travail 13. Là encore, chacune des enceintes d'inertage 15, 16 comporte plusieurs chambres de répartition 8 disposées au-dessus de la brame et dirigeant vers cette dernière des courants de gaz inerte en provenance de sources correspondantes 10.

De manière inattendue, on a constaté que l'application du procédé selon l'invention dans le cas d'un train planétaire tel que décrit sur la figure 2 permettait non seulement d'abaisser la rugosité de la surface du produit laminé avant l'étape de décapage final, mais également d'abaisser nettement la rugosité après décapage, permettant 20 d'atteindre une rugosité de surface proche de celle obtenue pour les mêmes produits sur un train à bande (sans inertage).

15

Le tableau ci-dessous montre les résultats comparatifs obtenus.

25	:	:	sans inert	ag	e	:			avec	in	ertaç	je		:	référence train à bande	- : :
	· N° ESSA	ı :	1	:	2	:	3	:	4	:	5	:	6	:		:
	:	:		:		:		:		:		:		:		:
	: µm	:RT:	23	:	11	:	9	:	8	:	8	:	12	:	8	:
	: avant	:RP:	10	:	4	:	4	:	3	:	3	:	6	:	5	:
30	: décapage	:RA:	1.5	.:	0.7	. :	0.8	:	0.7	:	0.8	:	0.6	:	1	:
	<u>:</u>	: :		:		:		:		:		:		:		:
	: µm	:RT:	24	:	31	:	21	:	16	:	19	:	14	:	11	:
	: après	:RP:	12.5	:	15	:	10	:	7	:	7.5	:	5	:	6	:
	: décapage	:RA:	3.7	:	4.2	:	2.2	:	1.8	:	2.1	:	1.3	:	1	:
35	:	: :		:		:		:		:		:		:		;

Dans ce tableau, RT = rugosité totale (en microns)

RP = moyenne des profondeurs

RA = écart moyen arithmétique par rapport à RP

Les figures 3A et 3B représentent une vue schématique d'un exemple de réalisation d'une chambre de répartition 8 selon l'invention. 5 Celle-ci, de forme parallélépipédique est reliée par une canalisation 9 à la source de gaz inerte, et s'étend parallèlement et transversalement au-dessus des brames d'acier. La canalisation 9 débouche dans une chambre de détente 108 limitée par une cloison verticale 18 reliée à la face supérieure 109 de ladite chambre 8. Cette cloison est placée devant 10 l'arrivée de gaz inerte, sous pression, et est chargée d'assurer la détente de ce gaz, de sorte que la pression Pl dans la chambre 108 est inférieure à la pression atmosphérique. La largeur de cette cloison (sa dimension parallèle à la fente 21) sera de préférence inférieure à 5 fois le diamètre D de la canalisation 9, celle-ci débouchant dans un plan de 15 symétrie vertical de la chambre 8, plan perpendiculaire à la fente 21, de manière à assurer une symétrie de répartition du gaz inerte dans ladite chambre. La distance d_3 entre la cloison 18 et la canalisation 9 est telle que la variation de pression entre la chambre de détente 108 et la chambre de répartition 8 est inférieure ou égale à 0,4 mbars. L'arrête 20 inférieure de la cloison 18 délimite, avec les parois 110 et 111, ainsi que la cloison 19, la chambre de répartition du gaz inerte, dans laquelle la pression du gaz s'homogénise. Cette cloison 19 est solidaire de la face 111 de la chambre 8, sur toute sa lonqueur. Les cloisons 18 et 19 du fait de leurs positions et de leurs dimensions relatives (la cloison 19 $_{25}\,\mathrm{se}$ termine par une arrête horizontale située à une distance d_1 au-dessus de l'arrête inférieure de la cloison 18) définissant une première chicane pour le passage du gaz inerte.

De préférence, la section dans un plan vertical de la chambre de détente (soit $\mathbf{d_3} \times \mathbf{d_4}$) sera sensiblement égale à la section de la 30 première chicane (soit $\mathbf{d_2} \times \mathbf{d_1}$) afin d'éviter tout phénomène d'accélération des gaz.

Les parois 109, 112 et la cloison 19 définissent une chambre de répartition du gaz 102, créant une seconde chicane dans le trajet dudit gaz qui doit s'évacuer par le fente 21, de largeur réglable, située sur 35 la face inférieure 111 de la chambre 8, ladite fente s'étendant sur toute la largeur de la chambre 8, parallèlement aux arrêtes de celle-ci. La pression P2 dans cette chambre est telle que la différence de pression

(P2 - P1) impose une vitesse d'éjection des gaz par la fente 21 inférieure à 0,5 m/s. La largeur plus ou moins importante de cette fente permet de faire varier le débit, à vitesse des gaz constante. Dans ce but, le volet 22 qui contrôle l'ouverture de la fente peut avantageusement coopérer avec le circuit de mesure d'oxygène au voisinage de la brame mentionné plus bas. Il suffit, par exemple de faire un échantillonnage de la valeur mesurée de concentration d'oxygène, à des intervalles de temps déterminés et lorsque la différence entre la valeur mesurée et la valeur de consigne est supérieure à une valeur prédéterminée, commander l'avance dans un sens ou dans l'autre du volet, sur une longueur prédéterminée. On obtient ainsi un contrôle automatique du débit en fonction de l'oxygène présent.

Le réglage du débit de gaz inerte, par exemple d'azote, peut être effectué automatiquement en fonction de la pression partielle 15 d'oxygène au voisinage de la brame. Pour cela, on mesure la concentration en oxygène à proximité de la brame à l'aide d'une sonde dont le signal est comparé à une valeur de consigne. Lorsque la valeur mesurée est supérieure à la valeur de consigne, ceci déclenche la commande de débit de qaz inerte (ou l'augmentation de la valeur de débit) de la chambre 20 correspondante jusqu'à ce que la valeur mesurée par la sonde redevienne inférieure à la valeur de consigne. Cette régulation peut être effectuée pour l'ensemble des chambres de répartition 8 d'une même enceinte d'inertage (à l'aide d'une seule sonde) ou de préférence individuellement pour chacune de ces chambres 8. Dans ce cas, ceci permet de comparer la 25 valeur mesurée par chaque sonde à oxygène à une valeur de consigne différente selon chaque chambre. On peut par exemple tolérer plus d'oxygène aux extrémités de la table d'attente que dans la partie centrale.

Si on se réfère maintenant aux figures 4 et 5, on y voit une modification de l'installation permettant de tenir compte du fait que, dans certains cas, les brames 6 arrivent du four avec une forme incurvée vers le haut, à leur partie antérieure. De ce fait, ces brames 6 pourraient venir heurter la paroi frontale et transversale 7a, située en amont, de chaque enceinte d'inertage 7. Pour remédier à cet inconvénient, suivant une variante d'exécution de l'invention, la partie supérieure de l'enceinte d'inertage 7 est montée pivotante autour d'un axe horizontal et longitudinal 23 s'étendant d'un côté de la table d'attente 3 et cette

partie supérieure de l'enceinte d'inertage 7 est accouplée à un dispositif élévateur tel qu'un vérin 24. De ce fait, si une brame 6 vient heurter, du fait de sa cambrure, la paroi frontale 7a, il suffit de soulever, au moyen du vérin 24, la partie supérieure de l'enceinte d'inertage 7, en la faisant pivoter autour de l'axe longitudinale 23, pour permettre à la brame de passer.

Pour éliminer l'inconvénient précité, on peut prévoir d'autres moyens, par exemple en soulevant l'ensemble de la partie supérieure de l'enceinte d'inertage 7 suivant un mouvement de translation verticale.

Dans la variante d'exécution illustrée sur la figure 6, l'enceinte d'inertage 7 comporte une pluralité de chambres de répartition 25 qui sont constituées par des boîtes cylindriques ouvertes à leur partie inférieure et raccordées à la paroi horizontale supérieure 7b de l'enceinte d'inertage 7, le long d'orifices 26 ménagés dans cette paroi 7b pour l'entrée du gaz inerte. Chacune des chambres de répartition 25 est surmontée d'une chambre de détente 27, également cylindrique et de plus petit diamètre, et qui est raccordée, par la canalisation 9, à la source de gaz inerte 10. Dans cette chambre de détente 27 est monté un écran horizontal 28 formant chicane. Les boîtes ou chambres de répartition 25 sont disposées, dans la partie amont de l'enceinte d'inertage 7, de manière à assurer un débit et une répartition appropriée des courant de gaz inerte introduits dans l'enceinte d'inertage. Ces courant à débit important assurent une forte dilution de la quantité d'oxygène qui est aspirée dans l'enceinte d'inertage 7, lorsqu'une brame 6 y pénètre.

15

25

30

35

Comme on peut le voir sur la figure 6, l'enceinte d'inertage 7 peut également comporter, en dessous de la table d'attente 3, des rampes de diffusion de gaz inerte 29 dirigeant des courants de ce gaz vers le haut, en direction des rouleaux de la table d'attente 3, pour diluer dans cette zone l'oxygène qui est entraîné par les rouleaux de la table d'attente 3.

La paroi frontale amont 7a de l'enceinte d'inertage 7 présente naturellement une ouverture de dimensions suffisantes pour permettre 1 passage des brames 6. Cette ouverture peut être fermée en permettre pour éviter l'entrée de l'oxygène extérieur, au moyen d'un r' (gaz inerte) soufflé en travers de cette ouverture. Cel. également obturée par une porte étanche 31 coulissant vei

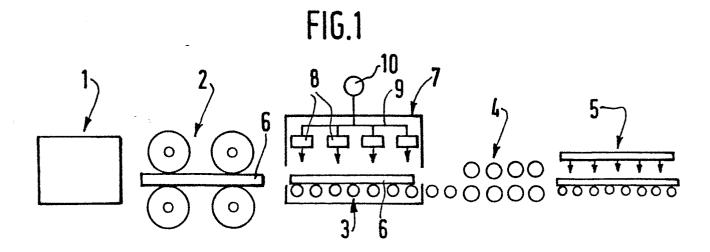
pouvant être abaissée pour fermer l'ouverture de la paroi frontale 7a, tant qu'une brame 6 ne doit pas être introduite dans l'enceinte d'inertage 7.

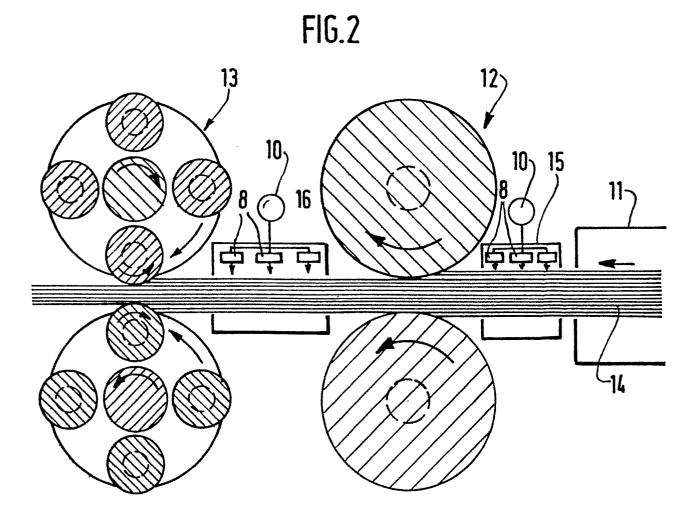
La figure 7 représente un exemple de réalisation 5 particulièrement performant du procédé selon l'invention.

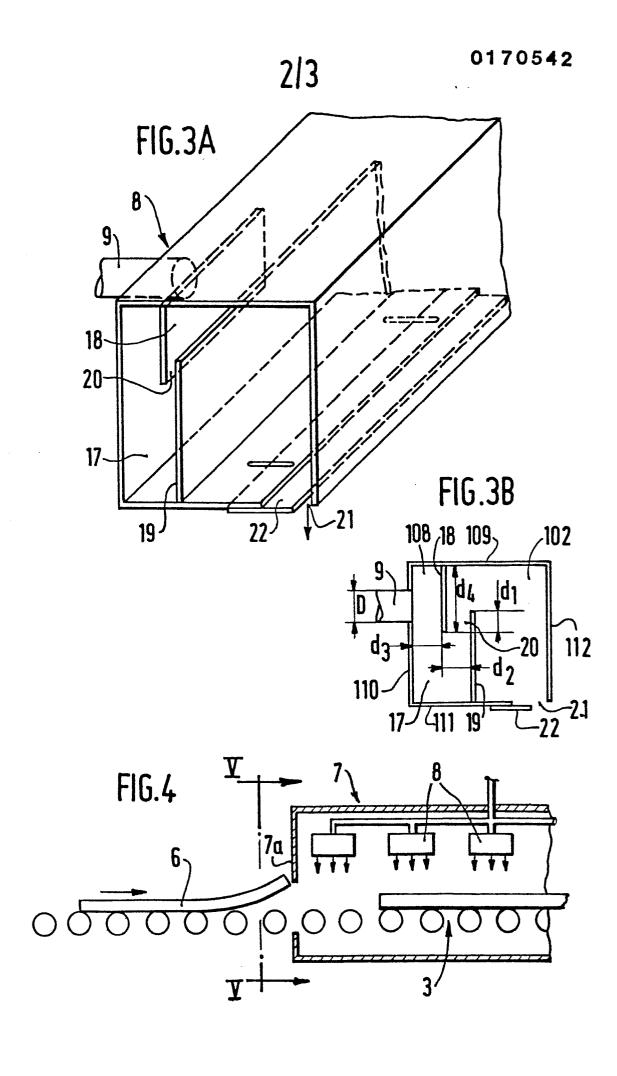
Les brames $\mathbf{B_1}$, $\mathbf{B_2}$, ... sont en attente sur le tapis \mathbf{T} dans l'enceinte H qui est remplie de gaz inerte. Celui-ci est injecté par les chambres H1, H2 et H3 ayant respectivement une vitesse d'injection de gaz $\mathbf{V_1}$, $\mathbf{V_2}$ et $\mathbf{V_3}$ et placées successivement et respectivement à une distance 10 L_1 , L_2 et L_3 . Le sens d'avance des brames est indiqué par la flèche F_4 . Dans ces conditions, on a constaté, de manière inattendue, qu'on obtenait sur les brames (oxydation) calamine progressivement la vitesse d'éjection des gaz des chambres H1, H2 et H2 et non en instaurant une plus forte vitesse (et donc un plus fort débit) 15 à l'entrée de l'enceinte H, soit dans la chambre H, comme on avait pu le penser jusqu'alors. Bien entendu, la vitesse d'éjection doit rester inférieure à 0,5 m/s.

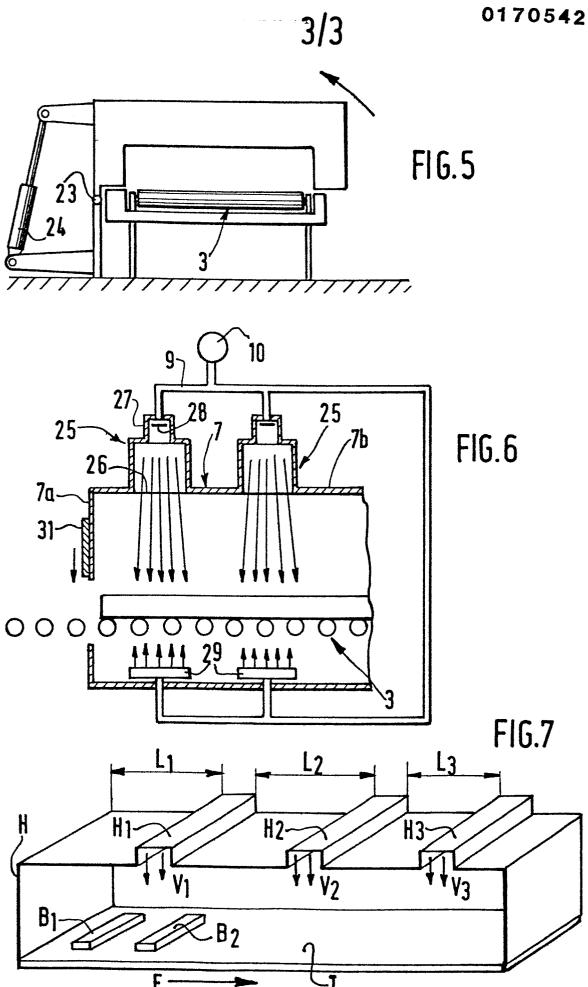
A titre d'exemple et pour une chambre H de 20 mètres de long, dans laquelle sont en attente des brames à une température de l'ordre de 150°C, on a placé trois chambres à des distances respectives $L_1=3$ mètres, $L_2=6$ mètres et $L_3=6$ mètres. Les vitesses V_1 , V_2 et V_3 étaient respectivement de 0,16 m/s, 0,33 m/s et de 0,5 m/s. On obtient ainsi des brames ayant les qualités de rugosité mentionnées dans les tableaux plus haut sous la rubrique " μ m avant décapage – avec inertage" (essais 3, 4, 5 et 6).

REVENDICATIONS


- 1. Procédé de protection d'un métal solide contre l'oxydation pendant une opération de laminage au moyen d'un train de laminage à bande ou d'un laminoir planéraire, caractérisé en ce que l'on fait passer l'ébauche à laminer, en amont d'une ou des cages de laminage, à travers une enceinte dans laquelle est injecté en permanence un gaz inerte.
- 2. Procédé suivant la revendication 1, caractérisé en ce que, dans le cas où le laminage est effectué au moyen d'un train à bande, on réalise l'inertage de l'ensemble de la table d'attente située en amont de la cage finisseuse.


10


30


- 3. Procédé suivant la revendication 1, caractérisé en ce que, dans le cas où le laminage est effectué au moyen d'un laminoir planétaire, on réalise l'inertage dans des enceintes situées respectivement en amont et en aval des cylindres pousseurs situés eux-mêmes en amont des cylindres de travail.
- 4. Installation pour la mise en œuvre du procédé suivant l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte des enceintes d'inertage (7, 15, 16) alimentées en gaz inerte et enfermant la table d'attente (3), dans le cas où le laminage est effectué au moyen d'un train à bande, ou situées de part et d'autre des cylindres pousseurs (12), autour des ébauches (14) à laminer, lorsque le laminage est réalisé au moyen d'un laminoir planétaire.
- 5. Installation suivant la revendication 4, caractérisée en ce que des moyens sont prévus pour soulever la partie supérieure de chaque enceinte d'inertage (7).
 - 6. Installation suivant la revendication 5, caractérisée en ce que la partie supérieure de l'enceinte d'inertage (7) est montée mobile verticalement et cette partie supérieure de l'enceinte d'inertage (7) est accouplée à un dispositif élévateur tel qu'un vérin vertical (24).
- 7. Installation suivant l'une quelconque des revendications 5 et 6, caractérisée en ce que chaque enceinte d'inertage (7, 15, 16) comporte, au-dessus de la table proprement dite (3), plusieurs chambres de répartition de gaz inerte (8, 25) disposées à la partie supérieure de 1'enceinte d'inertage (7) et dirigeant vers les brames (6), se trouvant sur la table d'attente (3), des courants de gaz inerte dont le débit peut être réglé individuellement ou globalement, ces chambres de répartition

- (8, 25) étant reliées ensemble, par l'intermédiaire de canalisations (9), à une source (10) de gaz inerte, lequel peut être de l'azote.
- 8. Installation suivant la revendication 7, caractérisée en ce que chaque chambre de répartition (8) assurant la diffusion du gaz inerte dans les enceintes d'inertage se présente sous la forme d'un caisson parallélépipédique s'étendant transversalement au-dessus des brames, la canalisation (9) débouche dans une chambre de détente (17) qui est séparée du reste du volume interne du caisson par deux cloisons verticales et transversales distantes l'une de l'autre, à savoir une cloison supérieure (18) et une cloison inférieure (19), ces deux cloisons délimitant entre-elles une fente transversale (20), et la partie restante du caisson constituant la chambre de répartition (8) présente, dans sa paroi inférieure, une fente horizontale et transversale (21) dont la largeur est réglable, cette fente étant délimitée par une plaque (22) qui est montée réglable longitudinalement sur la paroi inférieure de la chambre de répartition (8), de manière à faire varier le débit de gaz inerte sortant à travers la fente (21).
- 9. Installation suivant la revendication 7, caractérisée en ce que chaque chambre de répartition (25) assurant la diffusion du gaz 20 inerte dans l'enceinte d'inertage se présente sous la forme d'une boîte cylindrique (25) coiffant un orifice (26) prévu dans la paroi horizontale supérieure (7b) de l'enceinte d'inertage (7) et qui est surmontée d'une chambre de détente (27) également cylindrique mais de plus petit diamètre, laquelle est raccordée à la source de gaz inerte (10) par la 25 canalisation (9).
 - 10. Installation suivant l'une des revendications 4 à 9, caractérisée en ce que la paroi amont (7a) de l'enceinte d'inertage (7) présente une ouverture pour le passage des brames qui est obturée par un rideau gazeux ou une porte étanche coulissante (31).
- 11. Installation suivant l'une des revendications 4 à 10, caractérisée en ce que l'enceinte d'inertage (7) comporte des rampes (29) de diffusion de gaz inerte situées sous les rouleaux supportant les brames (6).

EP 85 40 1110

Catégorie		ac indication, en cas de besoin, es pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. CI. 4)	
х	PATENTS ABSTRAC volume 7, no. 1 30 juillet 1983 77 702 (SHIN NI K.K.) 11-05-198 * En entier *	73(M-232)(1318) , & JP - A - 58 PPON SEITETSU	1,3,4	B 21 B 9/00	
х	DE-A-3 208 738 ELECTRO GmbH) * Figure; pages	·	4-11		
x	B.V.)	(HOOGOVENS GROEP	5,6		
	dist des				
İ				DOMAINES TECHNIQUES RECHERCHES (Int. CI.4)	
İ			-		
				B 21 B	
		•			
		*			
Lieu de la recherche LA HAYE		tabli pour toutes les revendications Date d'achèvement de la recherch 12-09-1985	ne NOESI	Examinateur EN R.F.	
Y : pai	CATEGORIE DES DOCUMEN' ticulièrement pertinent à lui set ticulièrement pertinent en comi re document de la même catégo ière-plan technologique ulgation non-écrite cument intercalaire	E : docume date de	ou principe à la ba nt de brevet antéri dépôt ou après ce s la demande r d'autres raisons	ieur, mais publié à la	