(1) Publication number:

0 175 350 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 85111757.2

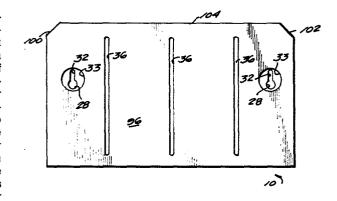
10/42 Int. Cl. .: A 47 K

22 Date of filing: 17.09.85

30 Priority: 17.09.84 US 651484

7 Applicant: KIMBERLEY-CLARK CORPORATION, North Lake Street, Neenah Wisconsin 54956 (US)

Date of publication of application: 26.03.86


Bulletin 86/13

Inventor: Fischer, Daniel Owen, 424 Pinebrook Drive Lake Arrowhead - Station 1104, Waleska, Georgia (US) Inventor: Cook, Ronald Francis, 681 Creekwood Drive, Marietta, Georgia (US)

Ø Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE Representative: Patentanwälte Grünecker, Kinkeldey, Stockmair & Partner, Maximilianstrasse 58, D-8000 München 22 (DE)

(54) Container mounting bracket.

(57) A container mounting system includes mounting bracket and container components. The mounting bracket component generally includes a rear plate member and at least one mounting flange fixed to the plate member to define a space therebetween. The mounting flange pierces a wall of a container such that another wall of the container is disposed in the space between the mounting flange and rear plate member. Structure to capture a portion of the container when in a mounted position on the bracket is provided to N resist forces tending to separate the container from the bracket while yet permitting a user to remove the container from the bracket when desired. Guide surfaces disposed in the space between the mounting flange and the rear plate member bias the container away from obstructions, such as screw heads or the like, during mounting of the container onto the bracket. The container component includes opposing pairs of walls which define an interior cavity. One of the walls having a linear array of alternating cut and uncut portions disposed substantially parallel to and separated from a corner defined by a wall mutually perpendicular to the one wall so that the linear array registers with the mounting Is flange of the mounting bracket component.

CONTAINER MOUNTING BRACKET

FIELD OF INVENTION

The present invention relates to container mounting systems which include mounting brackets to mount containers, such as containers used for dispensing wiper materials and to containers adapted to be mounted onto the bracket.

BACKGROUND OF THE PRESENT INVENTION

Brackets for mounting of containers to surfaces are generally known as exemplified by the following publications:

10

15

20

5

U.S. 4,416,369 to Burns describes a mounting bracket having upstanding fingers for supporting a carton thereon. The carton is so adapted as to permit the front wall to be slid down behind the upstanding fingers so as to lie flat against the inner surface of the upstanding flattened-together top wall and rear wall. In such a manner, suitable advertising and display legends may be imprinted or embossed on the top wall. U.S. 2,673,053 to Manetti discloses that bracket rigidity can be increased by providing mounting brackets with parallel ribs. U.S. 3,177,048 to Whatley discloses a soap holder for occupying minimum wall space and which includes a spacer projection to space the bar of soap from the wall when the soap is received in the holder in an upright position. U.S. 3,284,041 to Tjaden discloses that a single flat sheet of thin material includes a pair of arms which terminate in points so as to pierce a carton of tissues adjacent to the bottom of the carton to hold the carton without damaging the tissues therein. U.S. 2,315,573 to Yaffa discloses that a bracket having a horizontal shelf portion and upstanding prongs can be provided so that the prongs penetrate a carton of tissues, the carton then resting on the shelf portion for support.

25

A primary disadvantage with conventional mounting brackets for mounting a container of the type having plural wiper sheet materials therein is that the container may not always be securely

30

mounted onto the bracket. Thus, the container mounted onto conventional brackets may be prematurely dislodged from the bracket during normal usage. This problem is particularly acute when the container is used as a means to dispense sheet materials such as tissues, wiper sheets or the like since forces transmitted to the container during manual dispensation of the sheets tends to cause the container to be dislodged somewhat from the bracket. Such a loose-fitting relationship between the container and conventional mounting brackets may therefore be a source of irritation to a user.

SUMMARY OF THE PRESENT INVENTION

5

10

15

20

25

30

In accordance with one embodiment of the present invention, however, a container is securely captured when in a mounted position by virtue of a nip area defined between the mounting flanges of the present invention and the back plate member. The nip area serves to capture a portion of the container therein so that the separation forces mentioned above can be resisted while yet permitting the container to be removed from the mounting bracket when desired. As an alternative embodiment, the present invention provides a sharp edge extended into the space between the mounting flange and the back plate member so that the sharp edge penetrates a portion of the container to similarly resist separation forces.

Since conventional securing elements such as, for example, screws, bolts, nails, rivets or the like, are intended to be used as the means whereby the mounting bracket of the present invention is secured to a rigid surface, the reader will appreciate that such common securing elements have heads which tend to obstruct and interfere with the mounting of a container onto the bracket. The present invention therefore provides structure whereby the heads of such securing elements can be effectively masked so that the user will not experience difficulties in placing a container onto the mounting bracket.

Preferably, smoothly rounded or arcuate surfaces extend into the space defined between the mounting flanges and the rear plate member so that when the container is moved in a direction to mount it

onto the mounting flanges, the surfaces will bias the wall of the container adjacent the rear plate member in a direction away from the obstruction. Thus, the biased container wall is guided around and over the securing element head thereby preventing the head from obstructing the easy mounting of the container onto the bracket.

5

10

15

20

25

30

The container of the present invention includes opposing pairs of side walls to define a cavity to house therein wiper sheet material, for example. A linear array of alternating cut and uncut portions is provided on one wall of the container so as to be in registry with the mounting flange of the mounting bracket when the container is desired to be mounted thereon. As used herein, the term cut portion is intended to encompass perforations in the container wall which not only completely penetrate the thickness of the wall but also partially penetrate into the wall thickness. The linear array preferably includes between about 20% to about 80% of cut portions so that between about 8 to about 35 pounds force are required to be exerted upon the container during mounting thereof onto the mounting bracket.

These as well as other advantages and aspects of the present invention will become more clear to the reader after careful consideration is given to the detailed description of the preferred exemplary embodiments thereof which follow.

BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS

Reference will be herein made to the accompanying drawings wherein like reference numerals throughout the various Figures denote like structural elements, and wherein:

FIGURE 1 is a front elevational view of a particularly preferred embodiment of the mounting bracket of the present invention:

FIGURE 2 is a top plan view of the embodiment depicted in FIGURE 1;

FIGURE 3 is a bottom plan view of the embodiment depicted in FIGURE 1;

FIGURES 4 and 5 respectively show the rear elevational view and the left side elevational view of the embodiment depicted in FIGURE 1;

5

10

25

FIGURE 6 is a detailed cross-sectional elevational view of an embodiment of a capturing member of the present invention;

FIGURES 7-9 are perspective views showing the sequential steps to mount a container onto a container bracket of the present invention:

FIGURES 10 and 11 respectively show front and rear elevational views of a second embodiment of the container mounting bracket of the present invention;

FIGURES 12 and 13 respectively show a right side elevational view and a top plan view of the embodiment depicted in FIGURES 10 and 11;

FIGURES 14 and 15 respectively show front and rear elevational views of a third embodiment of the container mounting bracket in accordance with the present invention;

FIGURES 16 and 17 respectively show a right side elevational view and a top plan view of the embodiment depicted in FIGURES 14 and 15; and

FIGURE 18 is a detailed cross-sectional elevational view of another embodiment of a capturing member of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EXEMPLARY EMBODIMENTS

A. Mounting Bracket

5

10

15

20

25

30

A particularly preferred embodiment of the mounting bracket of the present invention is shown in accompanying FIGURES 1-5. As shown therein, the mounting bracket 10 generally includes a rear plate member 12 which is preferably planar so as to be placed against a rigid surface 14 (see FIGURE 5) to secure mounting bracket 10 thereto. Mounting bracket 10 can be formed of any rigid material such as metal, plastic or the like.

According to the embodiment of FIGURES 1-5, a pair of mounting flanges 16, 18 are rigidly secured to plate member 12 by means of bottom wall 20 so that each mounting flange 16, 18 is disposed in an upright manner substantially parallel to plate member 12. A space 22 will thus be defined between mounting flanges 16, 18 on the one hand and rear plate member 12 on the other hand to accept therein one wall 24 of container 26 (see FIGURE 5).

Mounting bracket 10 can be rigidly secured to surface 14 by means of any conventional securing element such as, for example, screw B having head A as shown in FIGURE 5. Other conventional securing elements having heads such as bolts, nails, rivets or the like can also be satisfactorily utilized to secure bracket 10 to surface 14. Of course, other non-head securing elements such as double-sided adhesive tape, adhesive or the like, could also be satisfactorily used as the means to secure bracket 10 to surface 14, if desired.

When a securing element such as screw B is utilized to rigidly secure bracket 10 to surface 14, a pair of mounting apertures 28, 30 are defined in rear plate member 12 so as to accept screw B therethrough. Preferably, mounting apertures 28, 30 are slotted in that elongated apertures 32, 34 are provided for each mounting aperture 28, 30, respectively. Elongated apertures 32, 34 have a width dimension less than the diameter of apertures 28, 30 and thus permit the head A of screw B to bear against rear plate member 12 to securely mount bracket 10 to surface 14.

Mounting flanges 16, 18 include rib members 36 so as to increase the structural rigidity of mounting flanges 16, 18. Preferably, rib members 36 are vertically provided on mounting flanges 16, 18 so that flexion of flanges 16, 18 in a direction away from rear plate member 12 due to the weight of container 26 is resisted. In a preferred form, rib members 36 are integrally formed indentations in mounting flanges 16, 18 but could also be separate member rigidly secured thereto.

5

10

15

20

25

30

35

In order to permit a manipulation tool such as a screw-driver, or the like, to be engageable with the screw head A inserted in apertures 32, 34 so as to effect rigid mounting of bracket 10 to surface 14, enlarged apertures 33, 35 are defined in flange members 16, 18 in registry with apertures 28/32 and 30/34.

A pair of downwardly divergent edges 38, 40 are defined on each mounting flange 16, 18 to penetrate the container 26 which is typically formed of heavy basis weight material such as corrugate box board solid fiber board or like material. Thus, edge pairs 38, 40 function so as to penetrate wail 37 (see FIGURE 5) of container 26 so as to mount container 26 onto flanges 16, 18. Furthermore, flanges 16, 18 are preferably upwardly tapered by means of upwardly converging edges 42, 44 so that a slot initially formed in container wall 37 by virtue of the downwardly divergent edges 38, 40 of flanges 16, 18 will become increasingly longer in dimension as container 26 is downwardly moved onto flanges 16, 18.

As noted previously, manipulable securing elements are intended to be utilized as the means to secure bracket 10 to surface 14. As shown in FIGURE 5, the head A of wood screw B, for example, is disposed in space 22 when bracket 10 is mounted to surface 14. Thus, screw head A presents an obstruction in mounting container 26 onto flanges 16, 18. That is, the edge 61 of container 26 defined by walls 24 and 37 tends to abut against screw head A thereby obstructing container 26 from being easily mounted onto flanges 16, 18.

In order to alleviate such problems, the present invention provides guide members 50 associated with rear plate member 12 and disposed in space 22 so as to be above screw heads A but in alignment

therewith when bracket 10 is mounted to surface 14. In a preferred form, the guide members 50 establish convexly curved surfaces but other geometrically-shaped surfaces such as, for example, downwardly inclined ramp surfaces, concave surfaces or the like, can be advantageously utilized. Guide members 50 serve to outwardly displace wall 24 of container 26 thereby biasing wall 24 away from screw head A when a user first mounts container 26 onto mounting flanges 16, 18 thereby preventing screw head A from obstructing the mounting procedure.

In order to securely mount container 26 onto bracket 10 so as to maintain it in a stationary position, each mounting flange 16, 18 includes capturing members 52, 54 preferably positioned at the lower end of each flange member 16, 18, respectively so as to be disposed in space 22. In a preferred embodiment of capturing members 52, 54, each includes a pair of triangularly-shaped surfaces 56, 58 joined at one edge 60 so as to define with rear plate member 12 a nip area 62. As shown more clearly in FIGURE 6, when container 26 is mounted onto bracket 10, the corner 61 established by walls 24, 37 thereof will be deformed due to the downwardly sloping configuration of edge 60. Thus, corner 61 becomes bunched and captured in nip area 62. Accordingly, capturing members 52, 54 provide the means by which forces acting on the container in an upward direction are resisted while yet permitting removal of the container from bracket 10 when desired.

As shown in FIGURES 7-9, container 26 preferably includes wall 37 in which a perforated score line 64 is formed to define panel 66. Upon removal of panel 66, an opening 67 is provided to thereby permit the user to gain access to the contents of container 26, the contents preferably being wiper sheet material 68 as shown in FIGURE 9. Wall 37 also preferably includes a linear array of first and second perforation groupings 70, 72, respectively, each of which is established by alternating cut portions 73a and uncut portions 73b. First and second perforation groupings 70, 72 register with flanges 16, 18 so as to facilitate the mounting of container 26 thereon.

To mount container 26 onto bracket 10, a user manually positions container 26 such that perforated score lines 70, 72 are

disposed in respective alignment with flanges 16, 18 as shown in FIGURE 7. Thereafter, the user forceably presses container 26 in a direction indicated by arrow 74 in FIGURE 8 so as to bring edges 38, 40 into engagement with score lines 70, 72. Due to the downwardly diverging nature of edges 38, 40, the wall 37 of container 26 is pierced at first and second perforation groupings 70, 72 such that upon further downward movement (arrow 76) of container 26, mounting flanges 16, 18 will penetrate into the interior of container 26 until the mounted position is achieved as shown in FIGURE 9.

10

15

5

Accordingly, when container 26 is in the mounted position as shown in FIGURE 9, wall 24 of container 26 will be disposed in space 22 defined between mounting flanges 16, 18 and rear plate member 12. While in the mounted position, capturing members 52 associated with mounting flanges 16, 18 capture a portion of the container 26 in nip area 62 so that forces in a direction tending to separate container 26 from mounting brackets 16, 18 (e.g. in a direction opposite to arrow 76) are resisted while yet permitting the user to remove container 26 from mounting flanges 16, 18 by exerting sufficient force in a direction opposite to arrow 76 when desired. Once container 26 is in its mounted position as shown in FIGURE 9, panel 66 can be removed to define opening 67 thereby permitting the wiper sheet material 68 to be dispensed therefrom.

20

Bracket 10 preferably includes lower flange 74 integral with and recessed relative to mounting flanges 16, 18. Lower flange 74 is rigidly joined to the lower portion of rear plate member 12 so as to increase the structural rigidity of mounting flanges 16, 18. Furthermore, lower flange 74 provides a convenient surface on which indicia such as corporate logo 76 (see FIGURE 1) can be placed.

30

25

FIGURES 10-17 depict further embodiments of the present invention and structures shown therein equivalent to the embodiment of the present invention shown in FIGURES 1-5 have been noted with like reference numerals. Accordingly, the description of such equivalent structures will not be repeated below.

35

With particular attention being directed to FIGURES 10-13, an additional embodiment of mounting bracket 10 defines a pair of inwardly converging edges 80, 82 joining edge 44 of mounting flange 16 and edge 42 of mounting flange 18 so as to aid in the separation of perforated score lines 70, 72 (see FIGURE 7) when container 26 is mounted onto flanges 16, 18.

The means to prevent screw head A from obstructing the mounting of container 26 onto mounting flanges 16, 18 is provided, according to the embodiment of FIGURES 10-13, by partial cut-out portions 84, 86. Preferably, cut-out portions 84, 86 are semi-circular in configuration and inwardly bent into space 22 along a substantially vertical line. In such a manner, the arcuate edges 88 of cut-out portions 84, 86 will function in a manner similar to guide members 50 described above with respect to the embodiment of FIGURES 1-5.

In order to capture a portion of container 26 so as to resist forces acting on the container in a direction opposing the mounting direction (e.g. in a direction opposite to arrow 76 as shown in FIGURE 8), teeth 90, 92 are provided in rear plate member 12 and disposed in space 22. Teeth 90, 92 each define pointed edge 94 to bite into wall 24 of carton 26 when carton 26 is in a mounted position as shown in FIGURE 18. Accordingly, pointed edge 94 penetrates into a portion of wall 24 so as to resist forces exerted on container 26 in a direction tending to separate it from mounting flanges 16, 18.

Rather than providing a pair of mounting flanges 16, 18 as in the embodiments of FIGURES 1-5 and 10-13, the embodiment of the present invention depicted in FIGURES 14-17 includes a front plate member 96 having bevelled upper corners 100, 102. Corners 100, 102 function in a manner similar to edges 38, 40 of the embodiments of FIGURES 1-5 and 10-13 in that they aid in the piercing of container 26. Since front plate member 96 defines a substantially horizontal upper edge 104, it is preferred that score lines 70, 72 be extended along the substantial width of container 26 so as to establish a relatively continuous score line thereacross. Furthermore, the embodiment of FIGURES 14-17 includes cut-out portions 84, 86 which are disposed interiorly of elongated apertures 32 rather than in vertical alignment therewith as was described above with respect to the embodiment of FIGURES 1-5. Nonetheless, cut-out portions defining arcuate surfaces

88 will function in a similar manner in that wall 24 of container 26 will be biased away from screw head A when container 26 is moved in a mounting direction (arrow 76 in FIGURE 8) thereby preventing screw head A from obstructing the mounting procedure.

5 B. The Container

The container in which the wiper sheets are housed prior to use and from which serial dispensation of the wiper sheets occurs during use forms the second component of the container mounting system of the present invention. In order for the container mounting system to perform its intended functions, the container must be capable of storing the wiper sheets separately of the mounting bracket (such as during transport of the container) and yet present the user with little difficulties when a container having a fresh supply of wiper sheets is mounted onto the mounting bracket.

In accordance with the present invention, a container for use in combination with the mounting bracket described above is provided such that the integrity of the container is maintained during handling and shipping of the container while yet permitting a user to easily install the container onto the mounting bracket. To accomplish

these results, a distinctly novel container is provided and attention is directed to accompanying FIGURE 7 for the discussion which follows.

As briefly described above, container 26 of the present invention includes a linear array of first and second perforation groupings 70, 72 each of which is established by alternating cut and uncut portions 73a, 73b, respectively. First perforation grouping 70 is disposed in wall 37 so as to be registrable with flange 16 while second perforation grouping 72 is disposed in wall 37 so as to be registrable with flange 18 of mounting bracket 10. Of course, should a single mounting flange be used as the means to mount the container upon the bracket, as is the case with the embodiment of the present invention depicted in FIGURES 14-17, two groupings 70, 72 would be unnecessary and thus the linear array of cut and uncut portions 73a, 73b, respectively, would extend substantially the entire length of wall 37.

15

10

20

25

30

The linear array of first and second perforation groupings 70, 72 are substantially parallel to edge 61 which is defined by the intersection of mutually perpendicular walls 37 and 24. Moreover, the linear array of first and second perforation groupings 70, 72 are spaced from edge 61 by a dimension D which is less than or equal to the cross-sectional dimension of space 22 defined between backplate 12 and flanges 16, 18. In such a manner, wall 24 of container 26 is accepted in space 22 when container 26 is mounted upon flanges 16, 18.

The container 26 is constructed of a sufficiently strong material which protects the contents from damage. Particularly preferred materials for the container of this invention include 125-lb. and 200-lb. test corrugate board although solid fiber board of sufficient basis weight (e.g. at least 18-point solid fiber board) could also be advantageously used. Conventional forming techniques are used to fashion the container of the present invention. Preferably, a container blank is cut from an integral piece of box board and then folded so as to erect the container. Suitable known adhesives, tapes, staples, integral folds or like means are then used to join adjacent panels of the erected container. A preferred container of this invention exhibits a length dimension of about 10 1/2 inches, a width dimension of about 4 3/4 inches, and a height dimension of about 8 1/4 inches.

The linear array of first and second perforation groupings 70, 72 are important to the container of the present invention to achieve the functional advantages briefly mentioned above; that is, to ensure that the integrity of the container is maintained during handling or shipping thereof separately from the mounting bracket in addition to ensure that the user encounters little difficulty in mounting the container into the bracket. The container of the present invention achieves such functional advantages by dimensioning the cut portions 73a such that the percentage of the cut portions 73a relative to the uncut portions 73b of the linear perforation array is between about 20% to about 80%, e.g. as established by the following formula:

Percent cut portion = total dimension of cut portions 73a ÷ [(total dimension of cut portions 73a) + (total dimension of uncut portions 73b)] x 100

By dimensioning the cut/uncut portions 73a/73b so as to satisfy the above formula, the user need only apply a force in the direction of arrow 76 in FIGURE 8 of between about 8 lbs-force to about 35 lbsforce to achieve mounting of the container 26 onto bracket 10. The amount of force required to be exerted in the direction of arrow 76 in FIGURE 8 (e.g. between about 8 to about 35 lbs-force) is also a measure of the integrity of the linear array of perforation groupings That is, below about 8 lbs-force (which corresponds to a percent cut portion in excess of about 80%), the container exhibits a tendency to separate along the linear array of perforation groupings 70, 72 during handling prior to use. Thus, less than about 8 lbs-force required to mount container 26 onto bracket 10 is distinctly disadvantageous since premature separation along the perforation line tends to occur prior to mounting thereby exposing the contents of container 26 to potential damage. On the other hand, should the required mounting force exceed about 35 lbs-force (e.g. corresponding to a percent cut portion of less than about 20%), the user experiences excess resistance to the mounting of container 26 onto bracket 26 even though the integrity (e.g. nonseparation along the perforation line) of container 26 is virtually ensured.

5

10

15

20

25

30

35

While the above description of container 26 was primarily directed to mounting of container 26 onto the embodiment of bracket 10 having a pair of mounting flanges (e.g. mounting flanges 16, 18), the reader should appreciate that the above description is similarly applicable to a mounting bracket having a unitary mounting flange (for example, flange 96 of the embodiment of FIGURES 14-17) or more than a pair of mounting flanges. Furthermore, while first and second perforation groupings 70, 72 are depicted in the accompanying drawings as being formed in wall 37 of container 26 adjacent to panel 66, the reader should also appreciate that cut and uncut portions 73a, 73b, respectively, can be formed in any wall of container 26 so as to present opening 67 and thus wiper sheet material 68 at a desirable location for the user. Also, multiple linear arrays of cut and uncut portions can be provided so as to present the user with a choice of wiper dispensing positions (e.g. top, side or bottom dispensing positions).

0 175 350

Thus, while the present invention has been described in what is presently conceived to be the most preferred embodiments thereof, those in this art may recognize that many modifications may be made thereto, which modifications shall be accorded the broadest scope of the appending claims so as to encompass all equivalent structures and/or assemblies.

5

WHAT IS CLAIMED IS:

1 2

1	1. A container mounting bracket to mount a container
2	to a surface comprising:
3	a rear plate member adapted to being secured to a
4	surface;
5	mounting flange means for mounting the container,
6	said flange means having one end fixed to said rear plate member and
7	defining with said rear plate member a space to accept one wall of the
8	container therein, said flange means including at the other end thereof
9	means defining edges for piercing a second wall of the container when
10	the container is moved in a mounting direction onto said flange means
11	to a position wherein said container is mounted onto said flange means;
12	and
13	means disposed in said space for capturing a portion
14	of said container in said mounted position to securely mount said
15	container to said flange means and for resisting forces acting on said
16	container in a direction generally opposing said mounting direction

2. A container mounting bracket as in claim 1 wherein said container-capturing means includes means defining a nip area with said rear plate member, said nip area capturing said container portion when said container is in said mounted position.

while yet permitting removal of said container when desired.

- 3. A container mounting bracket as in claim 2 wherein said nip area defining means includes means forming a pair of surfaces disposed in said space and joined together at least at one edge of each, said joined edges thereby establishing said nip area.
- 4. A container mounting bracket as in claim 3 wherein said joined edges define a line which is angularly oriented relative to said rear plate member.

1	5. A container mounting bracket as in claim 1 wherein
2	said container-capturing means includes means defining a sharp edge to
3	penetrate said container portion when said container is in said mounted
4	position.

1

2

3 4

5

1

2

3

4

5 б

1

2

1

2

3

4

5

6

1

2

3

- A container mounting bracket as in claim 5 wherein said sharp edge defining means includes a triangular-shaped member extending into said space and terminating in a pointed tip, said tip penetrating said container portion when said container is in said mounted position.
- 7. A container mounting bracket as in claim 1 or 2 further comprising means defining a guide surface disposed in said space for guiding and biasing said one wall away from obstructions in said space when said container is moved in said mounting direction to thereby prevent the obstructions from interfering with the mounting of said container onto said flange means.

8. A container mounting bracket as in claim 7 wherein said guide surface defining means defines convex arcuate surfaces.

A container mounting bracket as in claim 1 or 2 9. wherein said mounting flange means include a pair of upstanding flange members, each rigidly mounted to said first member at one end thereof so as to be substantially parallel to said rear plate member and each said flange members including an edge defined at the other end thereof to pierce said second container wall.

- 10. A container mounting bracket as in claim 1 or 2 wherein said mounting flange means includes structural means for increasing the structural rigidity of said flange means.
- 1 A container mounting bracket according to claim 10 11. 2 wherein said structural means includes vertically extending rib 3 members.

1	12. A container mounting bracket according to claim 1
2	wherein said first member includes aperture-defining means for
3	defining an aperture adapted to accept a manipulable securing element
4	therein so that the container mounting bracket can be rigidly secured
5	to a surface.

- 13. A container mounting bracket as in claim 12 wherein said flange means includes means defining at least one opening in registry with said aperture to permit the manipulable securing element in said aperture to be accessed by a manipulation tool.
- 14. The combination comprising a container mounting bracket and a container mounted onto said bracket, said container having walls defining an interior cavity for containing a plurality of sheet material therein and means establishing an opening to permit said sheet material to be dispensed from said cavity, wherein said container mounting bracket includes:

a rear plate member adapted to being secured to a surface;

mounting flange means for mounting the container, said flange means having one end fixed to said rear plate member and defining with said rear plate a space to accept one wall of the container therein, said flange means including at the other end thereof means defining edges for piercing a second wall of the container when the container is moved in a mounting direction onto said flange means to a position wherein said container is mounted onto said flange means; and

means disposed in said space for capturing a portion of said container in said mounted position to securely mount said container to said flange means and for resisting forces acting on said container in a direction generally opposing said mounting direction while yet permitting removal of said container when desired.

1	15. The combination of claim 14 wherein said container
2	includes perforation means establishing at least one perforated area on
3	said second wall registrable with said edge-defining means so that when
4	said container is moved in said mounting direction said edge-defining
5	means penetrate said perforation means.
1	16. A container mounting bracket comprising:

5

a generally U-shaped mounting member having a rear plate member adapted for placement against a rigid surface to be secured thereto and at least one mounting flange adapted to penetrate a wall of a container to mount the container to the mounting member, wherein

said mounting member includes means to capture a portion of the container when mounted to said mounting member.

- 17. A container mounting bracket as in claim 16 wherein said container-capturing means includes means defining a nip area with said rear plate member, said nip area capturing said container portion when said container is in said mounted position.
- 18. A container mounting bracket as in claim 16 wherein said container-capturing means includes means defining a sharp edge to bite into said container portion whereby said container is captured by means of said sharp edge biting into said container portion.

19. A container mounting bracket comprising:

a generally U-shaped mounting member having a rear plate member adapted for placement against a rigid surface to be secured thereto and at least one mounting flange adapted to penetrate a wall of the container to mount the container to the mounting member, wherein

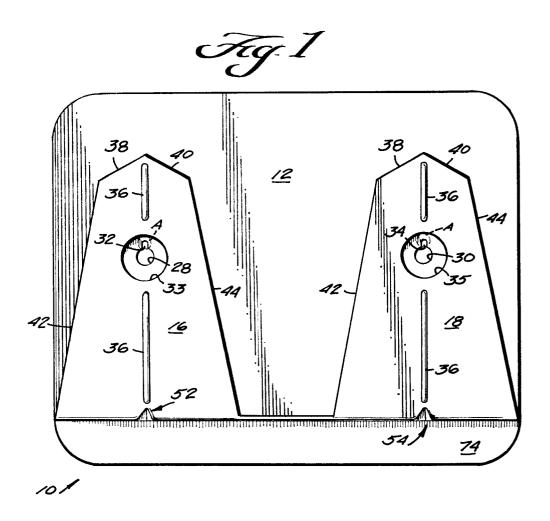
said mounting member includes means defining a guide surface disposed between said rear plate member and said at least one mounting flange, said guide surface defining means biasing another wall of the container in a direction towards said at least one

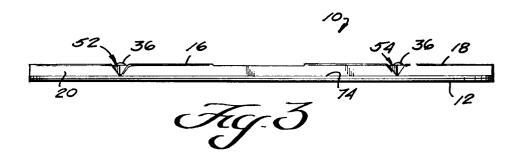
mounting flange member when the container is moved relative to said at least one mounting flange member to mount the container to the mounting member.

1 2

21 ·

- 20. A container mounting bracket as in claim 19 wherein said guide surface defining means defines an arcuate convex surface.
 - 21. A container mounting bracket as in claim 19 or 20 wherein said mounting member further includes means to capture a portion of the container when mounted to said mounting member.
 - 22. A container for mounting onto a bracket of the type including a rear plate adapted to being secured to a surface and mounting flange means to mount the container, the flange means having one end fixed to the rear plate to define a space of predetermined cross-sectional dimension, and another end, opposite to the first end, defining a substantially linear edge, said container comprising:


wall means establishing plural pairs of opposing walls to define an interior cavity, one wall of a first pair of opposing walls establishing a linear corner with an adjacent wall of a second pair of opposing walls;


means defining a linear array of cut portions in said one wall substantially parallel to said defined corner and spaced from said defined corner by a dimension less than or equal to said predetermined cross-sectional dimension, wherein

said linear array defining means registers with said defined edge of said mounting flange means when said container is positioned so that said linear array defining means is in confronting relationship to said defined edge and wherein said container is mountable upon said mounting flange means upon the application of a magnitude of force being exerted upon said container while said linear array defining means is in said confronting relationship to said defined edge, said linear array defining means for establishing said predetermined magnitude of force required to mount said container onto said mounting flange means.

- 1 23. A container as in claim 22 wherein said linear array defining means defines alternating cut and uncut portions.
- 1 24. A container as in claim 23 wherein said predeter-2 mined magnitude of force is between about 8 to about 35 pounds force.
- 25. A container as in claim 24 wherein between about 20 to 80% of said linear array defining means consists of said cut portions.
- 1 26. A container as in claim 22 wherein said wall means 2 consists essentially of between about 125 to about 200-lb. test 3 corrugate board material.
- 1 27. A container as in claim 22 wherein said wall means 2 consists essentially of at least 18-point solid fiber board material.

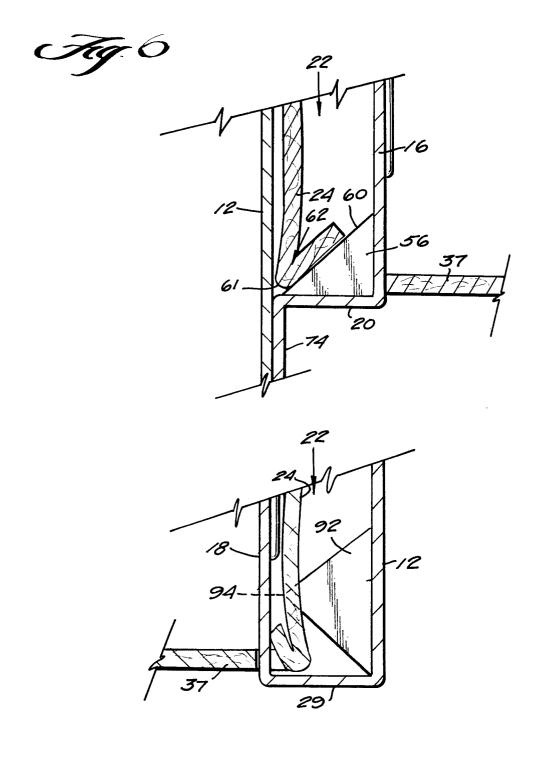
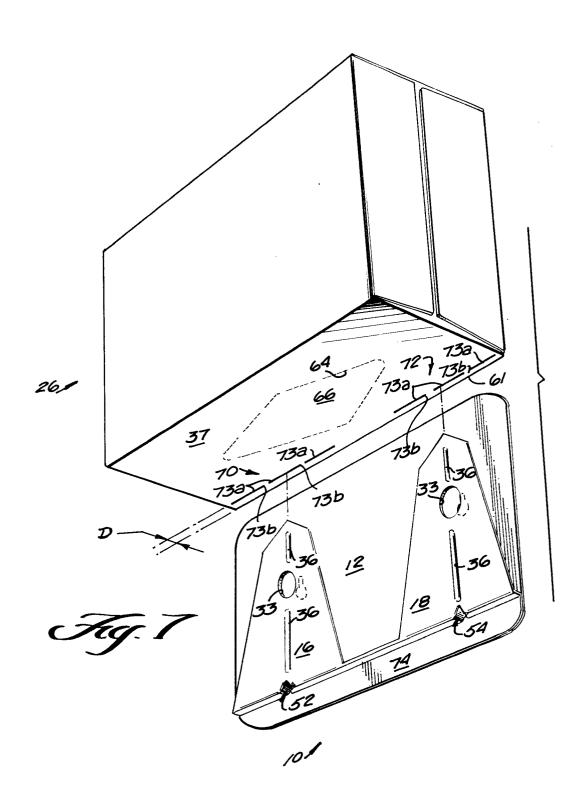
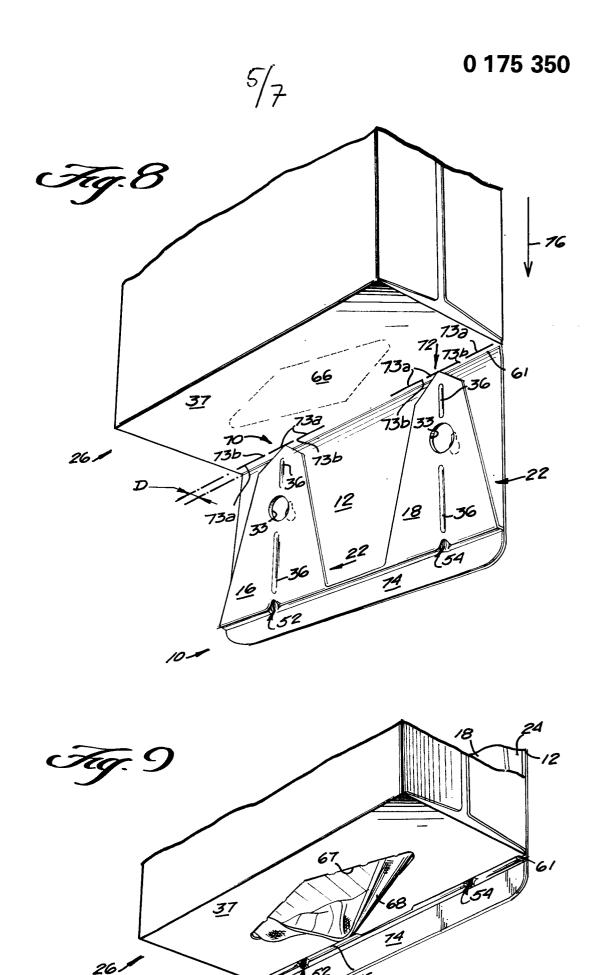




Fig. 18

