(11) Veröffentlichungsnummer:

0 179 224

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 85110541.1

(5) Int. Cl.⁴: A 47 C 1/027 A 47 C 1/032, A 47 C 3/026

(22) Anmeldetag: 22.08.85

(30) Priorität: 14.03.85 DE 3509049 24.10.84 DE 3438843

- (43) Veröffentlichungstag der Anmeldung: 30.04.86 Patentblatt 86/18
- (84) Benannte Vertragsstaaten: AT CH DE FR GB IT LI NL SE

Anmelder: Bürositzmöbelfabrik Friedrich-W. Dauphin GmbH & Co.

D-8561 Offenhausen bei Nürnberg(DE)

- (72) Erfinder: Dauphin geb. Caplick, Elke Gartenstrasse 8 D-8561 Offenhausen bei Nürnberg(DE)
- (74) Vertreter: Rau, Manfred, Dr. Dipl.-ing. et al, Rau & Schneck, Patentanwälte Königstrasse 2 D-8500 Nürnberg 1(DE)

(54) Gasfederanordnung, insbesondere für das Rückenlehnentrageteil an Bürostühlen.

(57) Bei einer Gasfederanordnung umfassend eine zwischen zwei relativ zueinander um eine Schwenkachse schwenkbaren Bauteilen angeordnete, die Schwenkbewegung dämpfende Gasfeder und eine mechanische Einrichtung mit einem Betätigungsgriff zur lösbaren Arretierung der Schwenkbewegung, insbesondere für die Neigungsverstellung der Rückenlehne von Bürostühlen, ist zur Erzielung einer einfachen Dämpfung der Schwenkbewegung des Rückentrageteils reiativ zu dem Sitzträger einerseits und einer bequem handbaren und dabei festen Arretierung dieser Schwenkbewegung andererseits vorgesehen, daß die Gasfeder (19) zwischen zwei an je einem Bauteil (Sitzträger 4, Rückenlehnentrageteil 7) parallel zur Schwenkachse (6) angeordneten Querstreben (Bolzen 23, 27) befestigt ist, daß die mechanische Arretiereinrichtung (29) ein Hülsenteil (31) und ein in dem Hülsenteil (31) längenverschiebbares Kolbenteil (30) umfaßt, daß das Hülsenteil (31) bzw. das Kolbenteil (30) mit je einer der Querstreben (Bolzen 23, 27) verbunden und etwa parallel zu der Gasfeder (19) angeordnet sind, und daß das Hülsenteil (31) eine seitliche Gewindebohrung (Bohrung 39, Gewindeaufsatz 40) aufweist, in welche ein am Vorderende des Betätigungsgriffes (43) angeordneter Gewindebolzen (42) derart einschraubbar ist, daß das Kolbenteil (30) gegen das Hülsenteil (31) verspannbar ist.

딦

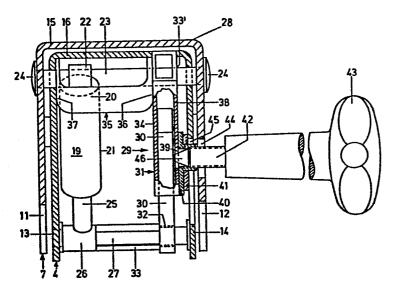


FIG.3

Bürositzmöbelfabrik Friedrich-W. Dauphin GmbH & Co., 8561 Offenhausen bei Nürnberg

Gasfederanordnung, insbesondere für das Rückenlehnentrageteil an Bürostühlen

5 Die Erfindung richtet sich auf eine Gasfederanordnung nach dem Oberbegriff von Anspruch 1.

Derartige Gasfederanordnungen werden insbesondere dazu benutzt, die Schwenkbewegung des Rückenlehnentrage10 teils bzw. der Rückenlehne und gegebenenfalls koordiniert hiermit des Sitzes bei Bürostühlen zu dämpfen. Um dem Benutzer solcher Bürostühle die Möglichkeit zu geben, die Rückenlehnen- bzw. Sitzneigung entweder in einer gewünschten Position fest einzustellen oder
15 aber die Rückenlehne bzw. den Sitz schwenkbar zu halten, damit sie den Körperbewegungen folgen können, ist es bekannt, die Schwenkbewegung unterbindende, lösbare Arretiereinrichtungen vorzusehen. Derartige Arretiereinrichtungen können entweder bei Verwendung längenverstell-

20 barer Gasfedern unmittelbar auf die Gasfeder einwirken.

Andererseits besteht die Möglichkeit, zusätzlich zur Gasfeder eine eigene mechanische Arretiereinrichtung vorzusehen. Derartige mechanische Arretiereinrichtungen weisen den Vorteil auf, daß kostengünstigere Gasfedern 5 verwendet werden können.

Aus dieser spezifischen Problemstellung resultieren zwei an sich konkurrierende Anforderungen an derartige Gasfederanordnungen. Zum einen soll es die Arretierein10 richtung ermöglichen, trotz der relativ hohen auftretenden Drehmomente eine absolut sichere Fixierung z.B. des Sitzes oder der Rückenlehne in einer bestimmten Neigungslage zu ermöglichen, zum anderen soll das Betätigen der Arretiereinrichtung mit geringem Kraftauf15 wand möglich sein, damit eine problemlose Handhabung möglich ist. Darüber hinaus muß dafür Sorge getragen werden, daß durch die Arretiereinrichtung die Schwenkbewegung im ausgelösten Zustand nicht behindert und lediglich durch die wirksam werdende Gasfeder gedämpft wird.

20

Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine Gasfederanordnung der eingangs genannten Art so auszubilden, daß bei leichter Lösbarkeit eine zuverlässige Arretierung ermöglicht wird, wobei eine 25 möglichst einfache und damit gleichermaßen betriebssichere als auch kostengünstig realisierbare Konstruktion angestrebt wird.

Diese Aufgabe wird gelöst gemäß dem kennzeichnenden

30 Teil von Anspruch 1. Durch die danach vorgesehene
Parallelanordnung von ineinandergreifenden Hülsen-Kolbenteilen zu der Gasfeder wird erreicht, daß bei einem
Verspannen des Hülsenteils gegen das Kolbenteil durch
Anziehen des Gewindebolzens eine flächige Pressung

35 zwischen diesen entsteht, welche eine hohe, auch bei

häufiger Betätigung konstant bleibende Arretierkraft ermöglicht, wobei darüber hinaus für die Arretiereinrichtung keine zusätzlichen Befestigungseinrichtungen vorgesehen werden müssen, sondern die zur Festlegung der Gasfeder ohnehin erforderlichen Querstreben verwendet werden können.

Eine besonders gute Flächenpressung wird bei einer Ausgestaltung gemäß Anspruch 2 erreicht.

10

Durch die gemäß Anspruch 3 vorgesehenen konstruktiven Maßnahmen wird erreicht, daß Kolbenteil und Hülsenteil relativ zueinander problemlos verspannbar sind, und daß im gelösten Zustand der Arretiereinrichtung die freie Schwenkbewegung nicht durch Klemmung behindert wird.

Die Ausgestaltung nach Anspruch 4 sorgt dafür, daß trotz des vorgesehenen axialen Spiels ein Anschlag insbesondere bei der Handhabung des Betätigungsgriffes das Hülsen- und Kolbenteil fixiert.

Durch die Maßnahme nach Anspruch 5 wird in einfacher Weise dafür gesorgt, daß unter Aufrechterhaltung des gewünschten axialen Spiels trotzdem eine unkontrollierte axiale Bewegung, welche auch zu einer undefinierten Lage des Betätigungsgriffes führen würde, vermieden wird.

30 Die Ausgestaltung nach Anspruch 6 ermöglicht es, eine besonders einfach ausgestaltete und damit kostengünstig herstellbare Feder zu verwenden.

Durch die Maßnahme nach Anspruch 7 wird eine sehr 35 einfache Montierbarkeit der Feder ermöglicht.

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der folgenden Beschreibung einer bevorzugten Ausführungsform anhand der Zeichnung. Dabei zeigen

5

- Fig. 1 eine schematische Seitenansicht eines Bürostuhls,
- Fig. 2 eine Seitenansicht des Anlenkungsbereichs des Sitzträgers am Grundgestell und

10

Fig. 3 einen Schnitt längs der Linie A-A' in Fig. 2.

Ein in Fig. 1 dargestellter Bürostuhl umfaßt ein Fußgestell 1 mit einer Tragsäule 2, welche mit einem
15 den gepolsterten Sitz 3 aufnehmenden Sitzträger 4
verbunden ist. In Fig. 1 ist lediglich die Verkleidung 5
des Sitzträgers 4 dargestellt.

Mit dem Sitzträger 4 um eine Schwenkachse 6 schwenkbar 20 verbunden ist ein Rückenlehnentrageteil 7, an welchem die die Rückenlehne 8 tragende Rückenlehnentragsäule 9 befestigt ist.

Der Sitz 3 ist, wie im einzelnen nicht dargestellt,

25 einerseits mit dem Sitzträger 4 an dessen vorderem
Ende und andererseits mit dem Rückenlehnentrageteil 7
gelenkig verbunden. Die gelenkige Verbindung zwischen
dem Sitzträger 4 und dem Rückenlehnentrageteil 7 wird
durch einen Schwenkbolzen 10 hergestellt, welcher

30 die Seitenwände 11, 12 bzw. 13, 14 des Rückenlehnentrageteils 7 bzw. des Sitzträgers 4 durchsetzt. Das Rückenlehnentrageteil 7 und der Sitzträger 4 sind im Querschnitt
jeweils U-förmig ausgebildet, wobei die U-Böden 15, 16
zur Oberseite, also zum Sitz hin weisen. Am hinteren

Ende des Rückenlehnentrageteils 7 ist eine lösbare Befestigungseinrichtung 17 für die Rückenlehnen-Tragsäule angeordnet.

5 Zur Dämpfung der Schwenkbewegung des Rückenlehnentrageteils 7 um die Achse 6 ist eine Gasfeder 19 vorgesehen.
Das gehäuseseitige Ende 20 der Gasfeder 19 ist mittels
einer an dem Gehäuse 21 der Gasfeder 19 befestigten
Ringhülse 22 schwenkbar an einem Bolzen 23 festgelegt,
10 der die Seitenwände 11, 12 des Rückenlehnentrageteils 7
durchsetzt und mittels der Köpfe 24 festgelegt ist.

Der Kolben 25 ist mit einer, eine Distanzfunktion wahrnehmenden Ringhülse 26 verbunden, welche schwenkbar 15 auf einem als Querstrebe wirkenden Bolzen 27 angeordnet ist, der die Seitenwände 13, 14 des Sitzträgers 4 durchsetzt und dort festgelegt ist. Der Bolzen 23 ist im Bereich der Oberkante 28 des Rückenlehnentrageteils 7 angeordnet, während der Bolzen 27 im Bereich 20 der Unterkante des Sitzträgers 4 unterhalb des Schwenkbolzens 10 angeordnet ist, wobei die Bolzen 23, 27 derart relativ zueinander liegen, daß die Gasfeder 19 etwa einen Winkel von 30 bis 45° mit der Ebene des Sitzes 3 einschließt. Hierdurch ist es möglich, die Bewegung 25 der Rückenlehne 8 relativ zu dem Sitzträger 4 abzufedern, ohne daß die Verwendung zusätzlicher, die Rückbewegung der Rückenlehne bewerkstelligender Gegenfedern erforderlich wird.

30 Etwa parallel zu der Gasfeder 19 ist die Arretiereinrichtung 29 angeordnet. Diese umfaßt ein Kolbenteil 30 und ein in Fig. 3 teilweise aufgebrochen dargestelltes Hülsenteil 31. Kolbenteil 30 und Hülsenteil 31 sind im Querschnitt rechteckig ausgebildet, wobei das Kolbenteil 30 in das Hülsenteil 31 längsverschieblich ein-

greift. Das Kolbenteil 30 weist eine Bohrung 32 auf, welche von dem Bolzen 27 durchsetzt wird. Eine Distanz-hülse 33 hält das Kolbenteil 30 auf einer vorgewählten Mindestdistanz zur Ringhülse 26 und damit zur Gasfeder 19.

5

Das Hülsenteil 31 weist ebenfalls eine Bohrung 33' auf, durch welche der Bolzen 23 geht. An der Innenseite 34 des Hülsenteils 31 liegt ein U-förmiger Feder-Bügel 35 mit einem Schenkel 36 an, wobei sich der andere 10 Schenkel 37 an der Innenseite der Seitenwand 13 abstützt.

Die Außenseite 38 des Hülsenteils 31 weist eine Bohrung 39 auf. Im Bereich dieser Bohrung 39 ist ein Gewindeaufsatz 40 angeschweißt, welcher von einem

- 15 Kunststoffdistanzstück 41 umgeben wird. In den Gewindeaufsatz 40 ist ein Gewindebolzen 42 eingeschraubt, an dessen rückwärtigem Ende ein Betätigungsgriff 43 befestigt ist. Der Gewindebolzen 42 durchsetzt eine Bohrung 44 in der Seitenwand 12 und eine eine ungehin-
- 20 derte Schwenkbewegung erlaubende, etwa kreisabschnittsförmige Ausnehmung 45 in der Seitenwand 14.

Die erfindungsgemäße Gasfederanordnung funktioniert so, daß dann wenn der Gewindebolzen 42 gelöst ist,

- 25 eine freie Schwenkbewegung zwischen dem Rückenlehnentrageteil 7 und dem Sitzträger 4 möglich ist, welche durch die Gasfeder 19 so gedämpft wird, daß keine zusätzliche Gegenfeder zur Rückholung der Rückenlehne 8 erforderlich ist. Durch ein Verdrehen des Betätigungsgriffes 43
- 30 wird der Gewindebolzen 42 in den Gewindeaufsatz 40 eingeschraubt, das vordere Ende 46 des Gewindebolzens 42 drückt gegen das Kolbenteil 30 und dieses gegen die Innenwand des Hülsenteils 31 und preßt das Kolbenteil 30 dort derart flächig an, daß trotz eines nur geringen
- 35 erforderlichen Drehmoments zur Betätigung des Griffs 43

eine absolut zuverlässige Arretierung der Rückenlehnenverstellung erreicht wird.

Patentansprüche:

1. Gasfederanordnung umfassend eine zwischen zwei relativ zueinander um eine Schwenkachse (6) schwenk-5 baren Bauteilen angeordnete, die Schwenkbewegung dämpfende Gasfeder (19) und eine mechanische Einrichtung mit einem Betätigungsgriff zur lösbaren Arretierung der Schwenkbewegung, insbesondere für die Neigungsverstellung der Rückenlehne von Bürostühlen, da-10 durch gekennzeichnet, daß die Gasfeder (19) zwischen zwei an je einem Bauteil (Sitzträger 4, Rückenlehnentrageteil 7) parallel zur Schwenkachse (6) angeordneten Querstreben (Bolzen 23, 27) befestigt ist, und daß die mechanische Arretiereinrichtung (29) ein Hülsen-15 teil (31) und ein in dem Hülsenteil (31) längsverschiebbares Kolbenteil (30) umfaßt, daß das Hülsenteil (31) bzw. das Kolbenteil (30) mit je eine der Querstreben (Bolzen 23, 27) verbunden und etwa parallel zu der Gasfeder (19) angeordnet sind, und daß das Hülsenteil (31) 20 eine seitliche Gewindebohrung (Bohrung 39, Gewindeaufsatz 49) aufweist, in welche ein am Vorderende des Betätigungsgriffes (43) angeordneter Gewindebolzen (42) derart einschraubbar ist, daß das Kolbenteil (30) gegen

25

2. Gasfederanordnung nach Patentanspruch 1, <u>dadurch ge-kennzeichnet</u>, <u>daß</u> das Hülsenteil (31) und das Kolbenteil (30) im Querschnitt rechteckig ausgebildet sind.

das Hülsenteil (31) verspannbar ist.

30 3. Gasfederanordnung nach Patentanspruch 1 oder 2, <u>dadurch gekennzeichnet</u>, <u>daß</u> das Hülsenteil (31) und das Kolbenteil (30) mit axialem Spiel an den Querstreben (Bolzen 23, 27) befestigt sind.

- 4. Gasfederanordnung nach Patentanspruch 3, <u>dadurch</u>
 <u>gekennzeichnet</u>, <u>daß</u> an der das Kolbenteil (30) tragenden Querstrebe (Bolzen 27) ein dessen axiale Beweglichkeit in Richtung auf die Gasfeder (19) hin begrenzen5 der Anschlag (Distanzhülse 33) angeordnet ist.
- Gasfederanordnung nach Patentanspruch 3, <u>dadurch</u> <u>gekennzeichnet</u>, <u>daß</u> an der das Hülsenteil (31) tragenden Querstrebe (Bolzen 23) eine an diesem parallel zur
 Schwenkachse (6) angreifende Feder (Feder-Bügel 35) angeordnet ist.
- 6. Gasfederanordnung nach Patentanspruch 5, <u>dadurch</u>
 <u>gekennzeichnet, daß</u> die Feder als etwa U-förmiger Bü15 gel (35) ausgebildet ist.
- 7. Gasfederanordnung nach Patentanspruch 6, <u>dadurch</u> <u>gekennzeichnet</u>, <u>daß</u> an den Schenkeln (36, 37) des Bügels endseitig offene Befestigungsausnehmungen an20 geordnet sind.

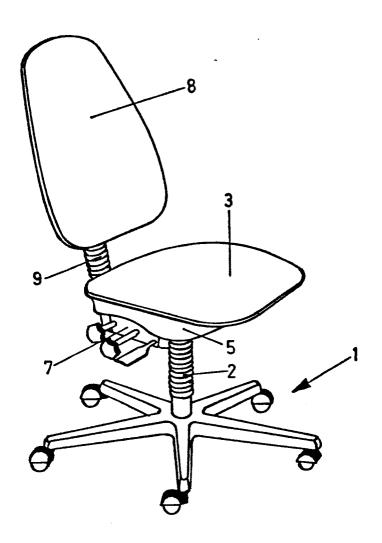
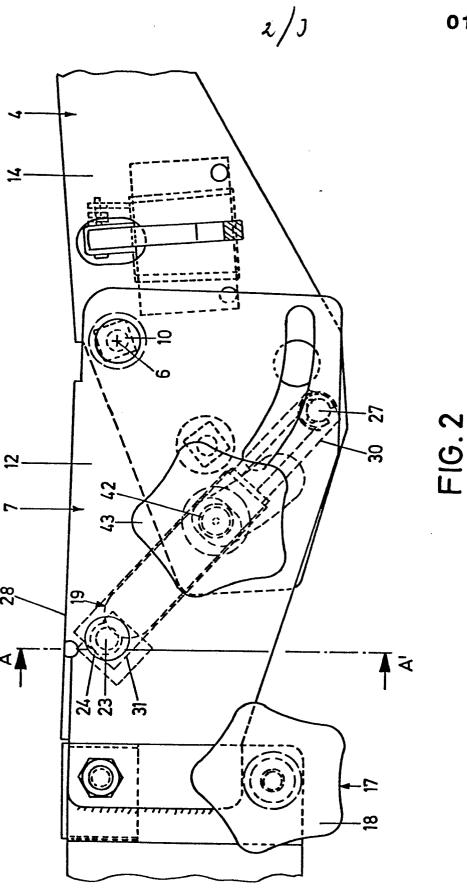



FIG.1

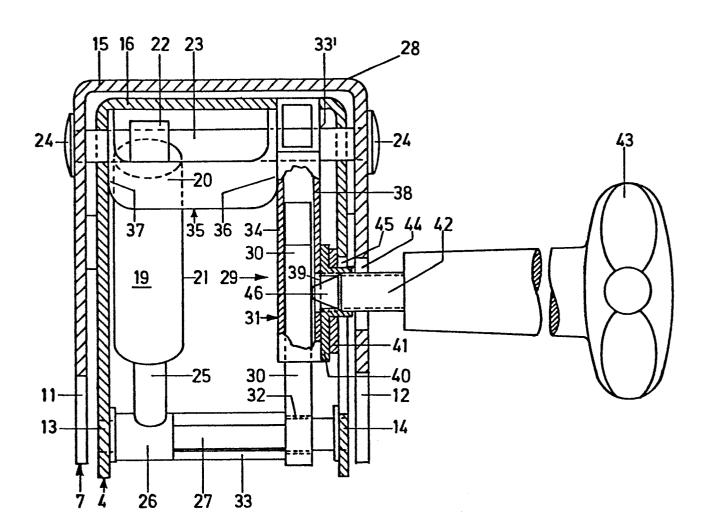


FIG.3