11) Publication number:

0 179 288

A1

(12)

EUROPEAN PATENT APPLICATION

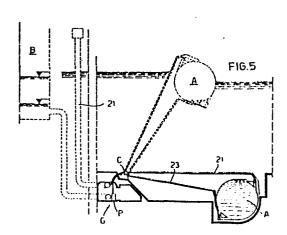
(21) Application number: 85112017.0

(5) Int. Cl.4: E 02 B 7/44

22 Date of filing: 23.09.85

30 Priority: 26.09.84 IT 2285584

Date of publication of application: 30.04.86 Bulletin 86/18


Designated Contracting States: BE DE FR GB IT NL SE 71 Applicant: Rapisarda, Francesco Via delle Betulle, 3 Santa Maria I-37024 Negrar Verona(IT)

72) Inventor: Rapisarda, Francesco Via delle Betulle, 3 Santa Maria I-37024 Negrar Verona(IT)

(74) Representative: Dr. Ing. A. Racheli & C. Viale San Michele del Carso, 4 I-20144 Milano(IT)

(54) Hinged sluice gate with displacement of mass.

(5) The sluice gate proposed in this patent application is fixed at one of its ends using a hinge (C) and comprises a chamber (A) containing a fluid lighter than the liquid in which said sluice gate is used. Provision is made inside the sluice gate for displacing a mass which moves the sluice gate's center of gravity towards or away from the hinge (C), so that the value of the moment varies produced by said sluice gate's mass, opposed to the moment produced by buoyancy, in this way varying the sluice gate's angular position.

Applicant:

FRANCESCO RAPISARDA

Via delle Betulle, 3

IT - Santa Maria - 37024 NEGRAR (Verona)

"HINGED SLUICE GATE WITH DISPLACEMENT OF MASS"

This present invention refers to moving sluice gates of fan type which rotate for an angle not exceeding 90° and can be used for creating a difference in level in a dock or course of water or other kind of liquid. Said sluice gates are normally made up 5. (US-A-3 756 032) of a series of bodies arranged side by side, which are fitted in the dock or watercourse to be regulated using a hinge on which they swivel. The position in the water of these sluice gates is defined by the equilibrium of the moments around said hinge, moments which are produced by the sluice gate's own 10. weight, buoyancy and any other forces exerted from the outside.

The drawbacks inherent in these sluice gates are the result of the necessity to provide a complicated and costly system of producing, distributing and regulating the compressed air needed for the functioning of said sluice gates, in order to fill the chambers to obtain buoyancy. Furthermore the known solutions provide the direct communication through at least an opening provided in the sluice gate between the inside of the same sluice gate and the liquid in which it is immersed. This does not allow the use of a liquid other than the one in which the sluice gate is immersed. Finally the variation of moments is obtained by 10. means of a compressor which sends compressed air inside the sluice gate, thus causing the exit of water. Therefore, it is impossible to rise the water level inside the sluice gate above the sea, river or lake level in which the sluice gate is 15. immersed. This causes disadvantages while lowering the sluice gate if negative level differences are present. Furthermore the known solution requires considerable power.

5.

G.B. A 1 479 300 is also known. It discloses a sluice gate rotating for an arc exceeding 90° around a hinge, said sluice 20. gate being provided with two buoyancy tanks which are filled with water and emptied. The water contained in the two tanks is not exclusively exchanged between them, but is successively exited from one or the other chamber.

More than one operation is necessary when using this solution: firstly one chamber is emptied, then the other, whereupon the first chamber is filled again; furthermore the sluice gate is supported by beams or thrust bearing props.

Furthermore, when the dock is in a closed condition the upper or outermost chamber contained in the sluice gate, with respect to the hinge, must be partially full so as to eliminate the Archimedean thrust making the sluice gate rest on the prop.

Therefore, the object of this invention is to provide a rotating sluice gate which can be rotated for an angle not exceeding 90° having economical advantages both during installation and 10. working. Further its manufacture and maintenance are easy. Said sluice gate has high reliability and requests limited power.

The above-mentioned object has been realized with the device described in the accompanying claims.

This invention will now be described in more detail using some 15. exemplary embodiments shown in the accompanying drawings, in which:

- Fig. 1 is a sectional side view of a sluice gate shown in two working positions, according to the invention;
- Figs. 2, 3 and 4 are views of further examples of embodiment, 20. according to the invention;
 - Fig. 5 is a side view of a further embodiment in which a rigid mass is displaced, according to the invention;

Fig. 6 is a partial sectional side view of a further embodiment, according to the invention.

5.

Fig. 1 shows a sluice gate element 10 fixed to the bottom of a dock by means of the hinge C. Element 10 has two chambers A and B, chamber A being the outer and chamber B the inner one, that is, closer to hinge C. The two chambers A and B are connected by pipes in such a way that they can contain air (or other fluid having smaller gravity), water (or other liquid having gravity greater than the fluid mentioned above) alternatively, thus 10. forming the movable mass which produces moments of different value around hinge C. This allows the sluice gate to rise when the moment produced by buoyancy becomes greater than the moment produced by the movable mass and the sluice gate's own mass. In this case the sluice gate moves to the raised position 10' shown 15. in fig. 1. As can be seen the sluice gate is fitted with a reversible pump P and pipes 21 which connect the tops of both chambers A and B; the pump P is connected to the bottom of both chambers A and B by pipes 23. When not in use liquid can be transferred through the pump to equalize the levels in the two 20. chambers. If this is inconvenient, pump P's piping may be fitted with suitable devices, such as solenoid valves E. A normal unidirectional pump with pipes and valves obviously can be used instead of the reversible pump.

It is also possible to use two nonreversible pumps P1 and P2 25. (fig. 2), one of which pumps the liquid from chamber A to chamber B, while the other pumps in the opposite direction from chamber B

to chamber A. Both of these said pumps can be fitted with a simple nonreturn valve. This latter solution using two pumps prevents water from flowing back into the empty chamber B, even when the sluice gate is not in use.

- 5. The sluice gate can be made up of several bodies placed side by side and joined together. In this case, moreover, the corresponding chambers B and the corresponding chambers A can be hydraulically connected to one another at the bottom. This would allow use of a smaller number of pumps than number of elements 10. and ensure that one pump can act as active backup to another.
- Fig. 3 represents a further solution, in which pumps P are installed in an operating gallery G to simplify maintenance and replacement. Obviously in this case the pipes coming from the two chambers A and B would have to reach as far as pump P, with the 15. necessary connections being made to allow the sluice gate to have angular movement.

It is also possible to realize chamber B so that all or part of it is fixed and external to the sluice gate (Fig. 4) and connected with buoyancy chamber A so as to exchange the water by 20. means of a pipe 23 which connects through pump P the bottom of the two chambers: A provided inside and B outside the sluice gate. In this case the communication for the exchange of the air between the upper part of the two chambers occurs by means of pipe 21 which ends in the atmosphere, due to the fact that the

fixed chamber B is in direct communication with the atmosphere.

In this case the liquid to be used for moving the sluice gate can be different from the one in which the sluice gate is immersed; in particular it can be a treated liquid, for example antifouling and anticorrosive.

5.

If this possibility is not taken into consideration, the chamber B can be the same dock.

Fig. 5 shows a solution quite similar to the one of fig. 4 in which however the geometry of the sluice gate is different. The 10. operation is quite similar to what already disclosed with reference to fig. 4.

For the movable mass a solid body S can also be used (Fig. 6), which moves along the length of the sluice gate from the hinge C to the outer end and viceversa, while the volume of chamber D, on which the buoyancy acts partially or totally, remains unchanged. The body S can be moved, for example, by a motor 24 which turns a worm screw 25 engaged to said body S or with oleodynamic system or others. The body S can be either inside or outside the chamber D, as shown in the figure. In a further embodiment the movable mass can be partly solid and partly liquid, as mentioned above, thus combining the moments due to the solid body to the displacement of the fluid.

In Fig. 7 a further solution is shown in which hinge C, to which the moving sluice gate is fixed, is placed above the level of a

watercourse. Thus sluice gate 20 assumes a more or less slanting position depending on the horizontal distance <u>d</u> of body S from hinge C however, in this case the movable mass may also be composed of a liquid, like that described above in reference to figures 1 to 5.

5.

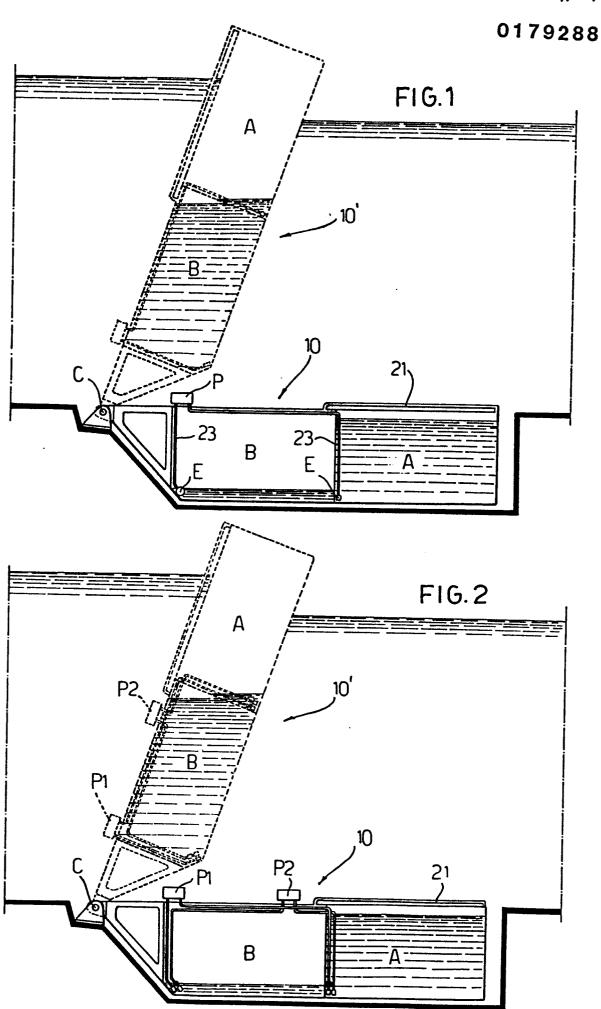
FRANCESCO RAPISARDA

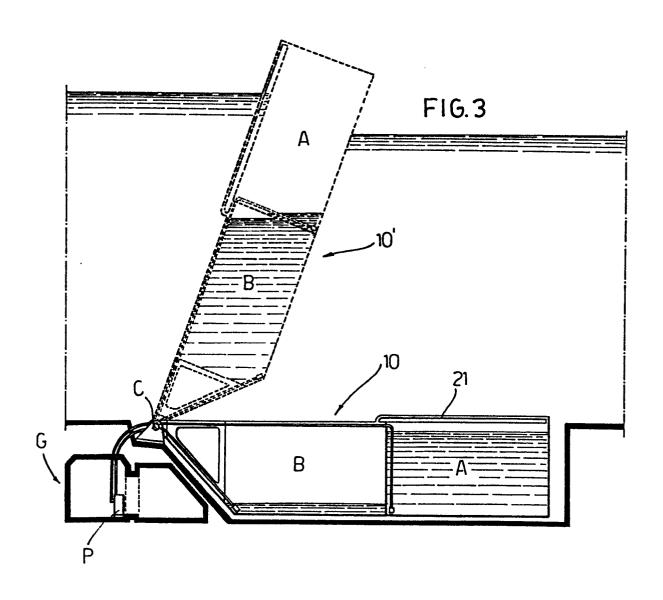
IT - Santa Maria - 37024 NEGRAR (Verona)

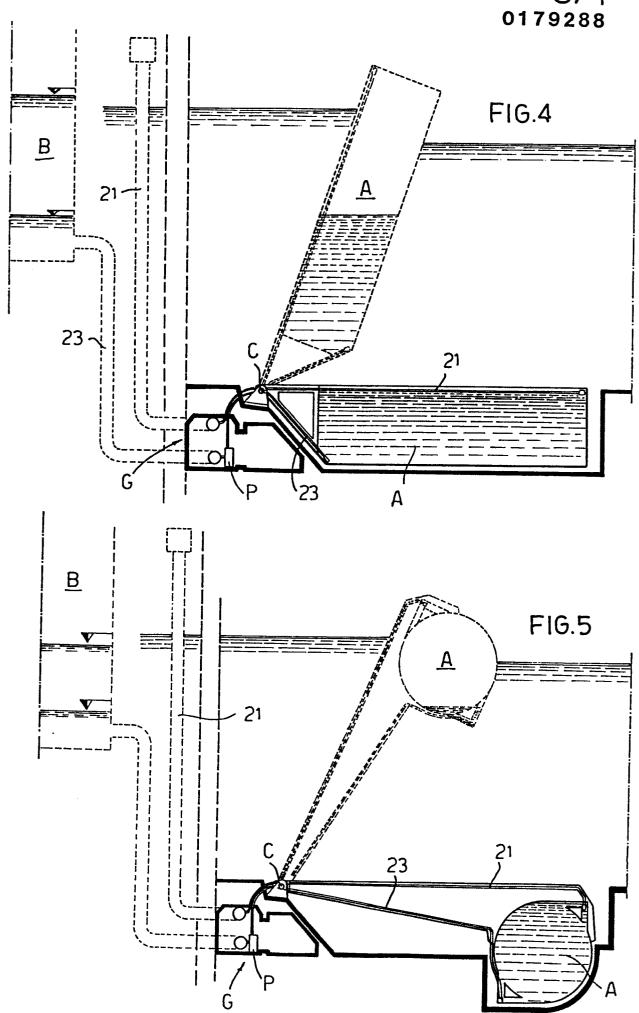
CLAIMS

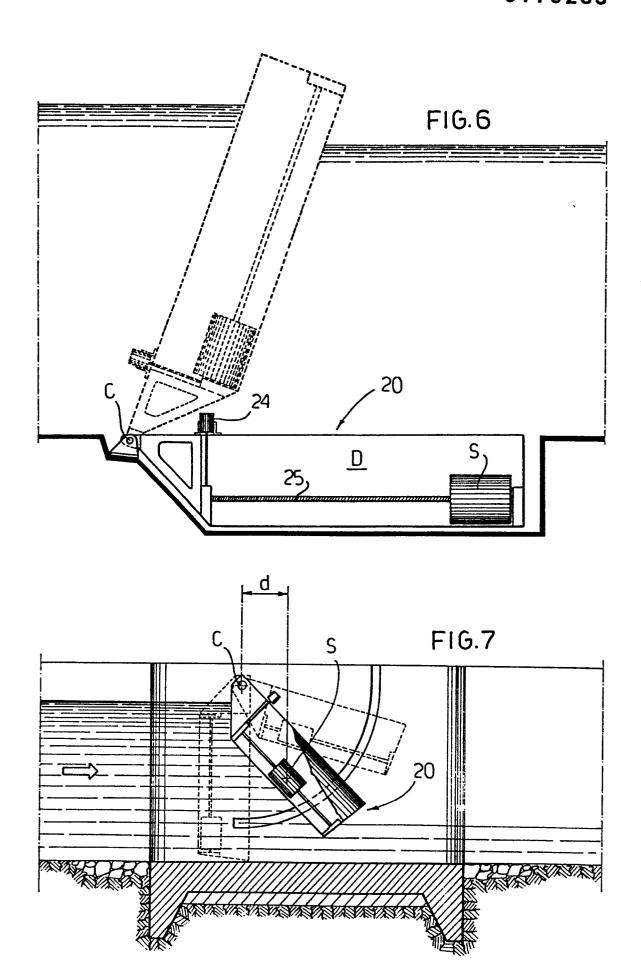
- level in a dock or course of water or other kind of liquid, fixed at one end using a hinge (C) on which it swivels moving its barycenter during the rotation of an angle not exceeding 90° and comprising a chamber (A) containing air or water alternatively, which allows buoyancy to act on said sluice gate when it is at least partially immersed in a liquid; characterized in that provision is made for a movable liquid or solid mass and that this mass is displaced within a closed circuit towards and away 10. from the hinge (C).
- 2. A sluice gate according to claim 1, characterized in that the movable mass is a liquid contained in a second chamber (B) connected to the first by pipes (21, 23) and a means is provided for displacing the liquid from one chamber (A, B) to the other.
 - 3. A sluice gate according to claim 2, characterized in

that the shifting means is a reversible pump (P).


5.


- 4. A sluice gate according to claim 3, characterized in that solenoid valves (E) or similar are also provided for intercepting the liquid which flows into and/or out of the pump (P).
 - 5. A sluice gate according to claim 1, characterized in that the pump (P) is unidirectional and a valve and pipe system for the backflow is provided
- 6. A sluice gate according to claim 2, characterized in 10. that the pumps are two nonreversible pumps (P1, P2), one of which sends the liquid from the first (A) to the second chamber (B), whereas the other sends the liquid in the opposite direction.
- A sluice gate according to claim 6, characterized in that nonreturn valves are also provided which are inserted in the
 suction pipe of each nonreversible pump.
- 8. A sluice gate according to claim 2, characterized in that the second chamber (B) or part of it is fixed and external to the sluice gate, said second chamber being connected to the first by pipes (21, 23) forming a circuit for the exchange of 20. liquid.
 - 9. A sluice gate according to claim 1, characterized in


that the movable mass is a solid object (S) which is displaced along the sluice gate.


10. A sluice gate according to claim 1, characterized in that the hinge (C) is placed above the level of the dock or 5. watercourse.

.

EUROPEAN SEARCH REPORT

EP 85 11 2017

Category		n indication, where appropriate, ant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Ci.4)
х	GB-A-1 479 300 INTERNATIONAL LTI * Page 2, line 4A-4C *		1,2	E O2 B 7/44
Y			10	
Y	US-A-3 756 032 * Column 2, lin 3, figures 2-7 *	- (SOLINAS) nes 44-68; column	10	
A			1	
A	DE-C- 65 252 * Page 1, column figure 2 *	- (HEYN) n 2, lines 16-26;	1,9	TECHNICAL FIELDS
A	CH-A- 337 152	- (BUSS)		E 02 B
	The present search report has b	een drawn up for all claims	_	
	Place of search THE HAGUE Date of completion of the search 07-01-1986			Examiner ART J.P.
Y:p	CATEGORY OF CITED DOCL particularly relevant if taken alone particularly relevant if combined w locument of the same category echnological background	E : earlier pa	r principle under atent document, filing date nt cited in the ap nt cited for other	rlying the invention but published on, or optication reasons