(11) Veröffentlichungsnummer:

0 185 395

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 85116405.3

(22) Anmeldetag: 20.12.85

(51) Int. Cl.⁴: **B** 65 **H** 3/46 B 65 **H** 3/14

(30) Priorität: 21.12.84 DE 3446862

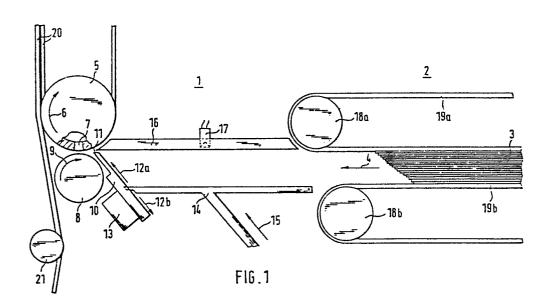
(43) Veröffentlichungstag der Anmeldung: 25.06.86 Patentblatt 86/26

(84) Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI LU NL SE (71) Anmelder: GAO Gesellschaft für Automation und

Organisation mbH Euckenstrasse 12 D-8000 München 70(DE)

(72) Erfinder: Leuthold, Karl-Heinz

Waldesruh 13


D-8000 München 70(DE)

(74) Vertreter: Klunker. Schmitt-Nilson. Hirsch

Winzererstrasse 106 D-8000 München 40(DE)

(54) Vorrichtung und Verfahren zum Vereinzeln von Blattgut.

(57) Eine Vereinzelungsvorrichtung, bei der das Blattgut stapelweise über ein Stapeltransportsystem antransportiert wird, weist eine beweglich angeordnete Rückhalteeinrichtung auf, die vor Zufuhr des Stapels den Vereinzelungsspalt verkleinert und unmittelbar vor Beginn der Vereinzelung auf die ursprüngliche Weite zurückgestellt wird. Dadurch lassen sich Verkeilungen von Blättern im Vereinzelungsspalt vermeiden, die ansonsten zu einer Störung des Vereinzelungsprozesses führen würden. Durch die Ausbildung eines stationären Rückhalteelements mit einem integrierten zweiten, beweglichen Element kann, bezogen auf die Auflauffläche des stationären Teils, eine vorstehende Auflauffläche gebildet werden, an der die Blattvorderkanten des Stapels anstoßen. Durch eine gezahnte Ausbildung der neuen Auflauffläche kann gezielt Einfluß auf die Vorderkante des Blattgutstapels genommen werden.

10

20

25

30

35

Die Erfindung betrifft eine Vorrichtung zum Vereinzeln von flachem Blattgut, beispielsweise von Belegen, Banknoten oder dergleichen, wobei das Blattgut in Form eines Stapels über ein Stapel-Transportsystem in eine im wesentlichen aus einer Abzugseinrichtung, einem Stapeltisch und einer Rückhalteeinrichtung bestehende Vereinzelungsvorrichtung transportiert, in dieser Blatt für Blatt einen zwischen Abzugs- und Rückhalteeinrichtung gebildeten und auf eine vorgegebene Größe eingestellten Vereinzelungsspalt passiert, von der hinter dem Vereinzelungsspalt angeordneten Abzugseinrichtung erfaßt und einem weiterführenden Transportsystem zugeführt wird.

Verfahren bzw. Vorrichtungen zum Vereinzeln von flachem
15 Blattgut sind vielfach bekannt.

Die DE-PS 24 54 082 beispielsweise beschreibt eine Vereinzelungsvorrichtung, bestehend aus einer Vereinzelungswalze, einer Rückhaltewalze, einer Rückhalteeinrichtung, einem Stapeltisch und einer Vorschubwalze. Durch die Vorschubwalze werden die auf dem Stapeltisch befindlichen Blätter durch einen zwischen Vereinzelungswalze und Rückhalteeinrichtung gebildeten Vereinzelungsspalt zur Vereinzelungswalze befördert. Die Vereinzelungswalze ist als Saugwalze ausgebildet und erfaßt die Vorderkanten der zu vereinzelnden Blätter, um diese nacheinander einem weiterführenden Transportsystem zu übergeben. Um Doppelabzüge zu verhindern, ist gegenüber der Vereinzelungswalze eine Rückhaltewalze vorgesehen, die ebenfalls als Saugwalze ausgebildet, sich im umgekehrten Sinne wie die Vereinzelungswalze dreht und dafür sorgt, daß die nicht an der Saugwalze anliegenden Blätter in den Stapelbereich zurückgeschoben werden. Die Rückhalteeinrichtung, an der die Blattvorderkanten des Stapels anliegen und die zusammen mit der Vereinzelungswalze den Vereinzelungsspalt bildet, sorgt dafür, daß nur eine begrenzte Zahl von Blättern zur Vereinzelungswalze vorgeschoben wird. Die

30

35

Rückhalteeinrichtung bewirkt somit eine Art Vorvereinzelung.

Es sind auch Vereinzelungsvorrichtungen bekannt geworden, bei denen der Vorschub der einzelnen Blätter durch den Vereinzelungsspalt zur Vereinzelungswalze mit Hilfe einer sogenannten Luftleitplatte vorgenommen wird (siehe dazu DE-OS 28 14 306).

10 Werden Vereinzelungsvorrichtungen der beschriebenen Art in Hochgeschwindigkeits-Sortieranlagen eingesetzt, ist es für die Wirtschaftlichkeit der Anlage von großer Bedeutung, daß die Vereinzelungsvorrichtung bei hoher Vereinzelungssicherheit einen hohen Durchsatz erzielt. Das be-15 deutet, daß nicht nur für eine schnelle Vereinzelung des Blattqutstapels, sondern auch für einen schnellen Nachschub von Blattgutstapeln in die Vereinzelungsvorrichtung gesorgt werden muß. Nach der Vereinzelung des letzten Blattes in der Vereinzelungsvorrichtung sollte so schnell 20 wie möglich ein neuer Blattgutstapel auf dem Stapeltisch bereitgestellt werden. Damit nach dem Antransport eines neuen Blattgutstapels in die Vereinzelungsvorrichtung, die eigentliche Vereinzelung schnell beginnen kann, ist es vorteilhaft, wenn bereits einige Blätter den Verein-25 zelungsspalt passiert haben und bis zur Vereinzelungswalze vorgeschoben sind.

Es hat sich nun gezeigt, daß die Gefahr, daß sich Blätter im Vereinzelungsspalt verkeilen, umso größer ist, je schneller die Stapel in die Vereinzelungsvorrichtung transportiert werden. Die Folge davon ist, daß der Vereinzelungsvorgang unterbrochen wird. Mit schnellerem Antransport der Stapel allein kann somit der Durchsatz der bekannten Vereinzelungsvorrichtung nicht entscheidend verbessert werden.

25

30

Die Aufgabe der Erfindung ist es daher, ein Verfahren zum Vereinzeln von flachem Blattgut vorzuschlagen, mit dem bei gleichbleibender Vereinzelungssicherheit ein wesentlich höherer Durchsatz von Blattgutstapeln erzielt werden kann.

Erfindungsgemäß wird die Aufgabe durch die im Kennzeichen des Hauptanspruchs angegebenen Merkmale gelöst.

10 Ein wesentliches Merkmal der Erfindung besteht darin, den Vereinzelungsspalt jeweils vor der Zufuhr eines Stapels in die Vereinzelungsvorrichtung zu verkleinern und unmittelbar vor Beginn der Vereinzelung auf die ursprünglich vorgegebene Weite zurückzustellen. Vor der Zufuhr 15 eines Stapels wird dazu beispielsweise die Rückhalteeinrichtung selbst in Richtung Vereinzelerwalze bewegt. Im so verkleinerten Vereinzelungsspalt können sich zwar immer noch mehrere Blätter verkeilen. Dies ist jedoch ohne Bedeutung, da der Vereinzelungsspalt unmittelbar vor Vereinzelungsbeginn wieder auf die ursprüngliche Weite ein-20 gestellt wird, wodurch eine gegebenenfalls eingetretene Verkeilung wieder aufgehoben wird.

Ein Vorteil der erfindungsgemäßen Lösung besteht darin, daß mit einer konstruktiv einfachen Maßnahme der Durchsatz von Blattgutstapeln in der Vereinzelungsvorrichtung bei gleichbleibender Vereinzelungssicherheit erheblich gesteigert werden kann. Sobald das letzte Blattgut in der Vereinzelungsvorrichtung vereinzelt wurde, kann ein neuer Blattgutstapel mit hoher Geschwindigkeit in die Vorrichtung befördert werden, ohne daß eine Verkeilung von Blättern im Vereinzelungsspalt den Vereinzelungsvorgang stören würde.

35 Gemäß einer vorteilhaften Weiterbildung der Erfindung wird zusätzlich zur Verkleinerung der Weite des Vereinzelungsspaltes die die Stapelvorderkante formende Oberflä-

che der Rückhalteeinrichtung jeweils vor Einlauf eines Stapels in die Vereinzelungsvorrichtung vorübergehend geändert. Dazu weist die Rückhalteeinrichtung neben einem stationären Teil ein bewegliches Teil auf. Dieses ist derart ansteuerbar, daß eine, bezogen auf den stationären Teil der Rückhalteeinrichtung, vorstehende Auflauffläche entsteht, an die die Vorderkante des antransportierten Blattgutstapels anstößt. Wird diese Auflauffläche unmittelbar vor Vereinzelungsbeginn in das stationäre Teil der Rückhalteeinrichtung zurückgezogen, verbleibt zwischen Stapelvorderkante und stationären Teil ein freier Spalt, der den bei der Vereinzelung notwendigen Vorschub des Stapels ohne Reibung an der Rückhalteeinrichtung ermöglicht.

Das bewegliche Teil der Rückhalteeinrichtung kann auch auf der mit der Vorderkante des Stapels in Berührung kommenden Seite verzahnt oder aufgerauht ausgebildet werden.

Der Vorteil des vorübergehenden Einbringens eines separaten, beweglichen Elements mit entsprechend ausgebildeter Oberfläche besteht darin, daß auf die Vorderkante des schnell antransportierten Stapels Einfluß genommen werden kann, daß aber die Vereinzelung selbst durch diese Maßnahme nicht gestört wird. Eine gezahnte Oberfläche verhindert beispielsweise, daß sich einzelne Blätter mit ihren Vorderkanten an der Rückhalteeinrichtung entlang vor die Vorderkanten anderer Blätter schieben und so den Vereinzelungsvorgang stören. Vor Vereinzelungsbeginn wird das bewegliche Element von der Blattvorderkante entfernt, so daß der zur Vereinzelung notwendige Vorschub des Stapels ungestört vorgenommen werden kann.

Weitere Vorteile sowie Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen sowie aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfin-

dung anhand der beigefügten Zeichnungen.

Darin zeigen:

- 5 Fig. 1 eine Seitenansicht der Vereinzelungsvorrichtung und eines Blattgutstapel-Transportsystems,
- Fig. 2 einen Ausschnitt der Vereinzelungsvorrichtung in Seitenansicht mit einer beweglichen Rückhalteeinrichtung in der Arbeits- und Ruheposition,
- Fig. 3a einen Ausschnitt der Vereinzelungsvorrichtung in Seitenansicht mit einem stationären Teil der Rückhalteeinrichtung und einem beweglichen Teil der Rückhalteeinrichtung, wobei sich das bewegliche Teil in der Ruheposition befindet,
- Fig. 3b wie Fig. 3a, wobei sich das bewegliche Teil der Rückhalteeinrichtung in der Arbeitsposition befindet,
- Fig. 4 eine Weiterbildung der Fig. 3b, wobei die Oberfläche des beweglichen Teils der Rückhalteeinrichtung aufgerauht ist.
- Die Fig. 1 zeigt in einer beispielhaften Ausführungsform eine Vereinzelungsvorrichtung 1, wie sie beispielsweise in Hochgeschwindigkeits-Sortierautomaten verwendet wird.

 Mit einem Stapeltransportsystem 2 wird ein Blattgutstapel 3 jeweils dann zur Vereinzelungsvorrichtung transportiert, wenn das letzte Blatt des vorhergehenden Stapels vereinzelt ist.
- Die Vereinzelungsvorrichtung besteht im wesentlichen aus einer Andruckplatte 14, einer Vorschubeinrichtung 16, einer Vereinzelungswalze 5, einer Rückhaltewalze 8 und ei-

ner Rückhalteeinrichtung 10, im folgenden als Rückhalteelement bezeichnet.

Die Andruckplatte 14 übernimmt die vom Stapel-Transportsystem 2, bestehend aus den Riemen 19a, 19b und den Transportrollen 18a, 18b, antransportierten Blattgutstapel 3 und befördert sie zur Vorschubeinrichtung 16, die beispielsweise als Luftleitplatte ausgebildet ist. Mit Hilfe der Luftleitplatte 16, in der mit Blasluft versorg-10 bare Blasluftbohrungen so angeordnet sind, daß sie dem jeweils obersten Blattgut des Stapels eine Bewegungskomponente in Vereinzelungsrichtung verleihen, werden die Blätter sequentiell zur Vereinzelungswalze 5 transportiert. Mittels Saugöffnungen 7 in der Vereinzelungswalze 15 5 werden die jeweiligen Blattvorderkanten erfaßt und durch Drehung in Richtung des Pfeils 6 in das nachfolgende Transportsystem, bestehend aus den Riemen 20 und der Transportrolle 21, überführt.

Während der Vereinzelung liegen die Vorderkanten der Blätter am Rückhalteelement 10, wobei zwischen Rückhalteelement und Vereinzelungswalze 5 bzw. Luftleitplatte 16 ein Spalt 11 vorbestimmter Größe eingestellt ist, so daß möglichst immer nur die an der Luftleitplatte 16 direkt anliegenden oberen Blätter zur Vereinzelungswalze 5 befördert werden.

30

35

Gegenüber der Vereinzelungswalze 5 ist die Rückhaltewalze 8 vorgesehen, die entgegen der Vereinzelungsrichtung in Richtung des Pfeils 9 rotiert und auf ihrem Umfang verteilt Saugöffnungen aufweist. Die Blätter, die bereits durch den Vereinzelungsspalt 11 mittels der Luftleitplatte 16 transportiert worden sind, werden durch die entgegen der Vereinzelungsrichtung drehenden Rückhaltewalze 8 zurückgehalten, so daß die Vereinzelungswalze 5 jeweils nur das oberste Blattgut des Stapels vereinzelt. Bezüglich der Einzelheiten der hier nur kurz beschriebenen

Vereinzelungsvorrichtung sei auf die DE-OS 28 14 306 verwiesen.

Unabhängig von einer speziellen Vereinzelungsvorrichtung liegen die wesentlichen Merkmale der Erfindung in der besonderen Ausbildung und Steuerung des Rückhalteelements, was nachfolgend anhand der Fig. erläutert sei.

5

10

15

20

25

Um einen hohen Durchsatz von Blattgutstapeln in der Vereinzelungsvorrichtung zu gewährleisten, ist es notwendig, daß möglichst schnell ein neuer zu vereinzelnder Blattstapel bereitgestellt wird, sobald das letzte Blatt des vorhergehenden Stapels die Vereinzelungsvorrichtung verlassen hat. Dies geschieht mit Hilfe des in Fig. 1 dargestellten Stapel-Transportsystems 2. Das Stapel-Transportsystem kann dabei so ausgelegt sein, daß seine unteren Riemen 19b etwas langsamer als die oberen Riemen 19a laufen. Dadurch können die unten im Stapel liegenden Blätter gegenüber den darüberliegenden zueinander verschoben werden, so daß sich eine in Transportrichtung 4 weisende keilförmige Stapelvorderkante ergibt. Diese Maßnahme dient dazu, die Blattvorderkanten auf die für die Vereinzelung notwendige Form vorzupositionieren. Wenn das antransportierte Päckchen das Stapel-Transportsystem verlassen hat, wird dessen Weiterführung bis zum Rückhalteelement 10 auf der Andruckplatte 14 gleitend allein durch die Massenträgheit des Stapels 3 bewerkstelligt.

pels können dabei, was durchaus erwünscht ist, bereits mehrere Blätter entsprechend der eingestellten Weite des Vereinzelungsspaltes 11 bis zur Vereinzelungs- bzw. Rückhaltewalze vorstoßen. Um aber gerade beim Einlauf eines Stapels in die Vereinzelungsvorrichtung eine mögliche Verkeilung einzelner Blätter im Vereinzelungsspalt auszuschließen, ist das Rückhalteelement 10, wie in Fig. 2 gezeigt, beweglich angeordnet. Neben den bereits erwähn-

10

15

ten Elementen der Vereinzelungsvorrichtung zeigt die Fig. 2 eine mit dem Rückhalteelement 10 verbundene Steuerungseinrichtung 13, mit der das Element entsprechend der gezeigten Pfeile 12a, 12b bewegbar ist. Zur Bewegung des Rückhalteelements kann beispielsweise ein in der Drehrichtung umschaltbarer Motor verwendet werden, der, mit einem geeigneten Getriebe ausgerüstet, die gewünschte Translationsbewegung ausführt. Sobald das letzte Blatt eines Stapels vereinzelt worden ist, was mit Hilfe einer Lichtschranke 17 (siehe Fig. 1) festgestellt werden kann, wird einerseits das Transportsystem 2 zur Zufuhr eines weiteren Stapels aktiviert und andererseits das Rückhalteelement 10 in Richtung des Pfeils 12a in die strichliert dargestellte Arbeitsposition gefahren. Sobald der Blattgutstapel mit seiner Vorderkante am Rückhalteelement auf dem Stapeltisch liegt, wird der Vereinzelungsvorgang qestartet.

Bevor nun die Vereinzelerwalze 5 das erste Blatt vom Sta-20 pel abzieht, wird das Rückhalteelement 10 in Richtung des Pfeils 12b in die Ruheposition gefahren, womit sichergestellt wird, daß eine gegebenenfalls eingetretene Verkeilung von Blättern im Vereinzelungsspalt aufgehoben wird. Während des Vereinzelungsvorganges wird der Stapeltisch 25 14 sukzessive in Richtung des Pfeils 15 (siehe Fig. 1) durch einen in der Fig. 1 nicht gezeigten Antrieb bewegt, so daß der Blattqutstapel immer an der Luftleitplatte 16 anliegt. In dieser Phase ist bei Blättern üblicher Qualität eine erneute Verkeilung im Vereinzelungsspalt unwahr-30 scheinlich, da die Spaltbreite nun so eingestellt ist, daß die von der Luftleitplatte beförderten Blätter den Vereinzelungsspalt 11 ohne Klemmung sicher passieren können.

In den Fig. 3a und 3b ist eine weitere Ausführungsform der Erfindung gezeigt, wobei neben einem stationär angeordneten Rückhalteelement 22 ein zweites, beweglich ange-

ordnetes Element 23 vorgesehen ist. Die Fig. 3a zeigt dieses Element in der Ruhe- und die Fig. 3b in der Arbeitsposition.

5 Das zweite beweglich angeordnete Element 23 kann durch eine geeignete Steuereinheit 24, wie z. B. einen Elektromagneten, über einen Drehpunkt 25 gegen die Kraft einer Feder 26 in Richtung des Pfeils 28 bewegt werden. Das Element 23 befindet sich dann in der in Fig. 3b gezeigten 10 Arbeitsposition. Wird die Anregung des Elektromagneten abgeschaltet, bewegt sich das Element 23 aufgrund der Federkraft in die in Fig. 3a gezeigte Ruheposition. Vorzugsweise ist das eigentliche, stationär angeordnete Rückhalteelement 22 rechenartig ausgebildet, wobei in 15 mehreren Lücken des Rechens mehrere miteinander gekoppelte bewegliche Elemente 23 kammartig verzahnt vorgesehen sind.

Wird die Ansteuerung des Element 23 z. B. mit Hilfe eines Schrittmotors vorgenommen, so kann die Verkleinerung der Weite des Vereinzelungsspalts in vielen Stufen nahezu beliebig bis zum vollständigen Schließen des Spalts eingestellt werden. Damit kann der Vereinzelungsspalt den jeweiligen Anforderungen des Blattgutes wie Blattdicke, Papierqualität etc. angepaßt werden.

Die Ansteuerung des beweglichen Elements 23 und die damit verbundene Veränderung des Vereinzelungsspalts 11 in Abhängigkeit von Stapelantransport und Vereinzelung geschieht wie im Zusammenhang mit der Fig. 2 beschrieben. Darüberhinaus erlaubt jedoch die Verwendung eines zusätzlichen, beweglichen Elements auch auf die Vorderkante des Blattgutstapels während bestimmter Verfahrensabläufe zusätzlich Einfluß zu nehmen.

30

10

15

Wie man vor allem der Fig. 3b entnehmen kann, ist das Element 23 derart ausgebildet, daß es in der Arbeitsposition in Richtung auf die zu erwartende Stapelvorderkante aus dem stationären Rückhalteelement 22 herausragt. Die vorstehende und die Vorderkante des antransportierten Blattgutstapels formende Oberfläche des Elements 23 liegt dabei parallel zur entsprechenden Oberfläche des stationär angeordneten Rückhalteelements 22. Wird nach der Zufuhr eines Blattgutstapels das bewegliche Element 23 in die Ruheposition bewegt, dann liegt die Vorderkante des Blattgutstapels mit geringem Abstand parallel zur Oberfläche des stationären Rückhalteelements 22. Der so zwischen Stapelvorderkante und Rückhalteelement 22 entstandene Spalt hat den Vorteil, daß die Vorderkanten der einzelnen Blätter ohne Reibung an der Auflauffläche des Rückhalteelements 22 durch sukzessives Hochfahren der Andrückplatte 14 zur Luftleitplatte 16 befördert werden können.

Die Erzeugung eines Spalts ist grundsätzlich auch mit dem anhand der Fig. 2 beschriebenen Rückhalteelements 10 möglich, wenn dieses zur Einstellung der Arbeitsposition um einen Drehpunkt in Richtung auf die Stapelvorderkante geschwenkt wird. Bei beiden Ausführungsformen wird vermieden, daß beispielsweise stark abgenutzte Blätter während des Hochfahrens zur Luftleitplatte am Rückhalteelement verhaken und entgegen der Vorschubrichtung abgleiten. Dies hätte zur Folge, daß die Luftleitplatte 16 dieses und auch die nachfolgenden Blätter nicht durch den Vereinzelungsspalt 11 zur Vereinzelungswalze 5 befördern könnte.

Diese Störung kann bei besonders lappigen, stark abgenutzen Blättern auch dann schon auftreten, wenn der mit
hoher Geschwindigkeit antransportierte Blattgutstapel mit
seiner Vorderkante an das Rückhalteelement prallt.

Um dieser möglichen Störung vorzubeugen, wird das bewegliche Element 23 auf der mit der Stapelvorderkante zusammenwirkenden Seite mit einer speziellen Oberfläche versehen. Wie dazu die Fig. 4 zeigt, kann das Element 23 mit einer aus mehreren Stufen bestehende Zahnung 27 versehen 5 werden, die so ausgelegt ist, daß jeweils die Stufentiefen parallel und die Stufenhöhen, auf die die Vorderkanten der Blätter auftreffen, senkrecht zur Luftleitplatte 16 verlaufen. Die Zahnung 27 kann je nach Blattdicke und Papierqualität der zu vereinzelnden Blätter eine unter-10 schiedliche Höhe und eine unterschiedliche Anzahl von Stufen aufweisen. In der Fig. 4 ist die gesamte auf die Vorderkante des Stapels einwirkende Oberfläche gezahnt ausgeführt. Je nach Anforderung kann die Zahnung auch nur im Bereich des Vereinzelungsspaltes oder nur im Mittelbe-15 reich des Elements 23 vorgesehen sein. Unmittelbar vor Vereinzelungsbeginn wird das bewegliche Rückhalteelement in die Ruhelage bewegt, so daß die Zahnung auf den Vereinzelungsprozeß selbst keinen Einfluß hat.

10

GAO

Gesellschaft für Automation und Organisation mbH Euckenstraße 12

8000 München 70

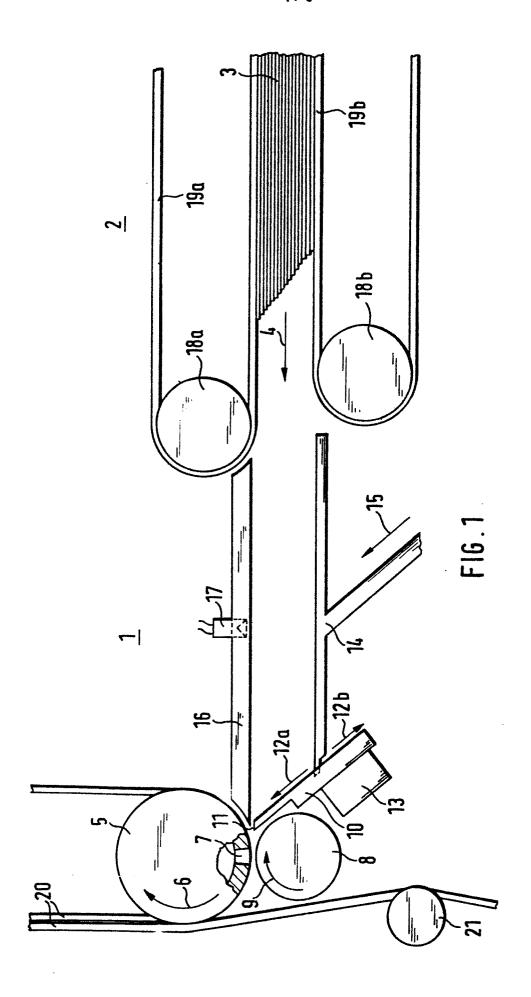
Vorrichtung und Verfahren zum Vereinzeln von Blattgut

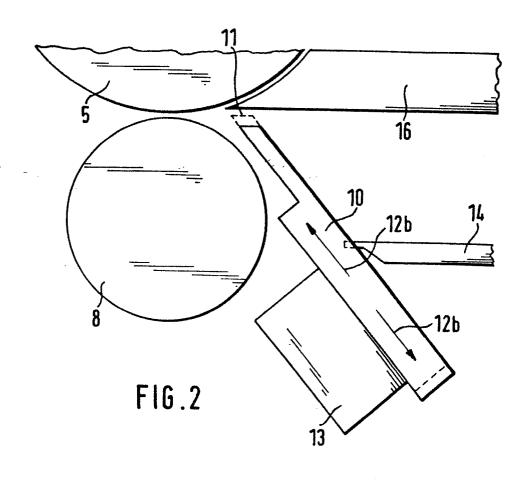
Patentansprüche:

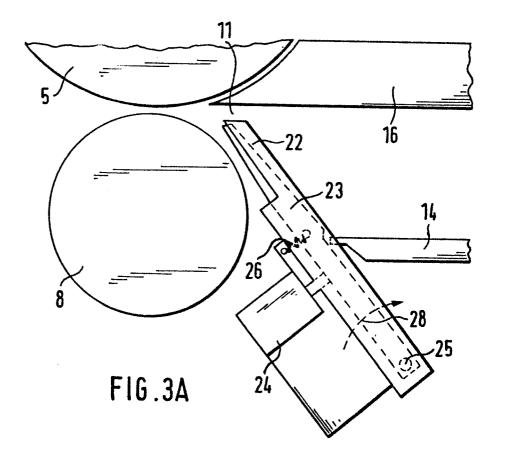
1. Vorrichtung zum Vereinzeln von flachem Blattgut, beispielsweise von Belegen, Banknoten oder dergleichen, wobei das Blattgut in Form eines Stapels über ein StapelTransportsystem in eine im wesentlichen aus einer Abzugseinrichtung, einem Stapeltisch und einer Rückhalteeinrichtung bestehende Vereinzelungsvorrichtung transportiert, in dieser Blatt für Blatt einen zwischen Abzugsund Rückhalteeinrichtung gebildeten und auf eine vorgegebene Weite eingestellten Vereinzelungsspalt passiert,
von der hinter dem Vereinzelungsspalt angeordneten Abzugseinrichtung erfaßt und einem weiterführenden Transportsystem zugeführt wird, dadurch gekenn-

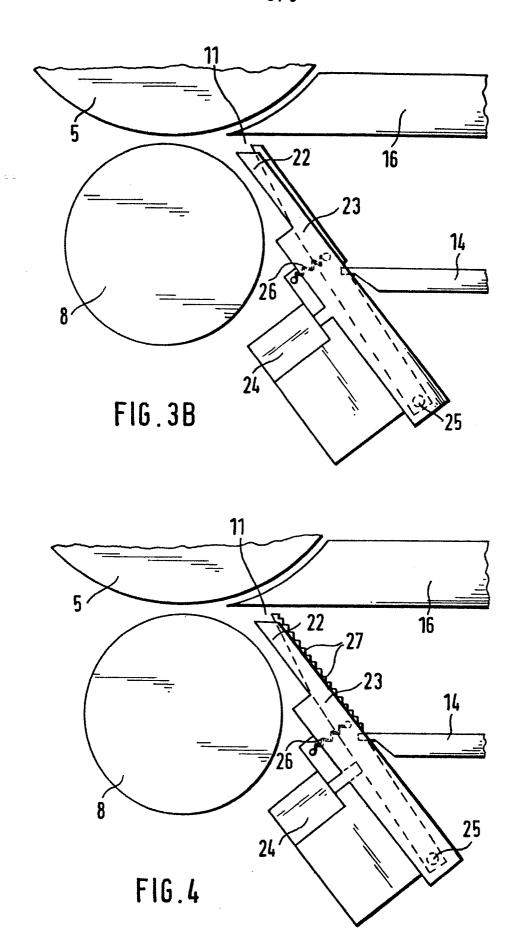
20

25


30


- z e i c h n e t , daß jeweils vor dem Antransport eines Blattgutstapels in die Vereinzelungsvorrichtung die Weite des Vereinzelungsspaltes verkleinert und vor Beginn des Vereinzelungsvorganges auf die vorgegebene Weite zurückgestellt wird.
- Vorrichtung nach Anspruch 1, dadurch gekennzeich net, daß mit der Veränderung des Vereinzelungsspaltes jeweils vor dem Antransport eines Blatt gutstapels die Rückhalteeinrichtung (10) zusätzlich in
 Richtung auf die zu erwartende Stapelvorderkante bewegt
 und vor Beginn der Vereinzelung in die ursprüngliche Lage
 zurückversetzt wird.
- 3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Rückhalteeinrichtung (10)
 verschiebbar angeordnet ist und mit Hilfe einer Aktivierungseinrichtung (13) in Richtung auf die Abzugseinrichtung (5) bewegbar ist.
 - 4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Rückhalteeinrichtung (10)
 drehbar gelagert ist und mit Hilfe einer Aktivierungseinrichtung in Richtung auf die Vorderkante des antransportierten Stapels bewegbar ist.
 - 5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeich net, daß die Rückhalteeinrichtung
 ein stationäres Teil (22) aufweist und daß im stationären
 Teil ein bewegliches Teil (23) angeordnet ist, das mit
 Hilfe einer Aktivierungseinrichtung (24) ansteuerbar ist
 und in der aktivierten Position den Vereinzelungsspalt
 verkleinert.
- 35 6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß das bewegliche Teil (23) in der aktivierten Position in Richtung der Vorderkante des


Blattgutstapels verschwenkt ist.


15

- 7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die auf die Stapelvorderkante einwirkende Oberfläche des beweglichen Teils (23) in der
 aktivierten Position parallel zur entsprechenden Fläche
 des stationären Teils der Rückhalteeinrichtung angeordnet ist.
- 8. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die auf die Stapelvorderkante
 einwirkende Oberfläche des beweglichen Teils der Rückhalteeinrichtung (23) zumindest teilweise aufgerauht
 ist.
- 9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die rauhe Oberfläche (27) eine stufenförmige Zahnung ist.
- 20 10. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Aktivierungseinrichtung (24)
 ein Schrittmotor ist.

