Field of the Invention
[0001] This relates to novel peracid precursors and the in situ generation of peracid in
aqueous solution by combining a source of hydrogen peroxide, and the novel peracid
precursor which are phenylene mixed diesters, in water.
Background of the Invention
[0002] Peroxygen bleaching compounds, such as hydrogen peroxide, sodium percarbonate, sodium
perborate monohydrate or tetrahydrate, are useful for bleaching fabrics, textiles
and other materials. Unfortunately these sorts of peroxygen bleaches appear less effective
when bleaching temperatures of less than 70°C are utilized. Thus, the low wash temperature
found in American washing machines make the use of these bleaches less effective than
in European-type washing machines, which typically use water temperatures above 70°C.
Therefore, attempts have been made to use activators in combination with these peroxygen
bleaches. It may be more accurate to call these activators peracid precursors, since
it is generally accepted that when a molecule of a compound such as sodium acetyloxy
benzene sulfonate ("NABS") is combined with a source of hydrogen peroxide, such as
sodium perborate monohydrate, in aqueous solution (as indicated in GB 864,798), the
result is production of peracetic acid,

[0003] However, nothing within the prior art shows, discloses or suggests that di-substituted
benzenes, more specifically, phenylene diesters, may be appropriate for use as peracid
precursors.
[0004] In the description which follows reference is made to US-A-4,412,934 and EP-A-0,068,547.
Neither of these documents disclose the use of phenylene diesters with differing ester
moieties.
[0006] The invention also provides a solid or liquid bleaching composition comprising:
(a) A hydrogen peroxide source; and
(b) A bleach effective amount of a precursor according to the invention.
[0007] Selected adjuncts can be added to these bleaching compositions, such as surfactants,
stabilizers, buffers and builders. The invention also includes a method for synthesizing
the above noted precursor compounds and a method of bleaching.
[0008] Washing temperatures of up to 100°C are common in Europe. However, there remains
a need to provide peracid precursors which are effective to promote good bleaching
in wash temperatures below 70°C, more preferably below 60°C, and most preferably below
50°C.
[0009] With respect to the ring substituents X
1, X
2, Y and Z, in the compounds of the invention which are selected from H, SO
-3, CO2, N0
2, NR, halogen, R
6 and mixtures thereof (wherein R
5 of NR
5+4 is selected from H, alkyl of 1-24 carbon atoms, and mixtures thereof and R
6 is alkyl of 1 to 20 carbon atoms), any combination of these substituents may be present
in the precursors of this invention. When the substituents are charged moieties, e.g.
S0
3, appropriate counterpart ions (counterions) may be present. With respect to SO
-3, CO
-2, CI-, Br
-, and F-, appropriate counterions may be chosen from H
+, alkali metal salts (Na
+, Li
+, K
+), although alkaline earth salts (calcium, magnesium, barium) or even ammonium salts
may be possible. With respect to a quaternary ammonium substituent, i.e., NR

, appropriate counterions can include halides, (CI-, Br-, I
-), methosulfates, sulfates and nitrates. These aforementioned counterions may also
be present with respect to the substituted R
1, R
4 and R
6 groups, as appropriate.
[0010] The compounds according to the invention include, ortho, meta and para-substituted
phenylene mixed diesters, (i.e. wherein R
1≠ R
4) of resorcinol, hydroquinone and catechol, which are exemplified below:

[0011] Hydroquinone (1,4-benzenediol; 1,4-dihydroxybenzene; p-dihydroxybenzene) is a white
crystalline compound which can be obtained by dry distillation of quinic acid or by
reduction of quinone.

[0012] Resorcinol (1,3-benzenediol; 1,3-dihydroxybenzene; m-dihydroxybenzene) is a crystalline
compound with a faint aromatic odor, and a sweet/bitter taste. It may be produced
by the alkali fusion of galbanum and asafetida resins.

[0013] Catechol (1,2-benzenediol; 1,2-dihydroxybenzene; o-dihydroxybenzene) is a crystalline
compound with a phenolic odor and a sweet and bitter taste. It may be obtained by
dried distillation of catechin which is found in the aqueous extract of catechu, which
is an extract of an East Asian acacia plant.
[0014] All three of these dihydroxybenzene starting materials are commercially available.
[0015] The dihydroxybenzenes are weak acids with two dissociation constants. They are generally
classified as antioxidant agents and are useful analytical reagents. Their structures,
uses and chemistries are more thoroughly explored in Kirk-Othmer, Encyclopedia of
Chemical Technology, 3rd Ed., vol. 13, pages 39-69 (1981), which pages are incorporated
herein by reference.
[0016] The mixed diesterified derivatives of these dihydroxybenzene compounds according
to the invention are generally produced by reacting a monoesterified dihydroxybenzene
having a group O-C(O)-R
1 or O―C(O)―R
4 with an appropriate acid anhydride providing the other group O―C(O)―R
1 or O―C(O)―R
4 in the presence of a strong acid. The general procedures for making these precursors
are set forth below in EXPERIMENTAL.
[0017] It is believed that in situ peracid generation occurs when these novel precursors
are combined with a source of hydrogen peroxide in aqueous solution as follows:

wherein the phenylene diester precursors revert back to the appropriate dihydroxybenzene
compound.
[0018] While the foregoing is believed to occur, in fact, the mechanism behind peracid generation
may occur simultaneously, or in rapid sequence, or a combination of these reactions.
[0019] Whatever the mechanism, it was surprisingly discovered that when the novel precursors
were combined with hydrogen peroxide in aqueous solution, high yields of peracid were
produced, even at low temperatures such as those found in U.S. wash water temperatures.
It was even more surprising to see these high yields given that the byproducts of
reaction, dihydroxybenzenes, are noted antioxidants which one would expect to consume
the peracids thus produced.
[0020] Applicants have found these particular substituted phenylene diesters to be particularly
effective in low temperature bleaching applications. It was surprising that, given
the large number of carbons on the disclosed compositions, the reactivities thereof
were suitable for low temperature bleaching applications. Large alkyl groups are hydrophobic,
hence solubility or dispersibility in cold water was assumed to be problematic. While
enhanced bleaching activity occurs when various solubilizing groups are added to these
compositions, sufficient peroxyacid generation for bleach applications has been observed
even in their absence.
[0021] Additionally, applicants observed that with increasing chain lengths of the phenylene
diester precursors, decreasing bleaching performance may be observed due to decreasing
solubility or dispersibility. Therefore, solubility/dispersibility and hence performance
can be improved by the addition of solubilizing groups such as SOg, CO
2, NRQ+. Placement of these solubilizing groups may have different effects on the precursor
compositions. For example, if the solubilizing groups are placed on the aromatic ring
or at or near the end of the alkyl groups of the esters, increased solubility may
be observed. Placing the solubilizing groups next to the carbonyl carbon on the ester
group or electron withdrawing substituents on the aromatic leaving group may increase
the perhydrolysis rate. These theories are by way of explanation and not intended
to thereby restrict the invention herein.
[0022] Addition of the above described substituent groups can be accomplished by ways known
to those skilled in the art. For example, halogen groups may be added by typical halogenation
reactions, in which a typical source of halogen is combined with the selected dihydroxybenzene
starting material in the presence of a Lewis Acid. Nitration, on the other hand, occurs
when the dihydroxybenzene is reacted with nitric acid in the presence of sulfuric
acid. Sulfonation occurs when the dihydroxybenzene is reacted with concentrated sulfuric
acid. On the other hand, amination will generally be produced by reacting a source
of amino with the dihydroxybenzene in the presence of liquid ammonia. Further, as
with typical benzene- derived compounds, acylation and alkylation can occur via Friedel-Crafts
reactions.
[0023] Especially preferred are solubilizing groups, such as sulfonate (-SO

) or carboxylate (―CO

) groups. These appear to impart good solubilityldispersibility properties to the
peracid precursors of this invention. Additionally, it is preferred that a counterpart
ion (counterion) to the sulfonate or carbonate group be chosen from H
+ or an alkali metal ion selected from sodium, potassium or lithium, although alkaline
earth counterions and even ammonium counterions may be appropriate.
[0024] The precursors can be incorporated into a liquid or solid matrix for use in liquid
or solid detergent bleaches by dissolving into an appropriate solvent or surfactant
or by dispersing onto a substrate material. Examples of appropriate solvents include
acetone, non-nucleophilic alcohols, ethers or hydrocarbons. Other more water-dispersible
or -miscible solvents may be considered. As an example of affixation to a ,substrate
material, the precursors of the present invention could be incorporated onto a non-particulate
substrate such as disclosed in published European Patent Application EP 98 129, whose
disclosure is incorporated herein by reference.
[0025] The phenylene diesters of this invention which contain mixed chain lengths, i.e.,
a shorter carbon chain length of at least one ester functionality, and a longer carbon
length at the second ester functionality, provides extremely proficient bleaching.
For example, it is believed that when, according to the invention, one of the ester
functionalities has an alkyl straight chain length of less than 5, e.g., wherein R
1 or R
4 is CH
3, and the other alkyl group's chain length is greater than 5 carbon atoms, peroxyacids
which are, respectively, hydrophilic and hydrophobic are generated. The believed advantage
thereof is that particulate .soils, e.g., clay soil, and hydrophilic stains, e.g.,
tea and wine, can be attacked with a hydrophilic peroxyacid bleach while oily soils,
e.g., sebum, can be attacked with a hydrophobic peroxyacid bleach. Different pre-formed
hydrophobic and hydrophilic peroxyacid bleaches were combined in published European
Patent Application EP 68 547, whose disclosure is incorporated herein by reference.
Pre-formed peracids appear, however, to have storage stability problems and may lose
significant amounts of active oxygen (A.O) upon prolonged storage. EP 98 129, mentioned
above, discloses in one embodiment, separate peracid precursors which are impregnated
on a fabric substrate. Problematic to this approach are the added manufacturing steps
to producing different peracid precursors and using slurrying, emulsifying or other
techniques to bind the different precursors to the substrate. A particularly preferred
combination of the present invention is when one ester is an acetate (e.g., R
1 is CH
3) and the other is an hexanoate, heptanoate, octanoate or nonanoate (e.g., R
4 is -(CH
2)
4CH
3 to -(CH
Z),CH
3). In a preferred embodiment, the total number of backbone carbons of R
1 plus R
4 should be in the range of 2-20, more preferably 5-20, most preferably 7-14.
[0026] Additionally, it was surprisingly found that while the positioning of the ester groups
with respect to each other on the phenyl ring is significant, it is not critical.
This was surprising since some references had suggested that activators which comprise
a substituted phenyl ring must have the active substituent in para configuration with
respect to other substituents, likely, it is assumed, to avoid steric hindrance.
[0027] Under wash conditions and at temperatures below 70°C, it has been surprisingly found
that any dihydroxybenzene, whether catechol, hydroquinone or resorcinol, can be used
as perhydrolysis leaving groups, and that the resulting antioxidant does not appreciably
or rapidly consume the oxidant formed, i.e., the peroxyacid(s). Resorcinol and catechol
may be the preferred leaving groups because, of the byproducts of perhydrolysis of
ortho, meta and para phenylene diesters, hydroquinone may be the most readily oxidizable.
[0028] In the disclosure of Chung, et al., U.S. 4,412,934, it is contended that the molar
ratio of hydrogen peroxide to bleach activator must exceed 1.5 or else a competing
reaction is favored wherein peracid generated reacts with the bleach activator itself
to form diacyl peroxide. In contrast to the Chung, et al. bleach activator, the present
invention has been surprisingly discovered to form low levels of diacyl peroxide.
This is further depicted below in EXPERIMENTAL, Example II. Although it is not definitely
understood why this phenomenon occurs, it appears that the phenylene diester precursors
may have different surface active properties. And, because of two reactive sites,
which provides two equivalents of peracid per equivalent of precursor, lower concentrations
of precursor are needed. There also is no need for a hydrogen peroxide/precursor ratio
of greater than 1.5, as mandated in the Chung, et al. disclosure. Based on two reactive
sites, i.e., the ester equivalents of the phenylene diester precursors, a ratio of
1:1 hydrogen peroxide:ester is possible, although ratios greater than this are also
within the invention. It is preferred that the molar ratio of hydrogen peroxide:ester
be from about 1:20 to 20:1, more preferably about 1:10 to 10:1, most preferably about
1:1 to 5:1.
[0029] While it is explained above that substituting solubilizing groups on the phenyl ring
will improve the solubility and enhance the reactivity of these precursors, an alternate
mode and preferred embodiment is to combine the precursors with a surfactant. Particularly
effective surfactants appear to be nonionic surfactants. Preferred surfactants of
use include linear ethoxylated alcohols, such as those sold by Shell Chemical Company
under the brand name Neodol. Other suitable nonionic surfactants can include other
linear ethoxylated alcohols with an average length of 6 to 16 carbon atoms and averaging
about 2 to 20 moles of ethylene oxide per mole of alcohol; linear and branched, primary
and secondary ethoxylated, propoxylated alcohols with an average length of about 6
to 16 carbon atoms and averaging 0-10 moles of ethylene oxide and about 1 to 10 moles
of propylene oxide per mole of alcohol; linear and branched alkyl- phenoxy (polyethoxy)
alcohols, otherwise known as ethoxylated alkylphenols, with an average chain length
of 8 to 16 carbon atoms and averaging 1.5 to 30 moles of ethylene oxide per mole of
alcohol; and mixtures thereof.
[0030] Further suitable nonionic surfactants may include polyoxyethylene carboxylic acid
esters, fatty acid glycerol esters, fatty acid and ethoxylated fatty acid alkanolamides,
certain block copolymers of propylene oxide and ethylene oxide, and block polymers
of propylene oxide and ethylene oxide with propoxylated ethylene diamine. Also included
are such semi-polar nonionic surfactants like amine oxides, phosphine oxides, sulfoxides,
and their ethoxylated derivatives.
[0031] Anionic surfactants may also be suitable. Examples of such anionic surfactants may
include the ammonium, substituted ammonium (e.g., mono-, di-, and triethanolammonium),
alkali metal and alkaline earth metal salts of C
6-C
20 fatty acids and rosin acids, linear and branched alkyl benzene sulfonates, alkyl
sulfates, alkyl ether sulfates, alkane sulfonates, olefin sulfonates, hydroxyalkane
sulfonates, fatty acid monoglyceride sulfates, alkyl glyceryl ether sulfates, acyl
sarcosinates and acyl N-methyltaurides.
[0032] Suitable cationic surfactants may include the quaternary ammonium compounds in which
typically one of the groups linked to the nitrogen atom is a C12-C18 alkyl group and
the other three groups are short chained alkyl groups which may bear inert substituents
such as phenyl groups.
[0033] Further, suitable amphoteric and zwitterionic surfactants which contain an anionic
water-solubilizing group, a cationic group and a hydrophobic organic group may include
amino carboxylic acids and their salts, amino dicarboxylic acids and their salts,
alkylbetaines, alkyl aminopropylbetaines, sulfobetaines, alkyl imidazolinium derivatives,
certain quaternary ammonium compounds, certain quaternary phosphonium compounds and
certain tertiary sulfonium compounds. Other examples of potentially suitable zwitterionic
surfactants can be found described in Jones, U.S. 4,005,029, at columns 11-15, which
are incorporated herein by reference.
[0034] Further examples of anionic, nonionic, cationic and amphoteric surfactants which
may be suitable for use in this invention are depicted in Kirk-Othmer, Encyclopedia
of Chemical Technology, Third Edition, Volume 22, pages 347-387, and McCutcheon's
Detergents and Emulsifiers, North American Edition, 1983, which are incorporated herein
by reference.
[0035] As mentioned hereinabove, other common detergent adjuncts may be added if a bleach
or detergent bleach product is desired. If, for example, a dry bleach composition
is desired, the following ranges (weight %) appear practicable:

[0036] The hydrogen peroxide source may be selected from the alkali metal salts of percarbonate,
perborate, persilicate and hydrogen peroxide adducts and hydrogen peroxide. Most preferred
are sodium percarbonate, sodium perborate mono- and tetrahydrate, and hydrogen peroxide.
Other peroxygen sources may be possible, such as monopersulfates and monoperphosphates.
In liquid applications, liquid hydrogen peroxide solutions are preferred, but the
precursor may need to be kept separate therefrom prior to combination in aqueous solution
to prevent premature decomposition.
[0037] The buffer may be selected from sodium carbonate, sodium bicarbonate, sodium borate,
sodium silicate, phosphoric acid salts, and other alkali metal/alkaline earth metal
salts known to those skilled in the art. Organic buffers, such as succinates, maleates
and acetates may also be suitable for use. It appears preferable to have sufficient
buffer to attain an alkaline pH, i.e., above at least about 7.0.
[0038] The filler material, which, in a detergent bleach application, may actually constitute
the major constituent, by weight, of the detergent bleach, is usually sodium sulfate.
Sodium chloride is another potential filler. Dyes include anthraquinone and similar
blue dyes. Pigments, such as ultramarine blue (UMB), may also be used, and can have
a bluing effect by depositing on fabrics washed with a detergent bleach containing
UMB. Monastral colorants are also possible for inclusion. Brighteners, such as stilbene,
styrene and styrylnapthalene brighteners (fluorescent whitening agents), may be included.
Fragrances used for esthetic purposes are commercially available from Norda, International
Flavors and Fragrances and Givaudon. Stabilizers include hydrated salts, such as magnesium
sulfate, and boric acid.
[0039] In another one of the preferred embodiments, in which a mixed diester compound as
in (III) above is the precursor, a preferred bleach composition has the following
ingredients:

[0040] The above composition is formulated to deliver, desirably, about 14 ppm A.O. at a
pH of about 10.5. Other peroxygen sources, such as sodium perborate monohydrate or
sodium percarbonate are suitable. If a more detergent-type product is desired, the
amount of filler can be increased and the precursor halved or further decreased.
[0041] The novel precursors of this invention are synthesized by the methods which are disclosed
below. Additionally, performance results are shown below in the EXPERIMENTAL section.
EXPERIMENTAL
I. Synthesis of 1 Octanoyloxy-3-acetoxy benzene
[0042]

[0043] An acetoxylated resorcinol is obtained through commercial sources (from American
Hoechst). It is placed in a reaction vessel with an equimolar amount of dioctanoic
acid anhydride (from Aldrich Chemicals), in the presence of methanesulfonic acid to
promote acid catalysis, and reacted at room temperature (21°C) for one hour. A 95%
yield of the 1 octanoyloxy-3-acetoxy benzene (resorcinol acetate octanoate) and octanoic
acid as a by-product results.
[0044] In the foregoing synthesis it is believed that any of the dihydroxybenzenes are suitable
for use as starting materials. If non-nucleophilic solvents are required, as in base
catalysis, acetone (dimethyl ketone), ethyl or methyl acetate, tetrachloromethane,
dichloromethane, ethylene chloride, chloroform, and others appear appropriate to the
synthesis. The catalyst, 4-dimethylaminopyridine, appears to promote transesterification
by acting to form a reactive intermediate. Other suitable catalysts may include pyridine
and other tertiary aliphatic and aromatic amines. The base, which may act to tie up
any carboxylic acid moieties formed in the reaction, may include triethylamine, tetramethyl
piperidine, NaHC0
3, Na
2CO
3, and suitable tertiary amines. In the selection of suitable bases, care must be taken
to insure solubility of the ingredients in the reaction. Similarly, if acid catalysis
is the chosen route of synthesis, concentrated sulfuric acid, hydrochloric acid, and
methanesulfonic acid are among the catalysts of choice known to those skilled in the
art.
[0045] The purpose of the next experiment was to see if a greater than 1.5 molar ratio of
H
20
2:precursor as contended by U.S. 4,412,934 was actually necessary for the precursors
of this invention to give good yields of desired peracids.
II. Yield of 1 Octanoyloxy-3-Acetoxy Benzene
[0046] a. The compound synthesized in I (resorcinol acetate octanoate) was combined in aqueous
solution with sufficient hydrogen peroxide to yield a hydrogen peroxide:precursor
ratio (based on ester equivalents) of about 1.4:1. The reaction conditions were pH
10.5 (based on 0.02M NaHC0
3), temperature 25°C, and 1 g/1 liter of a nonionic surfactant, Neodol 25-12 (which
is a linear ethoxylated alcohol with predominant chain length of 12-15 carbon atoms,
averaging about 12 moles of ethylene oxide per mole of alcohol). The concentration
of II (resorcinol acetate octanoate) was 4.375 x 10-
4M, H
20
2 was about 1.225 x 10
-3M, to result in an H
20
2:precursor (based on ester equivalents) ratio of about 1.4:1. Yields of about 75%
peracid were obtained. Low levels of diacyl peroxide were detected consistent with
the high peracid yield.
[0047] b. Repeating the above experiment, with the compound of I (resorcinol acetate octanoate)
at 4.375 x 10
-4M, but with 1.75 x 10-
3M H
20
2, to result in a ratio of H
20
2:precursor of about 2:1, the resulting yield was about 78%. The reason for the absence
of substantial diacyl peroxide formation in a competing side reaction as posited by
U.S. 4,412,934 are presently unknown. It is speculated that there is a lack of interaction
between the recently formed peracid and that portion of unreacted precursor. This
theory is for purposes of explanation and not meant to restrict the scope of the invention.
It is also believed that any acetyl octanoyl diacyl peroxide formed may be rapidly
re-perhydrolyzed, i.e., converted back into peracid, without the need for a large
excess of hydrogen peroxide. Further experiments appear to bear out the low diacyl
peroxide formation in the inventive compositions.
[0048] Performance tests for the inventive precursors have also been conducted. The precursors
have been found to exhibit significant improvements in bleaching performance over
a commercial dry perborate bleach:
III. % Stain Removal of Crystal Violet/Cotton Swatches of 1 Octanoyloxy-3-Acetoxy
Benzene'
[0049]
[0050] The foregoing description and embodiments of the invention have been presented for
purposes of illustration and not intended to restrict the scope of the invention.
Other non-limiting embodiments of the invention are possible. For example, standard
bleaching and detergent adjuncts may be added to the compositions disclosed. Exemplary
of such adjuncts are builders (sodium carbonate, sodium tripolyphosphate, etc.), fillers
(e.g., sodium sulfate), brighteners, enzymes (e.g., alkaline proteases), defoaming
agents, and the like known to those skilled in the art. Additionally, further esterification
of the phenylene diesters may be possible, for example, resulting in tri- and quaternary-,
substituted phenylene precursors. The claims hereto further illustrate the invention.
1. A compound of the general structure:
wherein R1 is alkyl of less than 5 carbon atoms; and X1, X2, Y and Z are individually selected from H, SO-3, CO-2, NO2, NR

halogen, R6 and mixtures thereof;
wherein R4 of

is alkyl of 5 to 11 carbon atoms; R5 of NR

is selected from H, alkyl of 1 to 24 carbon atoms and mixtures thereof; and R6 is alkyl of 1 to 20 carbon atoms.
2. A compound as claimed in claim 1 characterised in that at least one of X1, X2, Y and Z is halogen selected from the group consisting essentially of CI-, F-, Br-
and I-.
3. A compound as claimed in claim 1 characterised in that at least one of X
1, X
2, Y and Z are SO

with a counterpart ion which is H
+ or an alkali metal cation selected from sodium, potassium or lithium.
4. A compound as claimed in any of claims 1 to 3 characterised in that O.CO.R1 and O.CO.R4 are para in relationship to each other.
5. A compound as claimed in any of claims 1 to 3 characterised in that O.CO.R1 and O.CO.R4 are ortho in relationship to each other.
6. A compound as claimed in any of claims 1 to 3 characterised in that O.CO.R1 and O.CO.R4 are meta in relationship to each other.
7. A compound as claimed in claim 1 characterised in that R1 is CH3 and R4 is C5-11 alkyl.
8. A compound as claimed in claim 7 characterised in that R4 is Cs-s alkyl.
9. A bleaching composition comprising:
(a) a source of hydrogen peroxide; and
(b) a bleach effective amount of a peracid precursor which is a compound as defined
in any of claims 1 to 8.
10. A composition as claimed in claim 9 characterised in that it further comprises
(c) sufficient quantities of buffer to yield an alkaline pH when the composition is
placed in aqueous solution.
11. A composition as claimed in claim 9 or claim 10 characterised in that it further
comprises (d) a surfactant which will not react with the precursor.
12. A composition as claimed in claim 11 characterised in that the surfactant is selected
from anionic, nonionic, zwitterionic, cationic, amphoteric surfactants and mixtures
thereof, preferably an anionic surfactant.
13. A composition as claimed in any of claims 9 to 12 characterised in that the hydrogen
peroxide source is selected from the alkali metal salts of percarbonate, perborate,
persilicate, hydrogen peroxide adducts and hydrogen peroxide.
14. A composition as claimed in claim 13 characterised in that the hydrogen peroxide
source is selected from sodium perborate monohydrate or tetrahydrate, sodium percarbonate
and hydrogen peroxide.
15. A composition as claimed in claim 13 or claim 14 characterised in that the ratio
of hydrogen peroxide yielded by the hydrogen peroxide source to the precursor is greater
than 1:1 of hydrogen peroxide to ester equivalent.
16. A composition as claimed in any of claims 9 to 15 characterised in that the precursor
is selected from phenylene monoacetate monohexanoate; phenylene monoacetate monoheptanoate;
phenylene monoacetate monooctanoate; and phenylene monoacetate monononanoate.
17. A method of removing soils from fabrics comprising contacting said fabrics with
a bleaching composition as claimed in any of claims 9 to 16.
18. A method of producing a bleaching composition comprising combining:
(a) a source of hydrogen peroxide; and
(b) a bleach effective amount of a peracid precursor as claimed in any of claims 1
to 8.
19. A method for synthesizing a compound of the formula defined in claim 1 characterised
in that one reacts an appropriate dihydroxybenzene selected from the group consisting
essentially of hydroquinone, resorcinol and catechol which dihydroxybenzene has been
monoesterified to provide a group O―C(O)―R1 or O―C(O)―R4 in which R1 and R4 are as defined in claim 1 with an approximately equimolar amount of a carboxylic
acid anhydride to provide the other group O―C(O)―R1 or O―C(O)―R4.
1. Verbindung der allgemeinen Struktur:
worin R1 Alkyl mit weniger als 5 Kohlenstoffatomen bedeutet und X1, X2, Y und Z individuell ausgewählt werden unter H, SO

, CO

, NO2, NR

-Halogen, R6 und ihren Gemischen,
worin R4 von

Alkyl mit 5 bis 11 Kohlenstoffatomen bedeutet, R5 von NR

ausgewählt wird unter H, Alkyl mit 1 mit 24 Kohlenstoffatomen und ihren Gemischen,
und R6 Alkyl mit 1 bis 20 Kohlenstoffatomen bedeutet.
2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß mindestens einer der Substituenten
X1, X2, Y und Z Halogen, ausgewählt aus der Gruppe CI-, F-, Br- und J-, bedeutet.
3. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß mindestens einer der Substituenten
X1, X2, Y und Z SO-3 mit einem Gegenion bedeutet, welches H+ oder ein Alkalimetallkation, ausgewählt unter Natrium, Kalium oder Lithium, ist.
4. Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß O.CO.R1 und O.CO.R4 in para-Beziehung zueinander stehen.
5. Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß O.CO.R1 und O.CO.R4 in ortho-Beziehung zueinander stehen.
6. Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß O.CO.R1 und O.CO.R4 in meta-Beziehung zueinander stehen.
7. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß R1 CH3 und R4 C5-11-Alkyl bedeuten.
8. Verbindung nach Anspruch 7, dadurch gekennzeichnet, daß R4 C5-8-Alkyl bedeutet.
9. Bleichzusammensetzung, dadurch gekennzeichnet, daß sie enthält:
(a) eine Quelle für Wasserstoffperoxid, und
(b) eine wirksame Menge für das Bleichen aus einer Persäurevorstufe, die eine Verbindung
nach einem der Ansprüche 1 bis 8 ist.
10. Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, daß sie zusätzlich (c)
ausreichende Mengen eines Puffers enthält, so daß ein alkalischer pH-Wert erhalten
wird, wenn die Zusammensetzung in wäßrige Lösung gegeben wird.
11. Zusammensetzung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß sie zusätzlich
(d) ein oberflächenaktives Mittel enthält, welches mit der Vorstufe nicht reagiert.
12. Zusammensetzung nach Anspruch 11, dadurch gekennzeichnet, daß das oberflächenaktive
Mittel ausgewählt wird unter anionischen, nichtionischen, zwitterionischen, kationischen,
amphotären oberflächenaktiven Mitteln und ihren Gemischen und bevorzugt ein anionisches
oberflächenaktives Mittel ist.
13. Zusammensetzung nach Anspruch 9 bis 12, dadurch gekennzeichnet, daß die Quelle
für Wasserstoffperoxid ausgewählt wird aus Alkalimetallsalzen von Percarbonat, Perborat,
Persilicat, Wasserstoffperoxidaddukten und Wasserstoffperoxid.
14. Zusammensetzung nach Anspruch 13, dadurch gekennzeichnet, daß die Wasserstoffperoxidquelle
ausgewählt wird unter Natriumperboratmonohydrat oder -tetrahydrat, Natriumpercarbonat
und Wasserstoffperoxid.
15. Zusammensetzung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß das Verhältnis
von Wasserstoffperoxid, das durch die Wasserstoffperoxidquelle geliefert wird, zu
der Vorstufe größer ist als 1:1 Wasserstoffperoxid zu Esteräquivalent.
16. Zusammensetzung nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, daß
die Vorstufe ausgewählt wird aus Phenylenmonoacetatmonohexanoat, Phenylenmonoacetatmonoheptanoat,
Phenylenmonoacetatmonooctanoat und Phenylenmonoacetatmonononanoat.
17. Verfahren zur Entfernung von Verunreinigungen aus Textilmaterialien bzw. Flächengebilden,
dadurch gekennzeichnet, daß das Textilmaterial bzw. Flächengebilde mit einer Bleichzusammensetzung
nach einem der Ansprüche 9 bis 16 behandelt wird.
18. Verfahren zur Herstellung einer Bleichzusammensetzung, dadurch gekennzeichnet,
daß
(a) eine Quelle für Wasserstoffperoxid, und
(b) eine Menge, die zum Bleichen wirksam ist, einer Persäurevorstufe nach einem der
Ansprüche 1 bis 8 vermischt werden.
19. Verfahren zur Synthese einer Verbindung der Formel nach Anspruch 1, dadurch gekennzeichnet,
daß ein geeignetes Dihydroxybenzol, ausgewählt aus der Gruppe, die im wesentlichen
besteht aus Hydrochinon, Resorcin und Catechol, wobei das Dihydroxybenzol unter Bildung
der Gruppe O―C(O)―R1 oder O―C(O)―R4, worin R1 und R4 die in Anspruch 1 gegebenen Bedeutungen besitzen, monoverestert ist mit der ungefähr
äquimolaren Menge eines Carbonsäureanhydrids unter Bildung der anderen Gruppe O―C(O)―R1 oder O-C(O)-R4, umgesetzt wird.
2. Un composé selon la revendication 1, caractérisé en ce qu'au moins un de X1, X2, Y et Z est un halogène choisi dans le groupe constitué essentiellement de CI-, F-, Br- et I-.
3. Un composé selon la revendication 1, caractérisé en ce qu'au moins un de X1, X2, Y et Z est SO-3 avec un ion complémentaire qui est H+ ou un cation de métal alcalin choisi parmi le sodium, le potassium ou le lithium.
4. Un composé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que
O.CO.R1 et O.CO.R4 sont en relation para l'un par rapport à l'autre.
5. Un composé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que
O.CO.R' et O.CO.RL sont en relation ortho l'un par rapport à l'autre.
6. Un composé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que
O.CO.RL et O.CO.R° sont en relation méta l'un par rapport à l'autre.
7. Un composé selon la revendication 1, caractérisé en ce que R1 est CH3 et R4 est un alcoyle en C5-11.
8. Un composé selon la revendication 7, caractérisé en ce que R4 est un alcoyle en C5-8.
9. Une composition de blanchiment comprenant:
(a) une source de peroxyde d'hydrogène; et
(b) une quantité blanchissante efficace d'un précurseur de peracide qui est un composé
défini dans l'une quelconque des revendications 1 à 8.
10. Une composition selon la revendication 9, caractérisée en ce qu'elle comprend
de plus (c) des quantités suffisantes de tampon pour établir un pH alcalin lorsque
la composition est mise en solution aqueuse.
11. Une composition selon la revendication 9 ou la revendication 10, caractérisée
en ce qu'elle comprend de plus (d) un agent tensio-actif qui ne réagit pas avec le
précurseur.
12. Une composition selon la revendication 11, caractérisée en ce que l'agent tensio-actif
est choisi parmi les agents tensio-actifs anioniques, non ioniques, zwitterioniques,
cationiques, amphotères et leurs mélanges et est de préférence un agent tensio-actif
anionique.
13. Une composition selon l'une quelconque des revendications 9 à 12, caractérisée
en ce que la source de peroxyde d'hydrogène est choisie parmi les sels de métaux alcalins
de percarbonate, de perborate, de persilicate, les produits d'addition de peroxyde
d'hydrogène et le peroxyde d'hydrogène.
14. Une composition selon la revendication 13, caractérisée en ce que la source de
peroxyde d'hydrogène est choisie parmi le perborate de sodium monohydraté et tétrahydraté,
le percarbonate de sodium et le peroxyde d'hydrogène.
15. Une composition selon la revendication 13 ou la revendication 14, caractérisée
en ce que le rapport du peroxyde d'hydrogène fourni par la source de peroxyde d'hydrogène
au précurseur est supérieur à 1/1 du peroxyde d'hydrogène à l'équivalent d'ester.
16. Une composition selon l'une quelconque des revendications 9 à 15, caractérisée
en ce que le précurseur est choisi parmi le phénylène monoacétate monohexanoate; le
phénylène monoacétate monoheptanoate; le phénylène monoacétate monooctanoate; et le
phénylène monoacétate monononanoate.
17. Un procédé pour éliminer les salissures des tissus comprenant le contact desdits
tissus avec une composition blanchissante selon l'une quelconque des revendications
9 à 16.
18. Un procédé pour produire une composition blanchissante comprenant la combinaison
de:
(a) une source de peroxyde d'hydrogène; et
(b) une quantité blanchissante efficace d'un précurseur de peracide selon l'une quelconque
des revendications 1 à 8.
19. Un procédé pour synthétiser un composé répondant à la formule définie dans la
revendication 1, caractérisé en ce qu'on fait réagir un dihydroxybenzène approprié,
choisi dans le groupe constitué essentiellement par l'hydroquinone, le résorcinol
et le pyrocatéchol, avec un dihydroxybenzène qui a été mono- estérifié pour fournir
un groupe O―C(O)―R1 ou O―C(O)―R4 où R1 et R4 sont comme défini dans la revendication 1, avec un quantité approximativement équimolaire
d'un anhydride d'acide carboxylique pour fournir l'autre groupe O―C(O)―R1 ou O-C(O)-R4.