[0001] This invention relates to a method of permitting an earth station(s) to initially
access its assigned time slot in a TDMA (Time Division Multiple Access) system and
also an arrangement therefor, and more specifically to such a method and arrangement
featuring that only one or two of the earth stations are required to have an acquisition
control arrangement in the overall TDMA system. This invention utilizes a low power
burst acquisition signal for the initial access to the satellite.
Description of the Prior Art
[0002] In the TDMA system, multiple earth stations (viz., reference station and traffic
terminals) share one satellite transponder on a time division basis. Each earth station
transmits bursts in a manner that each burst is located within an allocated time slot
of each consecutive TDMA frame. The burst therefore has the same period as the TDMA
frame, and the times of the bursts are carefully controlled using a reference burst
transmitted from the reference station so that no two bursts overlap.
[0003] Fig. 1 is a diagram showing a TDMA frame format, in which R denotes a reference burst,
each of C, C' and C" denotes a burst which is transmitted from an earth station already
in communication with the satellite, and D denotes a time slot preassigned to a given
earth station but which is not being used.
[0004] When an earth station wants to initially access the satellite, the burst transmit
timing is unknown to the earth station and hence burst acquisition support is necessary
prior to burst synchronization control. To this end there have been proposed several
techniques such as a prediction method, low power method using a low level acquisition
signal, etc.
[0005] The prediction method, disclosed in Japanese patent application laid open under publication
No. 42-6417, predicts an assigned time slot according to a computed saltellite orbit.
This method, however, has encountered the problem that any error in the prediction
might cause the station's burst to overlap other time slots and therefore interupt
communications already in progress between other stations. On the other hand, the
low power method found to be useful due to its high efficiency in band utilization
as well as its simplicity. As a consequence, this invention utilizes a low power acquisition
signal.
[0006] Figs. 2(A) and 2(B) are diagrams describing known methods which utilize the low power
signals, wherein Fig. 2(A) shows a continuous low power signal E and Fig. 2(B) a low
power pulses F (only one is shown). In both figures, the TDMA frame is identical to
that of Fig. 1.
[0007] The acquisition signal E (Fig. 2(A)) is produced by PSK (Phase Shift Keying) modulating
a PN (Pseudo random Noise) sequence or a special digital sequence, and has a lower
power than a normal level by approximately 20 dB, for example. The low amplitude acquisition
signal E, sent out from the earth station intending to enter communication, is relayed
back via a satellite to the same earth station and is demodulated therein. The demodulated
acquisition signal E. is compared with the sync signal to detect their relative phase
difference, thereby allowing an accurate burst transmit timing to be obtained.
[0008] On the other hand, with the other low power method shown in Fig. 2(B), the earth
station, desiring communication with the satellite, sends out the low power acquisition
pulses F and receives same via the satellite. The accurate transmit timing is detected
by scanning either automatically or manually the received pulses in order to locate
the pulse in the time slot assigned to the earth station.
[0009] However, with these methods, all the earth stations (viz., traffic terminals) of
the prior art (Figs. 2(A) and 2(B)) are required to individually perform the initial
accessing, and thus requires that each earth station has its own burst acquisition
control arrangement. Therefore, these methods suffer from the drawback that each earth
station is bulky, complicated in arrangement and expensive to manufacture. Further,
these methods should overcome noise interference resulting from the use of the low
level acquisition signals. One approach to solving this problem is to use narrow band
filtering. Another is to improve a receiving error rate by employing a decision by
majority method. These requirements further complicate and increase the cost of each
station.
SUMMARY OF THE INVENTION
[0010] It is therefore an object of this invention to enable a plurality of earth stations
to initially access satellite in a system wherein only one or two of the same are
equipped with burst control acquisition control arrangements.
[0011] A first aspect of this invention takes the formed of a method of initially establishing
burst acquisition in a TDMA satellite communications system using an acquisition signal
wherein the TDMA satellite communications system includes one reference station and
a plurality of traffic terminals, the acquisition signal having a period equal to
a TDMA frame period or equal to a positive integer multiples of the TDMA frame and
having first predetermined transmission power lower than second predetermined transmission
power, the method comprising the steps of: controlling the reference station or one
of the traffic terminals (a first earth station) to instruct one of the other traffic
terminals (a second earth station) to transmit the acquisition signal; receiving,
at the first earth station, the acquisition signal transmitted from the second earth
station, detecting a first reference time point included in the received acquisition
signal, and obtaining a time difference between the first reference time point and
a second reference time point, the second reference time point being obtained by receiving
a reference burst transmitted from the reference station; controlling the first earth
station to inform the second earth station of information of the time difference;
and establishing the burst acquisition of the second earth station by controlling
the second earth station to transmit a burst having the second predetermined transmission
power at a time point determined according to the information of the time difference.
[0012] A second aspect of this invention takes the form of a TDMA satellite communications
system which includes one reference station and a plurality of traffic terminals,
the plurality of traffic terminals being controlled to initially access a satellite
using an acquisition signal, the acquisition signal having a period equal to a TDMA
frame period or equal to a positive integer multiples of the TDMA frame and having
first predetermined transmission power lower than second predetermined transmission
power, the TDMA satellite communications system including an arrangement provided
in the reference station or one of the traffic terminals (a first earth station),
the first earth station
' instructing one of the other traffic terminals (a second earth station) to transmit
the acquisition signal for initially establishing burst acquisition of the second
earth station, the arrangement comprising: a first means for receiving the acquisition
signal, the first means detecting a first reference time point of the acquistion signal;
a second means for receiving a reference burst transmitted from the reference station,
the first means producing a second reference time point using the reference burst;
a third means coupled to the first means for receiving the first reference time point
and being coupled to the second means for receiving the second reference time point,
the third means obtaining a time difference between the first and second reference
time points; a fourth means coupled to the third means for transmitting information
of the time difference applied therefrom to the second earth station; and a fifth
means coupled to the first, third and fourth means for controlling the operations
thereof.
[0013] A third aspect of this invention takes the form of a TDMA satellite communications
system which includes one reference station and a plurality of traffic terminals,
the plurality of traffic terminals being controlled to initially access a satellite
using an acquisition signal, the acquisition signal having a period equal to a TDMA
frame period or equal to a positive integer multiples of the TDMA frame and having
first predetermined transmission power lower than second predetermined transmission
power, the TDMA satellite communications system being arragned such that the reference
station or one of the traffic terminals (a first earth station) instructs one of the
other traffic terminals (a second earth station) to transmit the acquisition signal
for initially establishing burst acquisition of the second earth station, the second
earth station comprising: a first means for receiving a reference burst transmitted
from the reference station, the first means producing a reference time point using
the reference burst; a second means for receiving instructions, transmitted from the
first earth station, of sending out the acquistion signal from the second earth station;
a third means coupled to the first means, the third means being arranged to control
the transmission of the acquisition signal in synchronism with the reference time
point wherein the acquisition signal assumes the first predetermined power; and a
fourth means coupled to the second means for transmitting a burst from the second
earth station to the first earth station at a time point determined by time difference
information transmitted from the first earth station, the burst having the second
predetermined power.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] The features and advantages of the present invention will become more clearly appreciated
from the following description taken in conjunction with the accompanying drawings
in which:
Fig. 1 is a diagram showing a TDMA frame format referred to in the opening paragraphs
of this specification;
Fig. 2(A) is a diagram showing a continuous low power burst acquisition signal together
with a TDMA frame format idential to that shown in Fig. 1, used in conjuction with
an explanation of a prior art technique given in the openihg-paragraphs of this specification;
Fig. 2(B) is a diagram showing a low power burst acquisition signal together with
a TDMA frame format idential to that shown in Fig. 1, used in conjunction with an
explanation of another prior art given in the opening paragraphs of this specification;
Fig. 3 is a diagram showing a principle underlaying this invention;
Fig. 4 is a block diagram showing one preferred embodiment according to this invention;
and
Fig. 5 is a diagram showing a burst acquisition control signal used in this invention.
DETAILED DESCRIPTION OF
THE PREFERRED EMBODIMENTS
[0015] Before describing a preferred embodiment of this invention, a principle underlying
same will be discussed with reference to Fig. 3, wherein there are schematically illustrated
the time points of the reference bursts, etc. which are transmitted from earth stations
and then relayed back thereto via a satellite.
[0016] In Fig. 3 it is assumed that one of the earth stations other than the reference station
is provided with the burst acquisition control arrangement according to this invention.
Such an earth station (viz., one traffic terminal) will be referred to as an A station.
On the other hand, the other earth stations (traffic terminals), which have not such
a control arrangement, will be referred to as B stations. It should be noted that
only one station B is illustrated in Fig. 3 for simplicity.
[0017] B-TX, A-TX and REF-TX in Fig. 3 represent the time axes on which the time points
of the bursts sent out from the B, A and reference stations are respectively plotted,
while SAT indicates the time axis on which the time points of-the bursts passing through
the satellite are plotted. On the other hand, REF-RX, A-RX and B-RX indicate the time
axes on which the time points of the bursts relayed back via the satellite to the
above-mentioned reference, A, and B stations are respectively shown. Further, LR LA
and L
B indicate the distances between the satellite and the reference, A, and B stations,
while Tf represents one TDMA frame.
[0018] The reference bursts Rl through R6 are transmitted in this order from the reference
station at time points 11 through 16, respectively. The start signal of the reference
burst Rl passes through the satellite at a time point 21, and then reaches the reference,
A, and B stations at time points 31, 41 and 51, respectively. In a similar manner,
the start signals of the reference bursts R2, R3, R4, R5 and R6 pass through the satellite
at time points 22, 23, 24, 25 and 26, and reach the reference station at time points
32, 33, 35, 36 and 37, and thereafter reach the A station at time-points 42, 43, 45,
46 and 47, and finally reach the B station at time points 52, 53, 55, 56, and 57,
respectively.
[0019] Each of boxes 101, 102, 103, 104, 105 and 106 indicates a time slot assigned to the
B station which wants to enter into communication, i.e., initially access the satellite,
while Tb is a time duration from the beginning of the time slot to the start signal
of the reference signal (Rl, R2, ...). Tb can be obtained from a predetermined burst
time plan.
[0020] If the B station is allowed to send out the aquistion or access signal in a manner
that a reference pulse thereof (its time point is denoted 60) coincides in time with
the time point 51, then the reference pulse reaches the A and B stations at time points
61 and 62, respectively. It is clearly apparent that the time difference between the
time points 61 and 43 (denoted D
B) is equal to that between the time points 62 and 53 (denoted DB'). The time difference
D
B can be measured at the A station using the acquisition control arrangement provided
therein. More specifically, the A station obtains D
B by counting system clocks from the reception of the reference pulse (time point 61)
to the reception of the start signal of the next arriving reference signal R3 (time
point 43). On the contrary, the time difference
Dg' is not available at the B station in that the acquisition control arrangement is
not installed therein. The A station, therefore, informs the B station of the time
difference D
B via the satellite. The B station delays the time point 54 (viz., 63) by the time
duration D
B advised by the A station, and then assumes the delayed time point, corresponding
to a time point 64, as a reference time point for transmitting a normal level burst.
Thereafter, the B station sends out the normal power burst at a time point 65 which
is delayed from the time point 64 by Tb, resulting in that the start signal of the
normal power burst passes through the satellite at the beginning of the assigned time
slot 105 without failure.
[0021] Referring now to Fig. 4, wherein the burst acquisition control arrangement according
to this invention is shown in block diagram form together with the associated blocks.
[0022] In Fig. 4, double-line blocks comprises the burst acquisition control arrangement,
and hence the A station includes all of the blocks shown in Fig. 4, while the B station
or stations are devoid of the same.
[0023] The arrangement shown in Fig. 4 comprises a burst generator 210, a transmit time
slot decoder 220, a transmit frame sync circuit 230, an acquisition signal generator
240, a modulator 250, a transmit power controller 260, a demodulator 300, a burst
separator 310, a receive time slot decoder 320, a receive frame sync circuit 330,
a sync signal detector 340, a transmit phase error detector 350, a time difference
information receiving circuit 360, a time difference counter 370, a controller 380,
a burst acquisition signal detection controller 400, a burst acquisition signal detector
410, a time difference measuring circuit 420, a time difference information generator
430, and a sync signal monitor 440, all of which are coupled as shown.
[0024] Before discussing in detail the initial burst acquisition control according to this
invention, the arrangement shown in Fig. 4 will be described assuming that the initial
burst acquisition has already been established.
[0025] A signal 211 to be transmitted is applied to the burst generator 210. The signal
211 is an analog signal such as a voice signal, by way of example. The burst generator
210 is adapted to pulse-code modulate the signal 211, and performs "time-division
multiplexing", "sync signal addition" and "scrambling" with respect to the pulse-code
modulated signal, as is well known in the art. The burst generator 210 applies a high
speed digital signal (viz., burst) 212 to the modulator 250 which is usually a PSK
(Phase Shift Keying) modulator. The PSK modulated signal 251 is applied, via the transmit
power controller 260, to a transmit section (not shown), which converts the frequency
of the applied signal (261) 'into a predetermined transmission frequency and sends
out same via a suitable output amplifier to the satellite.
[0026] On the other hand, a signal relayed via the satellite is applied to a receive section
(not shown) which includes a low noise amplifier and frequency converter. An IF (Intermediate
Frequency) signal 301, outputted from the receive section, is applied to the demodulator
300 which demodulates the incoming IF signal into a corresponding high-speed digital
signal"302 through a synchronous or coherent detection. The signal 302 is fed to the
burst separator 310, which reproduces a signal 311 after "descrambling", "burst separation"
and "decoding" of the applied signal.
[0027] The demodulted digital signal 302 is also applied to the sync signal detector 340,
which extracts a sync signal (UW (Unique Word)) from the reference burst and applies
an UW detection pulse 341 to the receive frame sync circuit 330. The UW detection
pulse 341 is employed to synchronize a receive frame counter (not shown) within the
circuit 330 in order to establish the receive frame synchronization. The receive frame
counter applies a receive time slot signal 331 to the receive time slot decoder 320,
which produces a gate pulse 321 using the applied signal 331. The gate pulse 321 is
fed to the burst separator 310 and is used therein to control the above-mentioned
various operations thereof.
[0028] The receive time slot decoder 320 generates a prediction signal 323 which predicts
a receive timing of the signal emitted from itself. The receive phase error detector
350 is supplied with the receive timing prediction signal 323 and a sync pattern detection
signal 343 from the detector 340, and compares the two applied signals to measure
a transmission phase error. The detector 350 applies a correction signal 351 to the
transmit frame sync circuit 230 which controls the start pulse's phase in response
to the applied correction signal 351. The output 231 of the sync circuit 230 is decoded
at the transmission time slot decoder 220 whose output 221 is fed to the burst generator
210.
[0029] The initial burst acquisition control according to this invention will be described
with reference to Figs. 4 through 5. As mentioned previously, it is assumed that the
burst acquisition control arrangement is provided in only one of the traffic terminals
(viz., the A station) and not provided in the reference station.
[0030] A discussion will first be made to the operation of the A station. More specifically,
the A station receives the initial acquisition signal from the B station, and detects
a relative time difference between the receive time points of the reference point
of the acquisition signal and the reference burst, and thereafter advises the B station
of the obtained time difference information.
[0031] The earth A station sends out a burst whose format is shown in Fig. 5. In this figure,
CR, BTR, UW, DEL-A and DEL-B represent respectively a carrier recovery pattern, bit
timing recovery pattern, time difference information index, and time difference information,
while DATA indicates a data section although not used for the initial burst acquisition
control. It should be noted that the DEL-B also includes information identifying the
' B station which intends to initially establish communication links in the TDMA system.
The CR, BTR and UW are well known in the art and hence will not be described in detail
for clarity.
[0032] The time difference information index DEL-A, which consists of two bits, indicates
the content of the time difference information DEL-B:
00 ... The content of DEL-B should be neglected;
01 ... Instructing the B station, specified by the content of DEL-B, to send out the
burst acquisition signal;
10 ... Indicating that DEL-B is the time difference information;
11 ... Instructing the B station, specified by the content of DEL-B, to terminate
the transmission of the burtst acquisition signal.
[0033] Before the A station controls the initial burst acquisition of the B station, it
is necessary that the A station itself has already established the communication link
with the reference station. If the A station is in such a condition, viz., if the
A station is ready to control the B station, the control circuit 380 applies a ready
signal (or sync state indicating signal) 384 to the acquisition signal detect controller
400, while the receive frame sync circuit 330 sends out a receive sync indicating
signal 333 to the sync signal monitor 440.
[0034] It is assumed that all of the B stations have not yet established respective burst
acquisition. However, for ease of understanding, the station A starts to control a
given station B'.
[0035] In this case, the acquisition signal detection controller 400 should first detect
that the station B' has not yet established initial acquisition. The sync signal monitor
440 watches the output 344 of the sync signal detector 340 to determine, using the
output 322 of the decoder 320, whether the detector 340 fails to detect the UW of
the B' station in the time slot assigned thereto. More specifically, the output 322
contains the information of the B' station, viz., the location of the UW aperture
as well as the station identification number. In the event that the sync signal detector
340 is unable to find the UW of the B' station, it informs the detection controller
400 of the station identification number via its output 441. '
[0036] In order that the station A sends the burst acquisition control signal (Fig. 5) to
the station B', the controller 400 applies its output 403 to the time difference information
generator 430. The generator 430, in response to the output 403, supplies the burst
generator 210 with its output 431 in order to set the code "01" to DEL-A and also
allow DEL-B to include the station identification number of the station B'. It should
be noted that both DEL-A and DEL-B form part of the burst acquisition control signal.
At the same time, the controller 400 applies its output 401 to the acquisition signal
detector 410 to instruct same to wait for the low power acquisition signal which will
be sent from the station B' via the satellite transponder.
[0037] How the station B' sends out the low power acquisition signal in response to the
above-mentioned burst acquisition control signal from the A station will be described.
[0038] The B' station modulates, at the modulator 300, the incoming IF signal applied thereto.
The modulated signal 302 is applied to the sync signal detector 340 which detects
the UW within the reference burst, and outputs the detection signal 341 to the receive
frame sync circuit 330. Although not shown, the circuit 330 includes an aperture generator
and receive frame counter. The aperture generator is arranged to produce an aperture
of the TDMA frame period and this aperture corresponds to the time slot assigned to
the reference burst's UW, while the receive frame counter counts up the system clocks
to generate one TDMA frame. In the event that the detection pulse 341 falls in the
time slot assigned to the UW of the reference burst, the counter of the sync circuit
330 is reset to zero. The receive frame counter has a so-called fly-wheel function
and hence is able to produce a timing pulse(s) which corresponds to the time slot
assigned to the UW of the reference burst. Viz., the timing pulse is generated even
if the UW of the reference burst fails to be detected.
[0039] This timing pulse, which corresponds to the time slot preassigned to the UW of the
reference burst, is applied to the acquisition signal generator 240 and is used to
set a predetermined N-bit pattern to a PN generator provided in the acquisition signal
generator 240, wherein N corresponds to the number of shift registers of the PN generator.
The output of the PN generator is then applied to the burst generator 210 as an output
241. The acquisition signal is a special pattern which is differentially phase modulated
by the above-mentioned PN sequence having a period equal to the TDMA frame.
[0040] When the receive frame sync is establised in the B' station, the burst separator
310 knows the burst position of the A station according to the burst time plan, and
supplies the time difference information receiving section 360 with the contents of
DEL-A and DEL-B applied from the A station. The receiving section 360 performs error
correcting decoding, parity check, etc. with respect to the DEL-A and DEL-B, and applies
same to the controller 380 and counter 370 as signals 362 and 361, respectively. It
should be noted that in this case the content of DEL-A is "01". If the controller
380 detects "01", then it applies its output 381 to relay the signal 241 from the
acquisition signal generator 240 to the modulator 250 by way of the burst generator
210. Further, the controller 380 applies its output 382 to the transmit power controller
260 in order to control the transmit power to a predetermined low level. Thus, the
low power acquisition signal of the TDMA frame period is transmitted to the A station.
[0041] Turning to the operation at the A station. The acquisition signal detector 410 differentially
demodulates the signal 302 located in the UW aperture of the acquisition signal which
was transmitted from the B station, and extracts a N-bit pattern from the differentially
demodulated signal, wherein N corresponds to the number of shift registers arranged
for generating the aforesaid PN sequence. The N-bit pattern is loaded to a PN generator
using the UW aperture and then the PN generator is operated by the system clocks,
whereby a PN sequence of one TDMA frame period is reproduced. The PN generator is
provided in the acquisition signal detector 410 and is a type identical to that which
is utilized to produce the acquisition signal. Thereafter, the recovered PN pattern
is compared with a predetermined fixed pattern which is identical to the pattern set
at the B station. In the event that the recovered PN pattern coincides with the predetermined
fixed pattern, then the timing point thereof is deemed the reference point of the
acquisition signal, and is outputted to the time difference measuring circuit 420
as a signal 411.
[0042] The measuring circuit 420 is responsive to the acquisition signal's detected pulse
411 and starts to count up the system clocks until the receive frame sync circuit
330 outputs its output 332, and applies a signal 421, indicating the time difference
(
DB in Fi
g. 3), to the time difference information generator 430.
[0043] The generator 430 changes the content of DEL-A to "10" in response to the signal
421, and also sets the time difference information to DEL-B, and applies its output
431 to the burst generator 210. Thus, the A station sends out the burst indicative
of the time difference intelligence to the B' station.
[0044] Turning to the operation at the B station. When the time difference counter 370 receives
the time difference information (DB). it counts up the system clocks during a time
duration corresponding to D
B in response to the receive frame pulse 332 applied thereto, and outputs a delay pulse
371 retarded by D
B. On the other hand, the controller 380 responds to the reception of the code."10"
and applies its output 383 to the transmit frame sync circuit 230 in order to permit
the delay pulse 371 to reset a transmit frame counter which forms part of the circuit
230. Thereafter, the controller 380 instructs the burst generator 210 as well as the
transmit power controller 260 to send out a normal or full power burst to the B' station,
wherein the burst corresponds to the burst which includes only the portions CR, BTR
and UW (Fig. 5).
[0045] In the event that the above-mentioned burst passes through the satellite during the
time slot assigned to the B' station, then the A station is able to detect the UW
of the B' station. Consequently, the A station terminates the transmission of the
time difference information. On the other hand, the B' station is capable of detecting
its own UM within the assigned time slot, and hence transfers to its normal operation.
[0046] If the A station is unable to confirm the acquisition signal or the UW to be transmitted
from the B' station for a predetermined time peiriod, the A station sets the DEL-A
to "11" to instruct the controller 380 of the B' station to terminate the transmission
of the above signals.
[0047] It has been assumed in the foregoing that the A station controls only one earth station
(viz., the station B') for the purposes of simplicity. However, it goes without saying
that the acquisition signal
'controller 400 is able to control multiple earth stations by selecting one by one
using an operation similar to the above discussion.
[0048] If the above-mentioned acquisition control apparatus is installed in the reference
station, all of the earth stations in the TDMA system can be controlled by a single
earth station.
[0049] Further, in the above discussion, the B' station transmits the low power acquisition
signal at a time point identical to that of the received reference burst. However,
should the acquisition signal transmit timing be specified or determined relative
to the received reference burst, then the transmission timing is not necessarily restricted
to such a time point.