[0001] The present invention generally relates to multi-row electrical connectors which
mate with arrays of pins.
Brief description of the prior art
[0002] More electronic devices are being designed with an increased number of components
which are adapted to be mounted on a printed circuit board. As a result, space on
a printed circuit board is one of the prime design considerations when attempting
to lay out the locations of various components thereon.
[0003] One type of component frequently found on printed circuit boards is square wire pins.
Some pins have a nominal dimension of .045 inch (1.14 mm) and are adapted to be force
fit through punched holes in the printed circuit board. After the pins are inserted
into the printed circuit board, they are wave soldered to provide an electrical connection
between the pins and the circuitry formed on the board.
[0004] Along with miniaturization, came the advent of .025 inch (0.64 mm) square wire pins.
The advantage of the smaller pin is that a smaller mating female connector could be
used. Thus, less printed circuit board area would be used. To illustrate this point,
normally a .045 inch (1.14 mm) square wire pin array is used to mate with a .156 inch
(4 mm) center spaced female connector. On the other hand, a .025 inch (0.64 mm) square
wire pin can mate with a .100 inch (2.54 mm) center spaced female connector which
takes up less space than a .156 inch (4 mm) connector for the same number of circuits
or pins. A disadvantage of using .025 inch (0.64 mm) square wire pins is that the
preformed holes must be drilled because of the smaller cross section rather than punched
as with the .045 inch (1.14 mm) square wire pins. It is more expensive to drill than
to punch holes in a printed circuit board. Also, a .025 inch (0.64 mm) square wire
pin cannot carry as much current as a .045 inch (1.14 mm) square wire pin.
[0005] One reason why .045 inch (1.14 mm) square wire pins were not used in conjunction
with .100 inch (2.54 mm) spaced connectors is that if parallel rows of .045 inch (1.14
mm) square wire pins were mounted on a printed circuit board, there would be insufficient
material between the rows of pins to maintain both the electrical and mechanical integrity
of the board. There is usually a trade-off between efficient use of printed circuit
board area vs. manufacturing efficiency.
[0006] With respect to the female or pin receiving connector that mates with the array of
two rows of pins mounted in a printed circuit board, it has been advantageous to mass
terminate the wires to the connectors. Generally speaking, female connectors of this
type include a housing made of insulation material having parallel top and bottom
rows of elongated terminal receiving cavities, each cavity having a pin receiving
opening in a forward end and a wire receiving opening at the rearward end. The pin
receiving openings have the same configuration as the multi-row pin array. A plurality
of terminals are provided to be mounted in the cavities. Each terminal has a pin engaging
portion at the forward end and a wire engaging portion at the rearward end.
[0007] An example of a female connector of this type is disclosed in United States Patent
No. 4,243,288. The terminals of each row are mass terminated to insulated wire conductors
by conventional insulation displacement means. However, because the wire engaging
portions of the terminals of the two rows are oppositely facing, it is impossible
to simultaneously terminate both rows of terminals from the same direction. Thus,
the application tool must have two wire stuffing members in order to achieve simultaneous
mass termination of both rows or each row must be terminated separately with the same
wire stuffing member.
[0008] One means of producing mass termination of a dual row connector of the type described
is disclosed in United States Patent No. 4,486,950. In this patent, two end-to-end
rows of terminal receiving cavities (and the wire engaging portions received therein)
are all facing in the same direction and are linearly connected together by a living
hinge. After mass termination one row is bent back against the other row and the rows
are latched together. This kind of housing is expensive to manufacture and to assemble.
[0009] EP-A-0 095 271 describes a multi-row electrical connector for connecting an array
of pins to insulated wire conductors, said connector comprising a housing made of
insulation material having parallel top and bottom rows of elongated terminal receiving
cavities, each cavity being generally defined between two spaced apart side walls,
a top wall and bottom wall, each cavity having a pin receiving opening in a forward
end and a wire receiving opening at the rearward end, said pin receiving openings
being in the same configuration as said pin array, a plurality of terminals one mounted
in each cavity, and each having a pin engaging portion at the forward end and a wire
engaging portion at the rearward end, the wire engaging portion of each terminal including
an insulation displacement slot for receiving an insulated conductor therein, to displace
the insulation and electrically contact the conductor, the cavities of the top row
being staggered with respect to the cavities of the bottom row. This connector is
intended for connecting wire conductors extending in a plane at right angles to the
pins and employs a housing in more than one part. The wire conductors are inserted
in one housing part which is then moved relative to a further housing part to terminate
the conductors with the wire engaging portions of the terminals which are mounted
in the further housing part.
[0010] FR-A-2,498,017 describes an electrical connector for connecting a line of at least
three pins to insulated wire conductors, in which a terminal housing is formed in
at least two parts, one of which receives the first and third pins and the other of
which receives the centre pin. The first and third wires are terminated with the wire
engaging portions of the first and third terminals engaging the first and third pins,
through sideways, oppositely facing slots in the first housing part while the second
wire is terminated through a sideways facing slot with the wire engaging portion of
a terminal housed in a second housing part which is then moved, relative to the first
housing part, in the lengthwise direction of the pins to engage the pin engaging portion
of its terminal with the second pin.
[0011] GB-A-2,074,797 describes a multi-row ground terminating connector comprising a unitary
housing or base with terminal receiving through holes or cavities arranged in staggered
rows. The cavities receive terminals having wire engaging portions extending on the
upper side of the base and adapted for insulation piercing engagement with transversely
extending insulated wires and tail portions extending on the underside of the base
for connection to other circuit elements.
Summary of the invention
[0012] From one aspect, the present invention aims to provide a multi-row electrical connector
for connecting an array of pins to insulated wire conductors which connector can be
mass terminated from the same side of the connector.
[0013] To this end the present invention provides such a multi-row electrical connector
comprising a housing made of insulation material having parallel top and bottom rows
of elongated terminal receiving cavities, each cavity being generally defined between
two spaced apart side walls, a top wall and bottom wall, each cavity having a pin
receiving opening in a forward end and a wire receiving opening at the rearward end,
said pin receiving openings being in the same configuration as said pin array, a plurality
of terminals one mounted in each cavity, and each having a pin engaging portion at
the forward end and a wire engaging portion at the rearward end, the wire engaging
portion of each terminal including an insulation displacement slot for receiving an
insulated conductor therein, to displace the insulation and electrically contact the
conductor, the cavities of the top row being staggered with respect to the cavities
of the bottom row, characterized in that said housing is in one piece, in that the
side walls of adjacent top row cavities are spaced apart and in that a slot is formed
in the top wall of each cavity extending from the wire receiving opening towards the
forward end to expose the wire engaging portion of the terminal whereby the wire engaging
portions of the terminals received in the bottom row cavities are accessible between
the side walls of adjacent top row cavities so that all the terminals of both rows
can be mass terminated from the top of the connector from the same direction.
[0014] If a particular printed circuit board has more than one multi-row array of pins,
with each array having a different number of pins, two different female connectors
would have to be manufactured. Each connector would have a housing with a different
number of circuits.
[0015] A modular connector housing is disclosed in United States Patent No. 4,492,023 which
relates to a method and apparatus for fabricating an electrical harness. The type
of connector illustrated therein is a plurality of single row connectors which have
an integrally formed housing structure. The housings are connected together by means
of a selectively removable web or connecting member.
[0016] In order to facilitate the manufacture of multi-row electrical connectors for connecting
an array of pins to insulated wire conductors the present invention further provides
a connector housing structure for electrical connectors for connecting any given one
of different multi-row arrays of pins to insulated wire conductors so that the same
product can be adapted for mating with different arrays of pins, the structure being
made of electrically insulating material, each such connector to include a plurality
of terminals each having a pin engaging portion at the forward end and a wire engaging
portion at the rearward end and a housing structure having a plurality of rows of
elongated terminal receiving cavities including a top row and a bottom row, each cavity
being generally defined between two spaced-part side walls, a top wall and a bottom
wall, each cavity having a pin receiving opening in the forward end and a wire receiving
opening in the rearward end, characterized in that the structure is integrally formed,
in that the side walls of adjacent top row cavities are spaced apart, in that a slot
is formed in the top wall of each cavity extending from the wire receiving opening
towards the forward end to expose the wire engaging portion of a terminal housed in
the cavity whereby the wire engaging portions of terminals received in the bottom
row cavities are accessible between the side walls of adjacent top row cavities so
that all terminals housed in both rows of cavities can be mass terminated from the
top of the connector from the same direction, in that the structure comprises a plurality
of modules, each module including at least one top row cavity and at least one bottom
row cavity, said pin receiving openings of said modules forming a pattern of the same
configuration as a part of the given pin array, and in that selectively removable
module connecting members are provided connecting said plurality of modules together
whereby a desired number of modules may be removed from the modular connector housing
structure to leave a plurality of modules to comprise a connector housing having pin
openings of the same configuration as the given pin array.
[0017] The present invention still further comprehends a method of making a multi-row electrical
connector of the present invention including forming the connector housing by selectively
removing modules from a modular connector housing structure of the present invention.
[0018] Some ways of carrying out the present invention will now be described in detail by
way of example and not by way of limitation with reference to drawings which show
specific embodiments of multi-row electrical connector and modular connector housing
structure according to the present invention. In the drawings:
Fig. 1 is a perspective view of two different wire terminated connectors made according
to the present invention, one of which is mounted on a printed circuit board;
Fig. 2 is a sectional view taken generally along the line 2-2 of Fig. 1;
Fig. 3 is a perspective view of a terminal which is mounted in a connector of the
present invention;
Fig. 4 is an end view of the connector of the present invention looking at the forward
end;
Fig. 5 is an end view of the connector of the present invention looking at the rearward
end and showing part of a modular connector housing structure of the present invention;
Fig. 6 is a top plan view of the connector of the present invention;
Fig. 7 is a bottom plan view of the connector of the present invention;
Fig. 8 is a side view of the connector of the present invention; and
Fig. 9 is an enlarged end view corresponding to Fig. 5 and showing two modules of
a further modular connector housing structure according to the present invention.
[0019] Turning now to Fig. 1, two different dual row electrical female connectors, generally
designated 10a and 10b, are shown. Each connector 10a and 10b is used for connecting
a dual row array, generally designated 12a (the pin array mating with connector 10b
cannot be seen) of pins 14 to insulated wire conductors 16.
[0020] The pins 16 are mounted on a printed circuit board 18 through pin holes 20 prepunched
therein. A plurality of polarizing holes 22 are also formed in the board for purposes
which will be described in greater detail hereinafter.
[0021] Each connector 10a or 10b (also; generally referred to as 10) includes a housing
generally designated 26, integrally molded from insulative dielectric material such
as plastics material. The housing 26 has parallel top and bottom rows of elongated
terminal receiving cavities 28 and 30, respectively. Each cavity 28 and 30 is adapted
to receive a metal terminal generally designated 32, therein.
[0022] Looking at Fig. 3, the terminal 32 is seen to generally include a pin engaging portion
34 of conventional design which is adapted to receive one of the pins 14. At the opposite
end of terminal 32 is a wire engaging portion 36 which has a conventional insulation
displacement type slot 38 formed therein. When the insulated wire conductor 16 is
moved laterally into the slot 38, the insulation is displaced and the wire engaging
portion 36 of the terminal 32 electrically contacts the metal conductor.
[0023] The terminal 32 also includes a locking lance 40 struck out from the bottom thereof.
The locking lance 40 engages a portion of respective cavity 28 or 30.
[0024] Each terminal receiving cavity, 28 and 30 is defined between two spaced apart side
walls 42 and 44, a top wall 46 and bottom wall 48. Each cavity, 28 and 30, further
has a pin receiving opening 50 in the forward end and a wire receiving opening 52
in the rearward end. The pin receiving openings 50 are in the same configuration as
the mating pin array, 12a or 12b.
[0025] The top wall 46 of each cavity 28 or 30 has a slot 54 formed therein extending from
the wire receiving opening 52 toward the forward end. A lead in portion 56 is formed
depending from the slot 54. The slot 54 and lead in portion 56 are used to allow a
wire conductor 16 to be guided into a cavity 28 and 30 for electrical connection to
the wire engaging portion 36 of terminal 32.
[0026] A locking window 58 is formed in the bottom wall 48 of each cavity 28 and 30. The
window 58 cooperates with the terminal locking lance 40 for the purpose of maintaining
terminal within its respective cavity.
[0027] As can be seen, the top row of cavities 28 are staggered with respect to the bottom
row of cavities 30. The arrays 12a and 12b allow for the use of .045 inch square wire
pins with closer spacing between the respective rows thereof by staggering one row
of pins with respect to the other rows. As shown in Fig. 1, the staggered pin receiving
openings 50 conform with the corresponding array 12a and 12b.
[0028] It is significant that the side walls 42 and 44 of adjacent cavities 28 and 30 are
spaced apart and do not form a common wall as in most prior art connectors. The space
or area between the side walls 42 and 44 of adjacent cavities 28 of the top row allow
for the accessibility of the wire engaging portions 36 of the terminals 32 mounted
in the bottom row cavities 30 so that they are exposed to the top of the connector
10 through slot 54. Because of this structure, the wire engaging portions 36 of all
of the terminals face upwardly. Therefore, all of the wires 12 can be terminated simultaneously
from the same side of the connector 10.
[0029] Turning again to Fig. 1, the same manufactured part is used to result in both connectors
10a and 10b. This is accomplished by integrally molding a plurality of modules, generally
designated 64 and defined between lines A-A of Fig. 5, connected to one another to
form the connector of the present invention.
[0030] Each module 64 has one top row cavity 28 and one bottom row cavity 30 connected together
by means of a web 66. Web 66 is an extension of side wall 44 of the top row cavity
and side wall 42 of the bottom row cavity 30.
[0031] Each module 64 has a peg 68 extending beyond the forward end of the housing 26. Every
other module 64 has the peg 68 extending from the top row cavity 28 while the adjacent
modules have their pegs extending from the bottom row cavity 30.
[0032] Pegs 68 are adapted to be received in printed circuit board holes 22 and serve two
purposes. The first purpose is to polarize the connector 10 so that the right connector
10a and 10b is mated with the correct pin array 12a and 12b, respectively. The second
purpose is to lock or hold the connector 10 onto the printed circuit board 18. To
this end, a flexible bubble portion 70 is formed on the end of each peg 68 to engage
the bottom surface of the printed circuit board 18 when the peg 68 is inserted through
hole 22.
[0033] Adjacent modules 64 are integrally connected to one another by means of selectively
removable module connecting members 72 and 74 connecting the top row cavities 28 and
bottom row cavities 30, respectively. Connecting members 72 and 74 can be removed
by suitable means in order to detach one or more modules 64 from the structure to
form a housing 26 of a desired configuration.
[0034] In addition, peg 68 is selectively removable. If peg 68 is not required, it too,
can be removed by suitable means.
[0035] By using the housing structure disclosed herein, the efficiencies of manufacturing
one product are achieved. Further efficiencies can be enjoyed by virtue of the ability
to mass terminate a multi-row connector from the same side.
[0036] Although Figs. 1 and 4 to 8 show a module 64 containing two cavities 28 and 30, it
is to be understood that practically any sized module containing at least one top
row cavity 28 and one bottom row cavity 30 can be designed. For example, Fig. 9 shows
modules 84 defined between lines B-B of Fig. 9 each comprising three cavities.
[0037] Each module 84 has two cavities 28 or 30 of one row connected to one cavity of the
other row 28 or 30. The modules 84 are arranged in an alternating flip-flop fashion
so that a module 84 comprising one top row cavity 28 and two adjacent bottom row cavities
30 is adjacent to a module 84 which comprises two top row cavities and one bottom
row cavity 30.
[0038] The cavities 28 and 30 of each module 84 are connected to one another by means of
three webs, 86, 88 and 90. Web 86 connects the two adjacent cavities in the same row
between their respective side walls 42 and 44 near the forward end thereof. In a module
84 where the two adjacent cavities 38 are on the top row, web 86 is an extension of
the top walls 46 thereof. Where the module 84 comprises two adjacent cavities in the
bottom row 30, web 86 is an extension of the bottom walls 48 thereof.
[0039] Webs 88 and 90 connect the one cavity of one row with the two adjacent cavities of
the other row. In the case where the module 84 comprises the single cavity in the
top row, webs 88 and 90 extend downwardly as extensions of side walls 42 and 44 to
connect with side walls 44 and 42 of different adjacent bottom row cavities 30
: If the module 84 has a single cavity on the bottom row, then webs 88 and 90 extend
upwardly as extensions of side walls 42 and 44 to connect with side walls 44 and 42
of different adjacent top row cavities 28.
[0040] The peg 68 extends beyond the forward end of the housing 26 from webs 86. Thus, there
is one peg 68 for each module 84. The pegs 68 are adapted to be received in holes
22 formed in the printed circuit board 18 in the manner discussed above.
[0041] Adjacent modules 84 are integrally connected to one other by means of the top row
and bottom row selectively removable module connecting members 72 and 74, respectively.
Connecting members 72 and 74 are similar to webs 86 except they do not have the peg
68 formed thereon. The connecting members 72 and 74 may be removed to form the desired
connector 10 as described above.
1. A multi-row electrical connector for connecting an array of pins (12a) to insulated
wire conductors (16), said connector comprising
a housing (26) made of insulation material having parallel top and bottom rows of
elongated terminal receiving cavities (28, 30) each cavity being generally defined
between two spaced apart side walls, a top wall and bottom wall, each cavity having
a pin receiving opening (50) in a forward end and a wire receiving opening (48) at
the rearward end, said pin receiving openings being in the same configuration as said
pin array (12a),
a plurality of terminals (32) one mounted in each cavity (28, 30) and each having
a pin engaging portion (54) at the forward end and a wire engaging portion (36) at
the rearward end,
the wire engaging portion of each terminal including an insulation displacement slot
(38) for receiving an insulated conductor therein, to displace the insulation and
electrically contact the conductor,
the cavities (28) of the top row being staggered with respect to the cavities (30)
of the bottom row, characterized in that
said housing is in one piece, in that the side walls (42, 44) of adjacent top row
cavities are spaced apart and in that,
a slot (54) is formed in the top wall of each cavity (28, 30) extending from the wire
receiving opening towards the forward end to expose the wire engaging portion of the
terminal,
whereby the wire engaging portions of the terminals received in the bottom row cavities
(30) are accessible between the side walls of adjacent top row cavities (28) so that
all the terminals of both rows can be mass terminated from the top of the connector
from the same direction.
2. A connector housing structure for electrical connectors for connecting any given
one of different multi-row arrays (12a) of pins to insulated wire conductors (16),
the structure being made of electrically insulating material, each such connector
(10) to include
a plurality of terminals (32) each having a pin engaging portion (34) at the forward
end and a wire engaging portion (36) at the rearward end and,
a housing structure (26) having a plurality of rows of elongated terminal receiving
cavities (28, 30) including a top row and a bottom row, each cavity being generally
defined between two spaced-apart side walls (42, 44), a top wall and a bottom wall,
each cavity having a pin receiving opening (50) in the forward end and a wire receiving
opening (48) in the rearward end characterized in that,
the structure is integrally formed, in that
the side walls (42, 44) of adjacent top row cavities are spaced apart, in that
a slot (54) is formed in the top wall of each cavity (28, 30) extending from the wire
receiving opening towards the forward end to expose the wire engaging portion of a
terminal housed in the cavity whereby the wire engaging portions of terminals received
in the bottom row cavities (30) are accessible between the side walls of adjacent
. top row cavities so that all terminals housed in both rows of cavities can be mass
terminated from the top of the connector from the same direction, in that
the structure comprises a plurality of modules (64 or 84), each module including at
least one top row cavity (28) and at least one bottom row cavity (30), said pin receiving
openings of said modules forming a pattern of the same configuration as a part of
the given pin array (12a), and in that
selectively removable module connecting members (72, 74) are provided connecting said
plurality of modules together whereby a desired number of modules may be removed from
the modular connector housing structure to leave a plurality of modules to comprise
a connector housing (26) having pin openings (50) of the same configuration as the
given pin array (12a).
3. The structure of claim 2, wherein said selectively removable module connecting
members (72, 74) are formed between adjacent modules at either the top row or the
bottom row or at both the top row and the bottom row.
4. The structure of claim 2 or 3 including selectively removable polarizing means
(68) extending from each module beyond the forward end thereof for cooperation with
a pin mounting surface.
5. The structure of claim 2, 3 or 4, wherein the
cavities of the top row of cavities are staggered with respect to the cavities of
the bottom row;
the side walls (42, 44) of adjacent top row cavities being spaced apart; and
a slot (54) is formed in the top wall of each cavity extending from the wire receiving
opening towards the forward end to expose the wire engaging portion of a terminal
(32) in the cavity;
whereby the wire engaging portions of terminals received in the bottom row cavities
are accessible between the side walls of adjacent top row cavities so that all terminals
received in both rows of cavities can be mass terminated from the top of a connector
having a housing structure (26) formed from the modular structure.
6. The structure of claim 5, wherein each module includes one cavity from a first
row and the two adjacent cavities of the second row that are closest to said one cavity
of said first row.
7. The structure of claim 6 wherein,
said first row is the top row and said second row is said bottom row for every other
module; and
said first row if the bottom row and said second row is the top row for the modules
adjacent said every other module.
8. The structure of claim 7, wherein the side walls (42, 44) of adjacent bottom row
cavities are also spaced' apart, each module including web means (86) connecting the two adjacent cavities
near the forward end thereof and selectively removable polarizing means (68) extending
from the web means (86) beyond the forward end thereof for cooperation with a pin
mounting surface.
9. A method of making a multi-row electrical connector as claimed in claim 1 characterized
in that the connector housing (26) is formed by selectively removing modules (64 or
84) from a modular connector housing structure as claimed in claim 2.
1. Mehrreihiger elektrischer Verbinder zum Verbinden einer Gruppe von Stiften (12a)
mit isolierten Leiterdrähten (16), bestehend aus
einen aus Isolierungsmaterial hergestellten Gehäuse (26) mit parallelen Ober- und
Unterreihen langgestreckter Anschlußteilaufnahmeräume (28, 30), von denen jeder im
allgemeinen zwischen zwei mit Abstand voneinander angeordneten Seitenwänden, einer
Oberwand und einer Unterwand gebildet ist und von denen jeder eine Stiftaufnahmeöffnung
(50) in einem vorderen Ende und eine Leiteraufnahmeöffnung (48) am rückwärtigen Ende
aufweist, wobei die Stiftaufnahmeöffnungen in der gleichen Konfiguration wie die Stiftgruppe
(12a) vorgesehen sind, und
einer Mehrzahl von Anschlußteilen (32), von denen eines in jedem Raum (28, 30) angebracht
ist und jeweils einen Stifteingriffsbreich (54) am vorderen Ende und einen Leitereingriffsbereich
(36) am rückwärtigen Ende aufweist, wobei
der Leitereingriffsbereich jedes Anschlußteils einen Isolierungsverdrängungsschlitz
(38) für eine Aufnahme eines isolierten Leiters in diesem zur Verdrängung der Isolierung
und zur elektrischen Kontaktierung des Leiters aufweist und
die Räume (28) der Oberreihe in bezug auf die Räume (30) der Unterreihe versetzt sind,
dadurch gekennzeichnet, daß
das Gehäuse in einem Stück ausgebildet ist, daß
die Seitenwände (42, 44) aneinandergrenzender Oberreihenräume mit Abstand voneinander
angeordnet sind und daß .
ein Schlitz (54) in der Oberwand jedes Raums (28, 30) gebildet ist, der sich von der
Leiteraufnahmeöffnung zum vorderen Ende zur Freilegung des Leitereingriffsbereichs
des Anschlußteils erstreckt,
wodurch die Leitereingriffsbereiche der in den Unterreihenräumen (30) aufgenommenen
Anschlußteile zwischen den den Seitenwänden aneinandergrenzender Oberreihenräume (28)
zugänglich sind, derart, daß sämtliche Anschlußteile beider Reihen von der Oberseite
des Verbinders von der gleichen Richtung aus an Masse gelegt werden können.
2. Verbindergehäusekonstruktion für elektrische Verbinder zum Verbinden einer gegebenen
Gruppe verschiedener mehrreihiger Gruppen (12a) von Stiften mit isolierten Leiterdrähten
(16), wobei die Konstruktion aus elektrisch isolierendem Material hergestellt ist,
jeder derartige Verbinder (10)
eine Mehrzahl von Anschlußteilen (32) aufweisen soll, die jeweils einen Stifteingriffsbereich
(34) am vorderen Ende und einen Leitereingriffsbereich (36) am rückwärtigen Ende aufweisen,
und
eine Gehäusekonstruktion (26) eine Mehrzahl von Reihen langgestreckter Anschlußteilaufnahmeräume
(28, 30) einschließlich einer Oberreihe und einer Unterreihe aufweist, von denen jeder
Raum im allgemeinen zwischen zwei mit Abstand voneinander angeordneten Seitenwänden
(42, 44), einer Oberwand und einer Unterwand gebildet ist und jeweils eine Stiftaufnahmeöffnung
(50) im vorderen Ende und eine Leiteraufnahmeöffnung (48) im rückwärtigen Ende aufweist,
dadurch gekennzeichnet, daß
die Konstruktion einstückig geformt ist, daß
die Seitenwände (42, 44) der aneinandergrenzenden Oberreihenräume mit Abstand voneinander
angeordnet sind, daß
ein Schlitz (54) in der Oberwand jedes Raums (28,30) gebildet ist, der sich von der
Leiteraufnahmeöffnung zum vorderen Ende zur Freilegung des Leitereingriffsbereichs
eines in dem Raum untergebrachten Anschlußteils erstreckt, wodurch die Leitereingriffsbereiche
der in den Unterreihenräumen (30) aufgenommenen Anschlußteile zwischen den Seitenwänden
benachbarter Oberreihenräume zugänglich sind, so daß sämtliche in beiden Raumreihen
untergebrachten Anschlußteile von der Oberseite des Verbinders aus der gleichen Richtung
an Masse gelegt werden können, daß
die Konstruktion eine Mehrzahl von Modulen (64 oder 84) aufweist, jeder Modul zumindest
einen Oberreihenraum (28) und zumindest einen Unterreihenraum (30) aufweist, wobei
die Stiftaufnahmeöffnungen der Module ein Muster gleicher Konfiguration als ein Teil
der gegebenen Stiftgruppe (12a) bilden, und daß
wahlweise abnehmbare Modulverbindungsglieder (72, 74) vorgesehen sind, die die Mehrzahl
von Modulen miteinander verbinden, wodurch eine gewünschte Anzahl von Modulen von
der modulartigen Verbindergehäusekonstruktion entfernt werden kann, um eine Mehrzahl
von Modulen zur Ausbildung eines Verbindergehäuses (26) mit Stiftöffnungen (50) der
gleichen Konfiguration wie die gegebene Stiftgruppe (12a) zu belassen.
3. Konstruktion nach Anspruch 2, bei der die wahlweise entfernbaren Modulverbindungsglieder
(72, 74) zwischen benachbarten Modulen entweder an der Oberreihe oder der Unterreihe
oder sowohl an der Oberreihe als auch an der Unterreihe gebildet sind.
4. Konstruktion nach Anspruch 2 oder 3, bei der wahlweise entfernbare Polarisierungsmittel
(68) vorgesehen sind, die sich von jedem Modul über dessen vorderes Ende für ein Zusammenwirken
mit einer Stiftmontagefläche hinauserstrecken.
5. Konstruktion nach Anspruch 2, 3 oder 4, bei der
die Räume in der Oberreihe der Räume in bezug auf die Räume in der Unterreihe versetzt
sind, die Seitenwände (42, 44) benachbarter Oberreihenräume mit Abstand voneinander
angeordnet sind und
ein Schlitz (54) in der Oberwand jedes Raums gebildet ist, der sich von der Leiteraufnahmeöffnung
zum vorderen Ende zur Freilegung des Leitereingriffsbereichs eines Anschlußteils (32)
im Raum erstreckt,
wodurch die Leitereingriffsbereiche von in den Unterreihenräume aufgenommenen Anschlußteilen
zwischen den Seitenwänden benachbarter Oberreihenräume zugänglich sind, derart, daß
sämtliche in beiden Raumreihen aufgenommenen Anschlußteile von der Oberseite eines
Verbinders mit einer aus der Modulkonstruktion gebildeten Gehäusekonstruktion (26)
an Masse gelegt werden können.
6. Konstruktion nach Anspruch 5, bei der jeder Modul einen Raum aus einer ersten Reihe
und die beiden angrenzenden Räume der zweiten Reihe, die dem einen Raum der ersten
Reihe am nächsten liegen, aufweist.
7. Konstruktion nach Anspruch 6, bei der
die erste Reihe der Oberreihe und die zweite Reihe die Unterreihe für jeden weiteren
Modul ist und
die erste Reihe die Unterreihe und die zweite Reihe die Oberreihe für die an jeden
weiteren Modul angrenzenden Module ist.
8. Konstruktion nach Anspruch 7, bei der die Seitenwände (42, 44) benachbarter Unterreihenräume
ebenfalls mit Abstand voneinander angeordnet sind, jeder Modul eine die beiden benachbarten
Räume nahe deren vorderem Ende verbindende Stegeinrichtung (86) aufweist und wahlweise
entfernbare Polarisierungsmittel (68) sich von der Stegeinrichtung (86) über deren
vorderes Ende für ein Zusammenwirken mit einer Stiftmontagefläche hinauserstrecken.
9. Verfahren zur Herstellung eines mehrreihigen elektrischen Verbinders nach Anspruch
1, dadurch gekennzeichnet, daß das Verbindergehäuse (26) dadurch gebildet wird, daß
wahlweise Module (64 oder 84) von einer modulartigen Verbindergehäusekonstruktion
gemäß Anspruch 2 entfernt werden.
1. Connecteur électrique à plusieurs rangées permettant de relier un agencement ordonné
d'ergots (12a) à des conducteurs en fil métallique isolé (16), ce connecteur comprenant:
un boîtier (26) en matière isolante présentant des rangées supérieure et inférieure
parallèles de cavités allongées (28, 30) de logement de borne, chaque cavité étant
ensiblement délimitée entre deux parois latérales espacées, une paroi supérieure et
une paroi inférieure, chaque cavité comportant une ouverture d'introduction d'ergot
(50) ménagée dans une extrémité avant et une ouverture d'introduction de fil (48)
ménagée à l'extrémité arrière, les ouvertures d'introduction d'ergot offrant la même
configuration que l'agencement ordonné d'ergots (12a),
plusieurs bornes (32) montées à raison d'une par cavité (28, 30) et comportant chacune
une partie de contact d'ergot (54) située à l'extrémité avant et une partie de contact
de fil (36) située à l'extrémité arrière,
la partie de contact de fil de chaque borne présentant une fente d'écartement d'isolation
(38) destinée à recevoir un conducteur isolé, afin d'écarter l'isolation et d'assurer
un contact électrique avec le conducteur,
les cavités (28) de la rangée supérieure étant disposées en quinconce par rapport
aux cavités (30) de la rangée inférieure, caractérise:
en ce que le boîtier est en une seule pièce,
en ce que les parois latérales (42, 44) de cavités adjacentes de la rangée supérieure
sont espacées entre elles
et en ce qu'une fente (54) est ménagée dans la paroi supérieure de chaque cavité (28,
30) en s'étendant de l'ouverture d'introduction de fil vers l'extrémité avant en vue
de dégager l'accès à la partie de contact de fil de la borne,
de sorte que les parties de contact de fil des bornes qui sont logées dans les cavités
(30) de la rangée inférieure sont accessibles entre les parois latérales de cavités
adjacentes (28) de la rangée supérieure, si bien que toutes les bornes des deux rangées
peuvent être mises à la masse à partir du dessus du connecteur, suivant la même direction.
2. Structure de boîtier de connecteur pour connecteurs électriques destinés à relier
n'importe quel agencement ordonné d'ergots à plusieurs rangées (12a), donné parmi
différents agencements, à des conducteurs en fil métallique isolé (16), cette structure
étant en une matière électriquement isolée, chaque connecteur (10) considéré comprenant:
plusieurs bornes (32) comportant chacune une partie de contact d'ergot (34) située
à l'extrémité avant et une partie de contact de fil (36) située à l'extrémité arrière
et
une structure de boîtier (26) comportant plusieurs rangées de cavités allongées de
logement de borne (28, 30), comprenant une rangée supérieure et une rangée inférieure,
chaque cavité étant sensiblement délimitée entre deux parois latérales espacées (42,
44), une paroi supérieure et une paroi inférieure, chaque cavité comportant une ouverture
d'introduction d'ergot (50) ménagée dans l'extrémité avant et une ouverture d'introduction
de fil (48) ménagée dans l'extrémité arrière, cette structure étant caractérisée:
en ce qu'elle est réalisée en une seule pièce, en ce que les parois latérales (42,
44) de cavités adjacentes de la rangée supérieure sont espacées entre elles,
en ce qu'une fente (54) est ménagée dans la paroi supérieure de chaque cavité (28,
30) en s'étendant de l'ouverture d'introduction de fil vers l'extrémité avant en vue
de dégager l'accès à la partie de contact de fil d'une borne logée dans cette cavité,
de sorte que les parties de contact de fil de bornes logées dans les cavités (30)
de la rangée inférieure sont accessibles entre les parois latérales de cavités adjacentes
de la rangée supérieure, si bien que toutes les bornes logées dans les deux rangées
de cavités peuvent être mises à la masse à partir du dessus du connecteur, suivant
la même direction,
en ce que la structure comprend plusieurs modules (64 ou 84), chaque module comportant
au moins une cavité de rangée supérieure (28) et au moins une cavité de rangée inférieure
(30), les ouvertures d'introduction d'ergot de ces modules formant une disposition
ayant la même configuration qu'une partie de l'agencement ordonné d'ergots (12a) donné
et en ce qu'il est prévu des pièces de liaison de modules (72, 74) pouvant être ôtées
de manière sélective et réunissant entre eux les multiples modules, de sortie qu'on
peut retirer de la structure modulaire de boîtier de connecteur un nombre voulu de
modules, de façon à laisser subsister plusieurs modules constituant un boîtier de
connecteur (26) offrant des ouvertures d'ergot (50) ayant la même configuration que
l'agencement ordonné d'ergots (12a) donné.
3. Structure suivant la revendication 2, dans laquelle les pièces de liaison de modules
(72, 74) pouvant être ôtées de manière sélective sont formées entre des modules adjacents
soit à l'endroit de la rangée supérieure, soit à l'endroit de la rangée inférieure,
soit à l'endroit de l'une et l'autre de ces rangées supérieure et inférieure.
4. Structure suivant l'une des revendications 2 ou 3, comprenant des moyens de détrompage
(68), pouvant être ôtés de manière sélective, qui s'étendant à partir de chaque module
au-delà de l'extrémité avant de celui-ci en vue de coopérer avec une surface de montage
d'ergots.
5. Structure suivant l'une des revendications 2 à 4, dans laquelle les cavités de
la rangée supérieure de cavités sont disposées en quinconce par rapport aux cavités
de la rangée inférieure,
les parois latérales (42, 44) de cavités adjacentes de la rangée supérieure étant
espacées entre elles
et une fente (54) est ménagée dans la paroi supérieure de chaque cavité, en s'étendant
de l'ouverture d'introduction de fil vers l'extrémité avant, en vue de dégager l'accès
à la partie de contact de fil d'une borne (32) située dans cette cavité,
de sorte que les parties de contact de fil de bornes logées dans les cavités de la
rangée inférieure sont accessibles entre les parois latérales de cavités adjacentes
de la rangée supérieure, si bien que toutes les bornes logées dans les deux rangées
de cavités peuvent être mises à la masse à partir du dessus d'un connecteur comprenant
une structure de boîtier (26) obtenue à partir de la structure modulare.
6. Structure suivant la revendication 5, dans laquelle chaque module comprend une
première cavité appartenant à une première rangée et les deux cavités adjacentes de
la seconde rangée qui sont les plus proches de cette première cavité de la première
rangée.
7. Structure suivant la revendication 6, dans laquelle:
la première rangée est la rangée supérieure et la seconde rangée est la rangée inférieure
pour un odule sur deux et
la première rangée est la rangée inférieure et la seconde rangée est la rangée supérieure
pour les modules adjacents aux précédents.
8. Structure suivant la revendication 7, dans laquelle les parois latérales (42, 44)
de cavités adjacentes de la rangée inférieure sont aussi espacées entre elles, chaque
module comprenant des moyens formant cloison (86) reliant les deux cavités adjacentes
à proximité de l'extrémité avant de celles-ci et des moyens de détrompage (68) pouvant
être ôtés de manière sélective et s'étendant à partir de ces moyens formant cloison
(86), au-delà de l'extrémité avant de ceux-ci, en vue de coopérer avec une surface
de montage d'ergots.
9. Procédé de réalisation d'un connecteur électrique à plusieurs rangées suivant la
revendication 1, caractérisé en ce qu'on réalise le boîtier de connecteur (26) en
retirant de manière sélective des modules (64 ou 84) à partir d'une structure modulaire
de boîtier de connecteur suivant la revendication 2.