EP 0.192 883 A2

Europaisches Patentamt
0 European Patent Office

Office européen des brevets

@ Publication number: 0 | 192 883

A2

® EUROPEAN PATENT APPLICATION

@ Application number: 85307895.4

@ Date of filing: 31.10.85

int.ci#: G 06 F 7/00

Priority: 28.01.85 US 695335
Date of publication of application:
03.09.86 Bulletin 86/36

Designated Contracting States:
DE FR GB

@ Applicant: DATA GENERAL CORPORATION
4400 Computer Drive
Westboro Massachusetts 01580(US)

@ Inventor: Brewer, Tony M.
4131 The Oaks Drive
Raleigh North Carolina 27606(US)

Representative: Pears, David Ashley et al,
REDDIE & GROSE 16 Theobalds Road
London WC1X 8PL(GB)

Stack memory system.
A hardware: stack (315 whictr is: foor locations deep is

addressed by a stack pointer (376} constituted by a shift

register having four stages {2-5} corresponding to the four
stack focations. A single one bit in the shift register (316}
marks the stack iocation at which a stack read or stack write
operation will be effected. The bit is shifted left after each
write operation and is shifted right after each read operation.
If the bit is already in the right most stage (5) on a read
operation, a gate (1804) signals stack underflow. The shift
register (315) has two additional left end stages (0, 1). If the
marker bit is in the left most stage (0) at the time of a read
operation, a gate (1803) signals stack overflow.

STAGE POINTER 3416
{SIX-STAGE SHIFT REGISTER)

-

0 1 2 3 q 5

SHIFT RIGHT
BEFORE S'.TACK———‘ [+] l o} 1 o ‘ o}] o} ‘ | j——i};?gﬁLSE;-:CK
REAQ V/IRITE

STACK

READ ADDRESS—-j0 |1 f2 I3
@ SELECTION

LINES /802

UNDERFLOW
OVERFLOW STACK 315

{FOUR LOCATIONS, 0-3)

{12} DATA LINES

FiG 18

Croydon Printing Company Ltd.

STACK
READ

- 0192883

STACK MEMORY SYSTEM

This invention relates to stack memory systems for digital
computers, that is to say memory systems in which
storage locations are utilized sequentially for implementing

last~-in, first-out memory operations.

1 | e e
0192883

Description of the Prior Art:

A (tdted-prbgran'cbmputer typically includes a device
for storing the memory address, or the eqﬁiv;leut thereof, of
the next - '
instruction to be executed by the centtalrptocessing unit;
this device usually takes the form of 2 register, and is
typically called the “program counter®, or ¥YPC". The program
counter typically-is loaded with the starting address of a
desired sequence of instructions, and is incremented from
that point to “point to" successive addresses of the

subsequent instructions.

The next instruction to be executed is typically the
next sequential instruction in the memory device. However,
some of the instructions may be‘?brapchfror *jump?
instructions, which result in next executing an instructiom
“other than the next sequential instruction. Such other

instruction is known as the ¥target® instruction of & branch.

A Yconditional branch® instruction specifies that a
target instruction (other than the next sequential
instruction) will be executed if a certain specified
condition (sﬁch as a machine-state condition or a variable
being eéual to a certain value) is met. If the specified
condition is not met, the next sequential imstruction is

executed.

In a rudimentary digital computer,ran instruction to be
executed is fetched from the memory locatiom indicated by the
program counter. The program counter is then incremented to
point to the next sequential instruction to be fetched. rté
execution of the current imnstruction indicates that branching
is to occur, the program counter contents are overvritten by
the branch address specified by the current branch

instruction. Using the program counter to indicate the

(2)

e

0192883

address in memory of the next instruction, the correct mext

instruction is then fetched.

Another situation in which instructions lté §xecuted in
an order other than that in which they are arrsunged in memory
occurs in conjunction with subroutine calls and returns.
Instruction subsequences that may be needed repeatedly may be
vritten as “eubroutines". Then, when it is deciréd to '
execute one such subsequence, a "CALL" jnstruction appears in
the instruction sequence; the call instruction specifies the
starting address of the subroutine as the imstruction to be
executed next. The last instructionm in the subroutine is a
“RETURN'" instruction, which indicates that the subroutine has
run to completion and that the sequence which called the
subroutine is now to be .resumed at the imstruction
immediately following the CALL instruction (the jostruction
vhich invoked the subroutine).

To facilitate call and return instructions, computers
typically employ a LIFO (last-in, first-out) memory, usually
called a “stack", to store return addresses (i.e., the
addresses of instructiouns followving call instructionms, which
are the addresses at which execution is to be resumed after
executing return instructions). While executing a call
instruction, the program counter contains the address of the
next sequential instruction, having been incremented as
mentioned above after being used to fetch the call
instruction. The prégf;m counter contents are theh‘usually
placed in the next available location in the stsck (often
referred to as the “top of the stack"). The program counter
is loaded with the address specified in th§ call imstruction
as the starting address of the siubroutine, and execution of
the subroutine proceeds from there. When the feturn
instruction is encountered, the pfogtan counter is loaded
vith the address of the instruction at which execution is to

be resumes, i.e. the address of the instruction folloving the

(3)

0192883
call instruction which invoked the subroutine. This address
is found on top of the stack, for it was placed there as part
of the execution of the call instruction.

Associated with the stack is a “stack pointét“i
typically a multibit register with provision for incrementing
znd decrementing by one. A register contsining the address
of some item is commonly s2id to “point to" that item. -The
stack pointer initially points to the first location ia the
stack, is incremented by one vhenever anything is placed on
the stack, and is decremented by one whenever anything is
retrieved fr&ﬁrfhe stack. Thus, the stack pointer always
points to the next available location in the stack. This
?cheme allows fo:r"nesﬁed subroutine calls®, i.e., for a
subroutine to call another subroutine. If, for example, an
idstructioﬁ”ééqdéd§e°hhilcxlled subroutine A which has called .
‘subroutine B, then when subroutine B-eancounters a return
instruction, the address to which it is to returm in
subroutine A is retrieved from the top:of the stack, and the
stack pointef is decremented by one; when subroutine A
encounteré a‘téthrnliditrQCtioﬁ; the address to which it is

P S . - . - . - | 1}
to return in the main sequence is retrieved from the l‘mew

[1]
top of thérétaék, the location to which the stack pointer has
been decremented to point. Calls may be nested over as many

levels as there are available locations in the stack.

Ihé st#ckipdttionsrof'prior art machines typically hold
the address of the next'memo:y location to be accessed in the
stack. ,For"ééﬁh ﬁémory accesé, the contents of the stack.
pointer must be’decéded (ﬁéually'accomplished by gating
logic) to select the corresponding memory location.
Additiona] gating must be émplojed to determine whether the
stack has overEIowed'(f.e., an attempt was made to exceed its
capacity) or underflowed (i.e., an attempt was made to

Tetrieve non-existent contents).

(&)

0192883

Throughout this document, the term "branching® will be
used to denote the situation that exists when the next
instruction to be executed is other than the next .sequential
one, regardless of whether this is because of.‘ branch

instruction, a call instruction, or a return instruction.

Efforte to speed up the operation of digital computers
have included such improvements as "instruction prefetching",
vherein the next instruction to be executed is fetched from
memory while a current instruction is still executing. Thus,
execution of an instruction can commence immediately upon the
completion of the execution of the previous instructiomn and
the central processing unit is not delayed while memory

accesses, bus transfers, and the like take place.

A problem in extracting the full benefit from
instruction prefetching occurs in conjunction with
conditional branch instructions. It usually cannot be known'
vhether & conditional branch is to take place until some
point near the end of execution of the conditional branch
instruction, by which time the next sequential instruction
(not the target instruction) should already have been
fetched. A delay tﬁen ensues while fetching the target
instruction. Various approaches have been tried to limit
this delay in fetching the target imstructiomn, such as
mechanisms for predicting the outcome of a conditional branch
(see, for example, U.S. Pafeﬁt 4,430,706 issued to Sand), or
assuming that conditional branches will always be taken (or
never be taken), and requiring the programmer to comstruct
his programs in as close conformance as possible to the
assumption. (For example, in coding a loop that is to be
executed twenty times, the programmer can employ amn exit
branch that is not taken twenty timee and then taken once, or
alternatively a return branch that is taken twenty times and

then not taken once.)

(5)

0192883
Despite these various approaches, the prediction or
assunmption is not alvays correct-- the vrong instruction has

been prefetched, and a déluy ensues vhile fetching the

correct mnext imstruction.

(6)

\ 0192883
SUMMARY OF THE INVENTION:

This invention is embodied in a microinstruction-controlled
microcomputer including a control store for storing microinstruc-—
tions which may include conditional branch instructions. The
inpvegtion provides a dual prefetch path for prefetching both the
next sequential microinstruction and the target microinstruction
specified by a branch microinstruction. The invention also
provides for selecting, prior to the conplétion of exeigtion of
the conditional branch,ingbtdction, vhich of the two piéfetched
microinstructions is to be executed next. This permits execution
of microinstructions without delays attributable to fetching of
the next microinstruction, even in the presence of conditional

branch instructions.

It is thus an object of the present invention to provide

improved digital computers.

It is another object of the présept,ihvenCion to provide

faster digital computers.

It is a further object of the present invention to provide
computers in which, during the execution of an instructiom, both
possible next instructions are prefetched in order that execution

of the correct nmext instruction may begin immediately.

Other objects of the pteéent nvention will be understood by
those of ordinary skill in the art, after referring to the
description of the proferred embodiments and the appended

dravings,

(7\

0192883
In the Drawings:
Figure 1 is a block diagram of the microcode control scheme

of a prior art machine employing microinstruction

prefetching.

Figure 2 -is .a timing chart depicting the timing of an assumed
" microinstruction sequence running on the prior art machine of

Figure 1.

Figure 3 is an overview of the microinstruction fetching

scheme of the present invention.

Figure 4 is a timing chart depicting the timing of an assumed
microinstruction sequence running on a machine embodying the
present invention.

Figures 5 and 6 depict the circuitry which comprises the

branch address nmultiplexor of the present invention.

Figure 7 shows the circuitry vhich comprises the branch latch
and branch address inc:ementing means of the present

invention.

Figure 8 shows the circuitry comprising the program counter
" and program counter incrementing means of the present

invention.

Figure 9 shows circuitry comprising the program coumter imput

multiplexor of the present invention. .

Figure 10 shows circuitry for branch address forwarding of

the present invention.

- Figure 11 depicts the control store address input multiplexor

of the present invention.

(8)

0192883

Figure 12 depicts the microinstruction control store of the

present invention,

Figure 13 depicts the microinstruction prefetch register of

the present ioveuntionm.

Figure l4 depicts thé microinstruction prefetch buffer of the

present ianvention.

‘Figure 15 depicts the microwvord register of the present

invention.

Figure 16 is a detailed timing chart of a hypothetical
, microinstruction sequence running oo the machine of the

present invention.
Figure 17 shows a memory addressing scheme of the prior art.

Figure 18 is a high~level overviev of the stack addressing

scheme of the present invention.

Figure 19 depicts the stack pointer circuit of the present

invention.

Figure 20 shows the stack of the present invention.

Figure 21 shows certain gating circuits of the present

inventioun.
-DETAILED DESCRIPTION:
Table 1 outlines pertinent portions of a hypothetical

microinstruction stream that will be used for illustrative

purposes throughout this description:

(9)

A

TABLE 1 0192883

LOC CONTENTS
100 COND. BRANCH TO 400 (assume NOT taken)
101 COND. BRANCH TO 200 (assume TAKEN)
102 (microinstruction) (not reached)
*
*
R) *
200 COND. BRANCH TO 500
201 (microinstruction)
- *
*
*

Figure] shows the microimstruction fetchingrand execution
portions of a prior art machine employing instruction
prefetching. Program Counter (PC) 10l is initially loaded with
the starting address of a desired sequence of microimstructions by

initial load means 102. Control store 104 contains sequences of

microinstructions.

During a microinstruction cycle, the contents of PC 10l are
forwarded to control store 104, which fetches the micro- 7
instruction from the location whose address was received from PC
101, and forwards the fetched microinstruction to prefetch
register 105, Increment means 103 increments PC 101 so that PC
101 is ready to address the next sequential microinmstruction on
the next fetch.

During the next microinstruction cycle the microinstruction
 from prefetch register 105 is transferred to microinstruction
register 106 where it is decoded and then executed by ALU 108.
(MALU" denotes 'Marithmetic and logic unit", that portionm of a
computer's central processing unit that actually performs the
operations specified by the instructions.) Concurrently with
executing the microinstruction presently in microinstruction
régistet 106, the next sequential microinstruction is prefetched

by means described in the preceding paragraph.

(10)

0192883

If a microinstruction is to branch (either because it
specifies an unconditional branch, or because it specifies a
conditional branch and the condition is met) the branch address
contained within or specified by a field of the branch
microinstruction is input over lines 109 to'PC 101, so that the
next prefetch will be of the target microinstruction specified by

the brench microinstruction.

Figure 2 shows the timing that would result when the prior
art machine depicted in Figure 1 executes the microinstruction
sequence’ of Table 1. Assuming that microinstruction 100 has been
prefetched prior to cyclgrl, it will be in the microimstruction
register 106 and will be executed during cycle 1. Also during
cycle 1, microinstruction 101 will be prefetched from the control
store 104 under control of the PC 101, which, as described above,
bas been incremented to 101 after fetching microinmstruction 100.
After micréinstruction 101 has been pref?tcﬁed, the PC 101 is
incremented to 102. Microimstruction 101 will be placed in the
prefetch register 105 . At the start of cycle 2, microinstruction
101 is transferred from the prefetch register 105 to the
microinstruction register 106. It is executed during cycle 2.
Also during cyc1e 2, microinstruction 102 will be prefetched and
the PC 10! will be incremented to 103.

During execution of microinstruction 101, ALU 108 determines
that the specified conditional branmch is to take place, i.e., the
next microinstruction to be executed is microimnstructiomn 200. The
number "200" from the branch address field of microinstruction 101
is loaded into the PC 101, overwriting the number "103" to which
it had been incremented. Microimstruction 200 has not been
prefetched~- microinstruction 102 has been prefetched because it
vas not known at the beginning of cycle 2 that the branch to 200
would take place. (The specified conditions could not be examined
until some point during cycle 2.) Thus cycle 3 is lost to the ALU
108, since the microinstruction it should execute during cycle 3

has not yet been fetched from control store 104. Cycle 3 must be

(11)

AR
0192883

devoted to prefetching microinstruction 200 from control store
104. PC 101 is incremented to 201, wvhich is the instruction that
will be fetched during cycle 4. MHicroinstruction 200 is
transferred to the microinstruction register 106 at the start of

cycle 4 for execution by ALU 108 during cycle 4.

The prefetch scheme of the ytesenc'invention,'vhich
éliuingtes the problem of lost inmstruction cycle time due to
incorrect prefetches for conditional branches, is gshowan ia
high-level block diagrem form in Figure 3. (Subseqﬁent figures
will disclose more detail.) A major differemce between the prior
art and thig invention is the dusl prefetch path, conpriting
prefetch register 308 and prefetch buffer 309.

In therpresent embodiment, every microinstruction is a
conditional branch, conditional call, or conditional returm
microinstruction. Thus, every instruction has the potential to
specify reither of two instructions as its successor im execution.
Therefore, twvo microinstructions are prefetched during every
nicroinstruction,cycle. In embodiments wvherein sone
microinstructione do not have this potential, it would be possible
té prefetch only one microinstruction during the execniion of

those microinstructions.

During the first half of a microimstruction's execution
cycle, prefetch register 308 receives the next sequential '
microinsttuction from control store 307; during the second half,
prefetch buffer 309 receives the branch target microinstruction
frOmVCOntrol store 307. Either prefetch register 308 or prefetch
buffer 309 wmay load microword register 310 with the
microiostruction to be executed next, depending on the
determination made during the curreat execution c&cle of whether

the branch is to be taken.

- The addresses used to prefetch microinstructions are provided

to control store 307 by MUX 306, which may obtain the addresses

(12)

434;%% v .
0192883

from any of three sources: (1) branch addresses obtained from (a)
the current microinstruction in wmicrovord register 310 or (b)

from stack 315, one being selected and passed through branch MUX
302 and forvarding circuit 313; (2) a previous branch-;ddgg..
stored in branch latch 314, as incremented by branch +1 adder 304
and passed through PC MUX 305; or (3) PC (program counter) 301, as
incremented by .PC +1 adder 303 and passed through PC HUX 305. PC
MUX 305 can lodd PC 30! rd'ready it for its next use, loading it
vith either its former contents as incremented by PC +1 adder 303,
- .or the branch address from branch latch 314 as incremented by
brlnch,tl=1&det 304. The interactions between these three address
source paths and the PC loading path will be discussed in detail

below.

When executing call instructioms, the contents of PC 301 are
retained in stack 315 for use by subsequent return imstructions,
in addition to being retained in PC 30l. 'Stack pointer 316
controls the addressing of“stack 315 as will be discussed further

on.

The microinstructions fetched by control store 307 are, as
mentioned above, brought to microword register 310 either through
prefetch buffer 309 or prefetch register 308. Once in microword
register 310, they are executed by ALU 312. ALU 312, wvhich
executes the microinstructions contained in microvord register

310, can be a conventional ALU and will not be described herein.

Control store 307 is accessed tvice.per microinstruction
cycle: once to prefetch the microinstruction that is stored
sequentially after the microinstruction which is currently
executing, ;nd once to prefetch the branch target microimstruction
of the microinmstruction that is'currently being executed. At the
conclusion of executing the current microinmstruction, at which
time it will be known wvhether a conditional branch is to take

place, both possible next microinstructions have been prefetched

(13)

Ay
0192883

‘and executiom of the correct one of the two can cammence without
any delay to fetch a different microinstruction.

Prefetching the next sequentisl microinstruction is done
during the first half of the microinstruction execution cycle, and
prpceedi in one of two ways, depending on whether the currently
executing microinstruction was reached sequentially from a
previous microinstruction, or was reached by being & bramch
target. The reason for this distinctionm will become evident

during the discussion of how branches are effected.

First, consider the case where the currently executing
microinstruction was reached because it was a branch target micro-
instruction. Its address is stored in branch latch 314, for
reasone that will be described later. The address of the
currently executing microinstruction, nog.gtored in branch latch
314, is incremented by one by ‘branch +l1 adder 304 to indicate the
next sequential microinstruction in the path after the currently
executing microinstruction. The incremented address is selected
by PC MUX 305, in résponse to a timing signal, and passed to MUX
306 to control store 307, which will use that address to prefetch

the next sequential microimstruction.

Second, consider the case where the currently executing
microinstruction was reached sequentially from a previous
'microinstruction, and not as a result of a branch. 1Its address is
stored in PC 301 for reasomns that will be described as the
description progresses. PC +1 adder 303 increments the address by
one 50 as to denote the next sequential microimstruction. The
incremented address is selected by PC MUX 305, io response to a
timing signal, and passed through MUX 306 to control store 307,
which ‘uses that address to prefetch the next sequential

microinstruction.

The next sequential microinstruction regardless of whether

its address was obtained from branch latch 314 or PC 301, is

(14)

S 15 0192883

stored in prefetch register 308 pending the determination of
vhether the currently executing microinstruction is to branch, as

discussed below.

Prefetching the branch target microinstruction of the
.currently executing microinstruction is done dufing the second
half of the current nicrqinotruction cycle. Branch addressee 311,
specified in the cutfentiyfexecucing,nicrbinstruction contsined in
microword register 310 or -obtained from stack 315, are forwvarded
to branch mux 302 wvhich selects the appropriate one of the branch
addresses (in response to the ALU and bused upon the currently
executing microinstruction) and forwards it through branch address
forwarding circuit 313 and through MUX 306 as the address input to
control store 307. Control store 307 fetches and applies the
. 96-bit branch target microinstruction to the inputs of prefetch
buffer 309. The branch target microinmstruction is then available
to be gated through prefetch buffer 309 in’ the event that it is
needed; i.e., that the conditional branch specified in the
currently éxécuting microinstruction is to be takemn. The branch
address from branch address forwarding circuit 313 is retained in
branch latch 314 for possible use dutxng the first half of the

next microinstruction cycle.

Near the end of the current microinstruction cycle, ALU 312
determines, from current conditions, whether the currently
executing microinstruction is to branch. If it is, then the
branch targét microinstruction, which is nov available at the
inputs of prefetch buffer 309, is gated through prefetch buffer
309 and into microwvord teéister 310, wvhere ALU 312 will execute it

during the next cycle.

Alternatively, if the current microinstruction is not to
branch, then the next sequential microinmstruction, which, as
discussed previously, is stored in prefetch register 308, is gated
into microword register 310, where ALU 312 will execute it during

the next cycle. Also, if the current microinstructionm is not to

(15)

A€ |
0192883

branch, PC HMUX 305 at this time loads PC 301 with the address of
the next sequential microinstruction, wvhich as previously
discussed is either the contents of branch latch 314 incremented
by one, or the old PC 301 contents incremented by one. Thus, at
the start of execution of the next microinstruction, its address
is contained in'PC 301 if it was reached sequentially. _Conversely
then, if the next microinstruction was a branch target, the -
contents of PC 301 are disregarded and the microinstruction's
raddtess vill be found, as discussed above, in branch latch 314.
Sequential execution from that point will proceed nccotdingly from
either the PC 301 or the branch latch 314 addresses.

Figure 4 shows the timing when executing the microinmstruction
sequence of Table 1 on the micfocomputet using the present
invention. During microinstruction cycle 1, microimnstruction 100

is executing. (In the present embodiment, the microinstruction

‘- cycles are each 140 nanoseconds (ne) in dération.) During the

first 70 ns of cycle 1, microinstruction 101 (the next sequential
microinstruction) is prefetched, as previously discussed, to
prefetch register 308. During the last 70 ns of cycle 1,
microinstruction 400 (the target of the conditibﬁal branch of
micrdinstrﬁction 100) is prefetched, as discusced aﬁove, to
prefetch buffer 309. At the conclusion of cycle 1 the exeéution
logic,determineé (as bas been described) that the conditiomal
branch to 400 is not to be taken; thus microinstruction 101 will
be transferred from the prefetch register 308 ﬁo the microword
register 310, aod will be the microimstruction to be executed
during cycle 2, the next cycle. Microinstruction 400, available

through prefetch buffer 309, is ignored.

During the first 70 vs of cycle 2, microinstruction 102 (the-
next sequential microinstruction) is prefetched to the prefetch
register 308, and during,the'second 70 ns microinstruction 200
(the conditional branch target microinottuctioq) is prefetched to
the prefetch buffer 309. At the conclusion of cycle 2 the

execution logic determines that the conditional branch to micro-

(16)

#¥F
0192883

instruction 200 ie to be taken; wmicroinstruction 200 is
transferred through the prefetch buffer 309 to the microword
register 310 and thus will be executed during cycle 3.
Microinstruction 102, in prefetch register 308, is ignored. No
time is lost between microinstruction cycles because of incorrect

prefetches; both possibilities of a branch are always prefetched.

Now follows a detailed description of Figures 4 thtouéh 15,
which depict the logic circuits implementing cbé present
inventiqn. Refer to Figure 3 while referring to these figures,
and particularly to the reference signal names shown on Figure 3.
Certain timing signals will be mentioned in the discussion.

Timing constraints have been discussed above, and will be further
discussed in conjunction vith Figure 16. The generation of timing
signals to conform to stated constraints is well known in the

literature and will not be detailed bherein.

Figures 5 and 6 together depict the logic of branch MUX 302,
A MUX (2 common designation for "multiplexor") is a device for
selecting one of a plurality of signals. Branch MUX 302 is used
to select one of branch addresses 311. Since control store 307
has & capacity of 4096 locations, a 12-bit address is required to
addrees any of those locatioms. Branch MUX 302, then, has the
ability to select one of a plurality of 12-bit branch addresses.
Figures 5 and 6 depict twelve similarly configured logic groups,
each for handling a different one of the requisite twelve bits,
numbered 00 through 11. Group 501 on Figure 5 (for handling bit
02) is deemed to be representative of the twelve logic groups: it
hae multiple inputs, those inputs being bit 02 of each of branch
addresees 311 originating from bit positioms of microword register
310 or from stack 315 as will be discussed further on. By means
of gating, group 501 selects one of those as the one tec output as
signal BRADRO2. Methodologies of laykng out ianstruction sets,
including methodologies of specifying branch addresses, are well
known in the literature and will not be discussed herein. Designs

for combinatorial gating to select one of a plurality of imnputs

(17)

. A48
\ - 0192883

are likevise well known, and will likevise not be discussed
heréin. In the wmanoer in which group 501 produces signal BRADRO2,
all tvelve logic groups working in concert produce the twelve bit
,br:nchrqdﬁteaa BRADROO through BRADR11l, which is input to bramch

address forwarding circuit 313, depicted in Figure 10.

Figure 7 ehows the logic comprising branch iatch 314 snd
branch +1 adder 304. Elements 701 through 707 comprise branch
latch 314. 701 and 702 are single Iatch-citcuits,-and 703-th:ough
707 are dual latch circuits, yielding a total of 12 latch circuits
for conFaining the twelve-bit address. (A latch is a bistable
circuitrvhich. vhen its clock input is a logic bigh will simply
pass the state of its datarinput thfough to the data output, and
vhich stores the state of the data input at the time its clock
~input transits to a logic low.) The twelve-bit input to branch
latch 304 is the address BRADOO through BRADIL from branch address
Eorvardingrcifcuit 313 (Figure 10), which is stored in bramch
rlatch 314 and then appears on signal line; fRLOO through BRL1l1l.:
These signal lines are input to half adders 708 through 718, which
conmprise branch +1 adder 304. The operation of half adders is
known in the literature and will not be discussed here. The
output of branch +]1 adder 304 is the 11 address bits BRFPADOO
through BRPAD1O. Bit 11 (the least significant bit) is not
included in the increment calculation because binary addition by
onersimply toggles (complements) the least significant bit. This
toggling is accomplished at the input of PC HUX 305, to be
discussed with Figure 9. The contents of bits 00 through 10, in
conjunctior with a toggled state of bit 11, together represent a
iZ—bit address which is ome greater than the 12-bit address in
branch latch 314. This address is output to PC MUX 305 (Figure
9).

Figure 8 depicts 12 flip-flops 801 through 812 comprising PC
301 and half-adders 813 through 823 comprising PC +1 adder 303.
(A flip-flop is & bistable circuit vhich stores a state of one

binary bit at the time its clock input makes a transition.)

(18)

Ay
0192883

Inputs are the address PCADROO through PCADRIl from PC MUX 305
(Figure 9). Operation is similar to that of branch lateh 314 and
branch +1 adder 304. Outputs PCPADOO through PCPADIO are input to
PC MUX 305 (Figure 9).

Figure 9 is the logic diagram of PC MUX 305. 2:1 NuX's 901,
902, and 903 each handle four bits of the total 12 bit address.
Two tvelve-bit addressés are presented as the inputs: PCPADOOD
through PCPADIO and PCRLl from PC 301 and PC +1 adder 303; and
BRPADOO through BRPAD1O and BRL1l from branch latch 314 and branch
4] adder 304. Note that the inverse states of the PCPAD and BRPAD
gignals are input to the 2:1 MHUX's, But the non-inverse states of
PCR11l asnd BRL1l are input (pins A3 and B3 of 2:1 MUX 903); this
sccomplishes the toggling of the least significant bit mentioned
above "in connection with incrementing by one. One of the two
twelve-bit addresses is sélected depending on the conditions
previously discussed, and-is output as the tvelve-bit addresa
PCADDROO through PCADDRL1 to MOUX 306 (Figure 1l1), and as the
tvelve-bit address PCADROO through PCADR1ll to PC 301 (Figure 8).

Figure 10 depicts the logic diagram of branch address
forwarding circuit 313. It receives the twelve-bit branch address
BRADROO through BRADR1l from branch MUX 302 (Figures 5 and 6), and
generates, by conventional gating means, the twvelve bit branch
address BRADDROO through BRADDR11l to MUX 306 (Figure 11), and the
twvelve-bit branch address BRADOO through BRADIl to branmch latch
314 (Figure 7). The output address has the same value as the
input address, but is established in the necessary timing

relationships previously discussed.

Figure 11 depicts the logic diagram of MUX 306, comnstructed
of three eight-bit 3916 buffer line drivers 1101, 1102, and 1103..
Each of these has the ability to functiom as a 2:1 MUX: a logic
low on pin 1 causes the signals on pins 2, 4, 6, and 8 to be
passed to output pins 18, 16, 14, and 12 respectively; a logic low

on pin 19 causes input signals on pins 11, 13, 15, and 17 to paes

(19)

Zo i}
0192883

to output pins 9, 7, 5, and 3 respectively. It js teen that the
24 output pins are conmected together in 12 pairs. (For example,
pin 18 of buffer line driver 1102 bears the signal name UADDROO,
and pin 9 of buffer lime driver 1103 bears the same signal name.
This implicitly indicates that those tvo pins are wired

together.) Thus, depending on the state of the gignal UIRCLK 1101
(to be discussed in more detail in the discusecion of Figure 16)
‘either the 12-bit address BRADDROO through BRADDR1L, or the 12-bit
address PCADDROO through PCADDR1l, vill be gated through to the
lines UADDROO through UADDRIl, which act as the address input to
control store 307 (Figure 12).

Figure 12 is the logic diagram of control store 307, which
comprises twenty—-five 4K by &4 bit RAM chips, resulting in a 4K by
100 bit store. The twelve bit address UADDROO through UADDRILI1 is
applied in parallel to each of the twenty—five chips which,
assuming the CWRITEn sigunals to be FALSE, ‘each output four of the
bits of the location specified by the address. (CWRITEn will be
TRUE only when loading control store 307, not discussed herein.)
The 100 output lines CS00 through CS99 comprise the 100 bit output
of control store 307. Only the 96 bits CSO00 through CS95 are
"presently used in the current embodiment.

Figures 13 and 14 are the logic disgrams of prefetch tegister
308 and prefetch buffer 309 respectively, which together comprise
the dual prefetch path of the present invention. Prefetch
register 308 comprises a 96 bit register, packaged as 12 octal
(i.e., eight circuits per package) flip—flop chips. It is loaded,
as previously discussed, with the microinstruction that is to be
executed next if the current microinstruction does not branch, the
microinstruction appearing on the control store 307 outputs CS00
through CS95 at the end of the first 70 ns of the 140 ns 7
microinstruction cycle, as controlled by the signal LAST70CLKn
coming TRUE. The 96 outputs SELUIROO through SELUIR9S (when
enabled by the by the FALSE state of the output—enable signal
- TESTPASSEDn) are the inputs to microword register 310. If the

(20)

2
0192883

current microinstruction is not to bramch, t)': microinstruction
from prefetch register 308 will thus be transferred to microwvord

register 310 and become the next executing microinstruction.

Prefetch buffer 309 comprises 12 octal buffer linme drivers.
.Note that these are not flip-flops, and thus the prefetch buffer
309 is not a register; (i.e., it does not store the control store
" 307 outputs, but only passes them on to microword register 310).
When enabled by the TRUE state of the TESTPASSEDn signal, prefetch
buf fer 309 passes the branch target microinstruction, appearing on
the 96.codtrol store 307 outputs CS00 through CS95 at the
conclusion of the current microinstruction cycle through to the
microword register 310 inputs on lines SELUIROO through SELUIRYS.
If the current microinstruction is to bramch, it is through this
path that the tirget microinstraction becomes the next executing

microinstruction,

Figure 15 is the logic diagram of microword register 310,
comprising 25 4?bit shift register chips. -The inputs are the 96
lines SELUIROO through SELUIR95, which as discussed above come
from prefetch register 308 if the present microimstruction is not
to branch, or through prefetch buffer 309 if the present
microinstrucrtion is to branch. SELUIRQ0O through SELUIR95 will be
clocked into microword register 310 by the TRUE-transition of the
signal UIRCLKn 150)l. The outputs of microword register 310
directly control the proceseing elements of the microprocessor
" (the ALU 312); thus, the microinstruction that is loaded into

microword register 310 becomes the executing microimstruction.

Figure 16 shows detailed timings of the interactions between
control store 307, prefetch register 308, prefetch buffer 309, and
microword register 310 for the instruction sequence of Table 1.
Line 1601 defines 3 consecutive microimstruction cycles, and liae
1602 sssociates thew with nanosecond timing. It is assumed that
microinstruction 100 (from Table 1) is executed durimg cycle 1.

Given that microinstruction 100 is a conditional bramnch to 400,

(21)

0192883

vhich is assumed not to be taken, ve nov consider hov

microinstruction 101 (the next sequential mictoinst:uction) is
executed during cycle 2.

It is assumed that the currently executing microinstruction,
microinstruction 100, was reached by being the next sequential
instruction microinstruction to a previously executed
microinstruction. Ae previously discussed, its address (100) is
at this time contained im PC 301. (Had it been reached as a
branch target its address would be in bramch latch 314, as
previously discussed.) As previously described, during the first
70 ns of cycle 1 the address (100) of microinstruction 100 is
incremented by one, to 101, through PC +]1 &adder 303, fed through
PC MUX 305 and MUX 306 to comntrol store 307. Late during the
first 70 ns of cycle 1, the microinstruction from locatiom 101 is
available at the control store outputs, as shown by line 1607. As
line 1604 shows, the signal LAST7OCLK 1302 goes TRUE during this
time, storing the microimstruction in prefetch register 308 (see
Fig. 13). As line 1608 shows, microinstruction 101 remzins stored
in prefetch register 308 until the next IRUE—tFansition of
LAST70CLK, 140 ns later. During the last 70 ns of cycle 1,
control store 307 is accessed with the branch address of target
microinstruction 400, as obtained from currently executing
microinstruction 100. As previously described, this is obtained
through branch HUX 302 and MUX 306. Branch target
microinstruction 400 is available at the CS outputs late in cycle
1, as line 1607 shows. Reference to Figure 14 reveals that the
control store outputs are input to prefetch buffer 309; however,
Vtheyrvill not be gated through prefetch buffer 309 at this time
because signal TESTPASSED is not TRUE (line 1606). TESTPASSED is
TRUE if the current microinstruction is to branch, and our
sesumption is that current microinstruction 100 will mot branch.
Meanvhile, with reference to Figure 13, the FALSE state of
TESTPASSED 1401 enables the contents of the prefetch register 308
(those contents being microinstructiom 101) to be gated onto the

SELUIR lines, as shown on line 1609. At time 140 ns, signal

(22)

>,

L)
0192883

UIRCLK goes TRUE (lime 1605). Referring to Figure 15. this
traneition of UIRCLK clocks the SELUIR lioes into microword
register 310 (line 1611). Thus, microinstruction 101 occupies the
microvord register, and is the currently executing instruction,
during cycle 2. The value 101" is transferred from PC MUX 305 on
signal lines PCADROO through PCADRLl into PC 30l for use in the
fetches that will take place during cycle 2.

Since Table 1 assumes that microinstruction 10l includes a
conditional branch to 200 that is to be taken, microimstruction

200 vill occupy the microword register during cycle 3.

Similarly to cycle 1, the next sequential control store
location (location 102, the address being obtained by taking the
value 10l from PC 301 and incrementing it to 102 im PC +]1 adderx
303) is accessed during the first 70 ns of cycle 2 (line 1603) and
microinstruction 102 is available at the control store outputs
(line 1607) in time to be gated by LAST70CLK into the prefetch
register (line 1608). The incremented address 102 is stored im PC
30l. Control store location 200 (the target address obtained from
microinstruction 101) is accessed during the second 70 ne of cycle
2 (line 1603), and branch target microinstruction 200 is available
at the control store outputs and prefetch buffer inputs late in
cycle 2 (line 1607). The value 200 is stored in branch latch
314. ALU 312, baving determined that this branch is to be taken,
will raise the signal TESTPASSED (line 1606). Referring to Figure
13, TESTPASSED inhibits gating next sequential microimstruction
102 from the prefetch register onto the SELUIR lines (line 1609);
with reference to Figure 14, TESTPASSED enables gating branch
target microinstruction 200 through the prefetch buffer onto the
SELUIR lines. At time 280 ne, UIRCLK transits to TRUE (line
1605). Referring to Figure 15, this clocks branch target micro-
instruction 200 from the SELUIR lines into microword register

310. Thus, branch target microinstruction 200 is executed during
cycle 3.

(23)

A

-

0192883

'Dﬁring the first half of cycle 3, microinstruction 201 is to
be prefetched (lise 1607). Since the currently executing
mictoinctruction (200) was reached becsuse it was a branch target,
- PC 301 will not come into play; the value 200 is stored in branch
latch 314, and branch +1 adder 304 increments to the t;quited
-agdresc of 201.

During the last half of cycle 3, executing wmicroinstruction
200 specifies 500 as its target address, and microinstruction 500
is prefetched. One of the two will be selected to execute during

cycle 4, not discussed herein.
Now follows a discussion of stack 315 and stack pointer 316.

A prior art echeme for addressing a stack is shown in Figure
~17. Stack 1703 is a memory device with some number of memory
Iocations, here four. Stack pointer 1701-is a £lip flop register
for cbntaiﬁing the address of the location in stack 1703 which it
is desired to accesgs, Increment/decrement means 1705 can add or
subtract by one the contents of stack pointer 1701. (Since stack
locations are addressed in sequence, no provision is needed to
load }tack,pointer 1701 with arbitrary contents, a&as would be the
case for a random access memory.) Stack pointer 1701 must be able
to contein as many values as there are locatioms in stack 1703.
VVSince stack 1703 has four locations, the two bit positions of
stack pointer 1701 can be incremented through the four

combinations 00, 01, 10, and 11.

In order to select a particular one of the four locations in
stack 1703 it 1is typically necessary to enable an [address
selection line" by decoding the contents of stack pointer 1701.
Decoder 1702 comprises combinatorial gating to recognize each of
the possible contents of stack pointer 1701 and enables the
corresponding one of the four address selection lines 1706, which

results in transferring data between the corresponding location of

(24)

>3 L
0192883

stack 1703 and bus 1704, '(Operation of storage devices is well

known in the literature and will not be discussed herein.)

Additional gating may be incorporated in decoder 1702 in
order to detect 'overflow! and 'underflow™. (By convention, a
stack is agid to overflow when an attempt is made to exceed the
cap;cicy,ﬁf,the stack; it is said to underflow when an attempt isc
viade to retrieve data from a stack when no data has previously

been stored inm it.)

Figure 18 presents an overview of the stack addressing scheme
of the present invention. Stack 315 contains four twelve-bit
locations, each of which is enabled by one of the address
selection lines 1802. Each of address selection lines 1802 ig the
"output of a stage of stack pointer 316, which is not, as in the
prior art, an increment/decrement register, but is a shift
register. Stack pointer 316 must contnih'nt,least as many stages
as there are locations in stack 315. (In the .present embodiment,
the number of stages in stack pointer 316 ie two greater than the
number of locations in stack 315. As will be discussed below, the
" two additional ;tnges aid in detecting overflow.) Stack pointer
316 ic initially loaded with one 1 bit in its rightmost stage
(ctage 5) and is filled out with O bits. The 1 bit is shifted
left after each stack write, and shifted right after each stack
read. The stage containing the 1 bit at a given time has its
output in the TRUE state; since the output lines of stack pointer
316 are in fact the address selection lines 1802, the correct
address selection line is TRUE without the necessity for any of
the gating or decoding which the prior art schemes require. Since
many applications require stacks to operate quickly, it is an
advantage that the delays associated with gating are eliminated.
While the ghifting of the bit is left to right as described above,
this can be reversed and still result in utilizing the invention

described herein.

(25)

b/4

0192883

The present embodiment uses stack 315 for only one purpose--
storing the addresses of nicroinltrpctions folloving call
microinstructions for subsequent use by return microinstructions.
1f, for example, microinstruction 700 is a call microinstruction
that invokes a subroutine, the addrees 701 (derived, as previously
discussed. by incrementing the 700 in PC +1 adder 303, passing it
through PC MUX 305 onto the PCADROO through PCADRLL lines and
loading it into PC 301) is output from PC 301 and storedion,the
top of the stack. When the subroutine executes & return
microinstruction, the address 701 is retrieved from the top of the
stack acd input to branch MUX 302 as the next microinsﬁtuction
address. Eietution thus returns to the microinmstruction following

the call microinstruction.

In the present enbodinént. the contents of PC 301 are written
to the next available stack location every microinstruction
cycle. However, stack pointer 316 is shifted to the left only if
‘the current microimstruction is a conditional call
microinstruction and if the specified conditions are net.
VIhefefore, only the PC 301 contents which are ig fact the return
addresses of call microinstructions that cause branching are
retained in the stack-- for sll other microinstructions, failing
to shift stack pointer 316 results in keeping the same stack 315
location selected, and it will the contents will be overwritten

during the next microimstruction cycle.

As bas been discussed, stack pointer 316 is initially set to
all zero bits except for a 1l bit in stage 5. The 1 bit in stage 5
selects location 3. When location 3 is writtem into om & call
microinstruction, the stack pointer 316 is shifted one stage to
the left after writing so that the 1 bit is in stage &, selecting .
location 2. Three more call wicroinstructions would result in
£illing 1locatioms 2, 1, and 0, shifting the one bit to stages 3,
2, and 1 respectively, at which point the stack would be full.
Another attempt to store a return address in stack 315 shifts the

one bit to stage 0. Nothing is actually written to the stack,

(26)

e o N
0192883

there being no stack location associated with stage ! of stack
pointer 316. This constitutes overflow, but the present
embodiment does not detect overflov until sn attempt is made to
retrieve the data that could not be written. The next attempt to
redd from stack 315 (an attempt to read back the data that could
‘w6t be vritben) produces the OVERFLOW gsignal from gate 1803.

When the stack is empty (whether because nothing has ever
been written in it .or because everything writtem in it has been
read back) the 1 bit will be in stage 5 of shift register 316. An
attempt to read the stack at that time will not shift stack
pointer 316, but will produce the UNDERFLOW signal from gate 1804. .

Figure 19 shows the logic disgram of stack pointer 316. It
comprises six D flip-flops. (A D flip-flop captures and stores
the state of the D (data) input at the time the CLK input transits
to a logic high.) Stage 0 is depicted at ‘the top (element 1903)
(conventionally called the “left") and stage 5 (associated with
the first location in stack 315) at the bottom (element 1904)
(conventionally called the Mright"). Gating group 1901 is enabled
by the BR TYP bits of tﬁe currently executing microinstruction
being equal to 01, specifying a conditional call microimstruction,
and by the TSTCNDO signal indicating that the requisite conditions
are met, to produce the C STKC signa), indicating that a call
microinstruction is to be perforxmed. Similarly, BR TYP bits being
equal to 11 and TSTCNDO produce signal R STKC from gﬁting group

1902 indicating that a return microinstruction is to be performed.

On 8 call microinstruction, C STKC shifts stack pointer 316
to lower numbered stages (by convention, Mto the left'), denoting
subsequent stack locations. For example, gate 1905 is enabled bjr
C STKC and STKC3 (the state of stage 3) and gates that state ‘into
stage 2.

(27)

)%
0192883
Similarly, on a return microimstruction, R STKC shifts stack
pointer 316 to higher numbered stages ("to the right“). Gate
1906, for example, shifts the state of stage 2 into stage 3.

STKC2, STKC3, STKC4, and STKCS (the outputs of stages 2
through 5 respectively) are passed through 2:1 MUX 1907, enabled
by the RESTORE gignal, onto STKW 0, STEKW 1, STKW 2, and STKW 3

respectively, wvhich are address selection lines 1802.

The circuitry implemeanting stack 315 is shown io Figure 20,

" Each of. the four locations is comstructed of six dual D 7

- flip-flops. (A dual D flip-~flop combines two D flip-flops in a
packagg.) For example, element 2011 storees bits 0 and 1 of
location 0, pins 1 and 3 being the inputs for bits 0 and 1
respectively, and pins 7 and 9 being the ocutputs for bits O and 1
respectively. Element 2011l requires STEKW O of address select 7
lines 1802 on pin &, since it is part of location 0. Each of the
four locations 2001, 2002, 2003, and 2004 is enabled by STKW 0, '
'STKW 1, STKW 2, and STKW 3 respectively.

Stack 315 is used to store the contents of PC 301, as

- discussed previously. The outputs of PC 301, namely PCROO through
PCR11, are passed through 2:1 MUX's 2012, 2013, and 2014 under
control of theVRESTORE signal onto the STKIOO through STKII1
lineé; vhich are input in parallel to each of the four stack
locations; they are stored in the one location currently enabled

by address eelection lines 1802, as described above.

Hote that the cbntents of PC 301 are stored in stack 315
every microinstruction cycle; however, stack pointer 316 is not
shifted left except when call microinstructions are executed, as
described above. Therefore, informatiom yritten into stack 315 is
not saved except for call microinstructions; if stack pointer 316
is not shifted, data writtenm into a stack location during a s
micreinstruction cycle will be overwritten the next

microinstruction cycle.

(28)

2
* 0192883

Figure 21 depicts logic circuits for generating signals
required by branch MUX 302 and branch address forvarding circuit
313 to for implementing return microinstructions. Gates 2101,
2102, 2103, and 2104 are enabled by the BR TYP bits of the
currently executing microimstruction being equal to 11, denoting a
return microinstruction. Each is enabled by one of the stages of

shift regieter 316, denoting a location in stack 315 as previously
discussed. '

For example, gate 2103 is enabled by STKC3, meaning that
stack location location | is presently selected to be written
into. This in;curn means that stack location 2 is the last stack
location with a return address stored inm it., Gate 2103 therefore
produces the signal STK2 BR, denoting that the address contsined

in stack location 2 is now to be used as a branch target address.

Branching to the location whose address is contained in stack
location 2 is initiated by branch MUX 302 (Figures 5 and 6).
Using bit 02 as an example, and referring to Figure 5, gate 502 is
enabled by STK2 BR (just discussed) and passes STK 02, which
reference to Figure 20 discloses to be bit 02 of stack location
2. Logic group 501 then outputs BRADRO2. Similarly, the other
eleven logic groups depicted in Figures 5 and 6, together with
group 501, output the 12-bit address BRADROO through BRADRII,
vhich results in branching to that address, as was previously

discuesed.

In the event of errors in microcode resulting in stack
overflow or stack underflow, the address produced by branch MUX
302 as just described is indeterminate, and attempts to branch to
such an indeterminate address will produce indeterminate results.
In such ca;es, computers generally ?Lrayf. i.e., force
microinstruction execution to the start of a sequence that directs
the machine to recover from the error in as orderly a manuner as

possible. By design convention, the current embodiment traps to

(29)

30
0192883

the microinstruction at control store 307 location 1 if stack
overflow is detected, and to the microinstruction in locatiom 2 in
the event that underflov is detected. There nov followe a
discussion of howv these traps are implemented, '

7 Overfiow is detected by gate 1803, shown in detail on Figure
21. BR TYP bite equal to 11, indicating a return
nicroi#ttruction, and STKCO, indicating a prior attempt éc write
beyond available locations in stack 315, as previously described,
produce the signal STKOVFL denoting overflow. Gate 1804,

- responsive to BR TYP bits specifying a return microimstruction,
and STKCS, indicating that the stack is empty as previously
digcussed, produce the signal STKUNFL denoting underflow. Either

of these signals causes gate 2105 to produce the STKERR signal.

Refer now to branch address forvarding circuit 313, Figure
10. Reference to each of the gates 1001 through 1012 showvs thatr
in order fof,the address BRADROO through BEADR1l te be pzssed to
Iines BRADDROO threugh BRADDRI11, SIKERK,VSIKUNFL and STKOVFL nust
211 be absent. If STEKOVFL and STKERR are present, all twelve
cutput bits will be zero except for BRADDR10, which will be a onme
because of STKUNFL enabling gate 10ll. This bit pattern

. represents the requisite address of 2.

7 Likewise, if STKOVFL and STKERR are present, all twelve bits
will be zero except for BRADDR1l, which will be a one because
STKOVFL enables gate 1012. This bit configuratiom represents the

requisite address of 1.

(30)

R 0192883

* CLAIMS
1. A stack memory system éomprising storage means (315) with
a sequence of storage locations (0-3), and pointer means (316)
for addressing one of thelocations andoperable to step from
location to location in sequence or reverse sequence, '
characterised in that the point means (316) is a shift
‘register with a plurality of stages (2-5) identifying the
storage loc?tions (0-3) respectively.

2. A stack memory system according to claim 1, characterised
in that the shift register (316) contains a single location
marker bit and is subjected to a shift operation in a first
sense in response to each stack write Opefation and is
subjected to a shift operation in a second opposite sense

in response to each stack read operation.

3. A stack memory system according to claim 2, characterised
in that the first sense shift operation is effected after
a stack write operation and the second sense shift operation

is effected before a stack read operation.

4. A stack meﬁory system according to claim 2 or 3,
characterised in that the shift register (316) has at least
one stage (0, 1) additional to the said plurality of stages
(2~5) and by means {1803, 1804) responsive to thé presence of
the marker bit in extreme stages of the shift register to

signal stack overflow and underflow conditions.

5. A stack memory system according to claim 3 and claim 4,
characterised in that the shift register (315) has two
additional stages (0, 1) at the end thereof towards which the
marker bit is shifted by first sense shift operations, and

the signalling meéns comprise overflow logic (1803) sensing
the presence of the marker bit in the extreme stage (0) at

the said end of the shift register at the time of a stack

read operation, and underflow logic (1804) sensing the presence

of the marker bit in the extreme stage (5) at the opposite

- 32 -
end of the shift register at the time

operation.

0192883

of a stack read

BRANCH ADDR

1/37

0192883

INITIAL LOAD /02

A

109

BRANCH ADDR

ALU /08

’ INCREMENTING
PC 19/ MEANS /03
CONTROL
STORE, 104
PREFETCH
REGISTER 105
MICROINSTRUCTION
REGISTER
106
| OPERATION CODES

OPERAND SPECIFIERS

F1G. /

PRIOR ART

0192883

MICROINSTRUCTION '
| 2 4
CYCLES 3
EXECUTING 100 101 200
FETCHING 101 102 200
PROSTEM COUNTER 1 101 ke—102——] 103 }+200—s}e— 201 —|—+}e—202—
CONTENTS , .
PRIOR ART
pINST : 2 3
CYCLES
EXECUTING 100 101 200
[} t] 7
1 B | i
, | , ‘ :
PREFETCHING | 101 | 400 | 102 ! 200 | 201 ! 500

. FIG 4

zlz7

RANCH ADDRESSES FROM
aucnowoao REGISTER 370
{12121

0192883

12x4 1
¢) pC 30/ JFIG.B
STKMOO-1i I 1
(M=1 THROUGH 4) ‘ . u2) (n
u2) STACK 5,5 |pcaoo-u lPCROO-'O
| BRADROO- I
BRANCH STKWO-3 PC+IADDER 303
N :ggsviggms (FiG. 10) STACK (FI6.8)
CIRCUIT POINTER & jecm
- " : 3 tn
" BRADOO-I .
12) € | PCPADOOID]
BRANCH
/ LATCH 24
1
Fr6. 7) W I BRLII
| BRLOO-10
\ BRANCH + |
A
DDER
¥
U BRPADOO-10
w2y (12)
MULTIPLE
BRADDROO-I! ADDRESSING
PATH . un
PCADROO-1I >
\ - {12)
. {PCADDROO-II
(12)
MUX
306/(F16. 11)
2\, AbbROO-1
CONTROL
3o7ltFi6. 12)
STORE 4k x 100BMS
csoo-ssl CS96-99(NOT USED)
y 1
(96) -— S—— (96)
PREFETCH DUAL PREFETCH
(F16. 19)|gyFreR 309] (PREFETCH) |RecisTer 308 |(F/6- 137
1 PATH Y
(96) (96)
(98) SeuiR00-95
MICROWORD
REGISTER 30 (FI16.15)
| {
12) (12)
BRANCH
ADDRESSES aALU 32 F / 6 3
TO BRANCH MUX 302

0192883

4] 27

F/G. 5 SHEET | OF 3

0192883

£]37

501

FIG. 5 sueet 2 0F 3

.e

0192883

F/G 5 SHEET 3 OF 3

0192883

F/& 6 SHEET | OF 3

FIG. 6 sHeeT 2 0F 3

F/G. 6 SHEET 3 OF 3

0192883

0192883

lo,37

: 8

NC
NCo/

HG 7 SHEET I OF 2 ToSHT2

0192883

11137

FROM SHT | : , a 7/5

F/G. 7 SHEET 2 OF 2

0192883

FIG 8 sweerior 2

FROM SHT |

F/G: 8 SHEET 2 OF 2

0192883

137

so/

I ERERERE

904 NCAD et ' CRDIRO3
DOETSCY —
PCATATS
03009

F/G 9 SHEET 1 OF 3

1537

Y]
DETEA —
902
POPFOR o 05003
SRPRIY Yo uss
Yo 1.
RIS —4— Yie
7
poPres —3n2 53 0008
ek —Em X s
Y2
POPRI? —2in3 g m_%
SER? e YaC
Y3D,
00252 03008
wng?
904

NC/OQ/ —4
—‘%
€3009

0192883

PCADDRO?

POAIRO?

F/G -9 SHEET 2 OF 3

0192883

1|37

o4
o PORDIRCS
ETE —
PortRee
o008
903 oo

904

F/G 9 SHEET 3 OF 3

w2
STHERR —
~——100/
BRI
5008
o BRADDROS
STHERR —
IOETSCZ —=
g
e
proow ,
uss ,
Rz — BRADDRNZ
STKERR —
XETSCZ
;)
03009
s — SRANDRCS
SIER —
DT,
-]
) ue '
ERATROY — BRADDROS
STKERR —)
ToeTsH "%\, 1005
IR
0008
w?
s —1 - BRADDROS
STKERR —4
ETS —
2L e
s
03003

g

BRANCH ADDRESS FORWARDING CIRCUIT 3/3

uzn
FRUTE BRADDRG
STKERR
— /007
CRAIE
03009
uz2
m-_—j BRADDRO?
snm_:
/008
BF?
2
ETSZ2 —
~— 1009
B
03009
w20
SrrRDs 4 BRATIDAOS
STIERR —
TETS2 ~—— /0/0
BRAS
us
SRR~ BRADDRY
S'IIO.N’L:
Tz ~— /011
o
uue
BRATRIL BRADDR1Y
STKOVFL
reETE
—~— fOI2 .
s
03009

FIG. 10

110/

110/

lgh']

17-p
03918

18P
03316

i

-p
03318

Y

MUX 306

wAbIrRm —48 Jrg
URDLRD) —7 iy
wAbINe2 —I8 a2
UHDDHO] ~13_JR3
tninhrod —L—R4
URDDROS —2—1{RS
VADDROG ~2—Rg
LADDRO? —3—]R7
UADDR0S —=—]Rg
UADDRIS —B—Jng
uADDRI0 —2 g
vADIR —E gy

18 RAny

]

g
ré‘—

%
3

2
3

S8

Y4

04428

£so:

cso?

H

kb
FEE]
i

=
o
v
v
b

3
ZZ38ZRIED

]
;

z
S

3

04428

\q|37

woym —6
wAnDpRo; —iZ_|

UADING? 8.
UADIKEI —13
UADIR0q —d
UADDROS
UADIR0G ~a—]
UADDRO? ~—J

URDDRO

UADDRIG
UADDRSY

mmm-—_-ns_c-q R

“AI3R00 —18]
uADDRO] —1Z

cs20

cs2t

uADDRO2 —18
UADDRO3

" UADDROS —2—
URDDROG —3—
UADDRO?
UADDROS

LADDALG
UADDRIE

oNp —ig

%
IREETI2R

z
3

tY_Z23E

_UAIR02 a2 Y3
URDI03 —18 {3 4
4

CND—S—qEN
CSRRITEY

H

Y2
AIR02 28 gy Y3

Y4
LADDRO4
04428
UADDROA A8

RI
UADDRIO —I—] A0
URDDAY —8 Al

F/G /2 SHEET | OF 3

H2_ cs23

age

0192883

20]37

wRIY00 —E{mg i~ cs32
wApDAO) —L2 Ry v2H4— 533
UADDRO2 A2 vapld— f£g34
A0 —12-Ja3 vaj2- rg35
UADDRO4 I
UADDROS R
LAIIR06 R
UADDRO? R?
vADDROS Rg
UADDROS g
LRDDAL0 A0
LRDIRI Ay -
16¢
o —2den
s —Abdu
vAY2300 —16fro n £s%
UADDROT —L e 7] cs3?
wAIIR02 —8 A2 va 53
UADDRO3 A3 v4r- 12— cs33
UADDRO4 .
w3305 —2—{Rs Prjr ot
UADDR0S —3—iRG
vAIR0? — A7
UADDROE — A8
UADDRS —E—{R9
URDIR-0 —L—iAI0
v —8 i
16K Rt
oD N
W
VADR0 0 7 ts40
l.;xj:m: 17 g 214 _coq
R0z —ER2 Y3 cs42
vADDRI3 —1d a3 vaH2—cs:3
UADDRO4 -
UADDROS RS Droe
URDDROS S
tAbRe? —4 Ay
WADDRSS ™
UADDROS r9
UADIRIC RIO
UADDRYY Al
16K Rt
oND —-dEN
—Al du
tAIR00 —18-frg i cs44
URDIRO! Al 7 Cs4s
WRIR02 A2 vaH - csq
mgma A3 Y4 547
UADDRO4 A4
UADDROS —2—|AS %29
LRDDROS s
vADDRe? —4 1Ry
UADDR0E —L—IR8
UADDARDS —E{R3
LADDRIC —2—|A1D
VADIRIY At
16K R
CND —-qEN
csmRnE? —-idu

w330 —8 feg i es4p
URDDRD] —dZay 2} reqn
vApdao2 —8 a2 vaHa— fess
LATJ303 A3 va| 12— cg5;
LADDRO —L—lAd (o .
UADDROS SRS -
:ﬁ:)'zo;, G
UADDRO? —4 a7
UADDR0B ——1R8
VAR 230
URDDRID ———1A:
UADDAY —E— mxlex -
onp—Lden
cimrre? —du
*R07700 —18-frg i £s52
vapDRo] ——Ay 2 £553
U302 A2 v3 5S4
vADIR03 —12A3 Y4 €S5S
UADDRO4 —L—1A4 15C
UADDROS RS s
URIRR06 %
TAIIR07 A7
URDD08 A8
uADDR0S —E—tRg
URDIRIO A1
UADDRIL Al
18 RAH
CND —3-deN
ds
b | \?2 %?
vRDI%2 —18 A2 v3 €558
uADDRO3 —1na val-2— cssg
vADDR04 —L—1Ag
URDDROS —2—ps 20
URDDRIS —1—As
uADDRe? —3—a?
UADDR0S —a~—1A8
URDDRES 3
UADDRIO AID
URDDARIL Al
15¢ RN
oD —Ldlen
~Ndy
Lror0 —Etag 3)
vADIRY; —Z ;'; Ccsst
%g‘gg—m—ﬂz Y3 £s62
a3 v4HZ - cee3
UADDRO4 A4 ARG
uADDROS —=—1ps
UADDROG pg 04428
UADDRO? A7
UADDROS A0
URDDRD9 A3
UADIRID AID
UADDAIL Al
B A
oD —-dEn
oo —ldu

F/G. /2 SHEET 2 OF 3

Yl €64

URDIRO! --17—m2 vg 565
URDDRO2 A vaHA - cecp
LA23303 —2p3 val-i2 _ ceer

12
RS oa420

UADDRo0 I8 Jag V1 csss

LAIR02 A2 ¥3 €570
UADDRE3 A3 vali2_ps2;

SAIR07 —4 7
UAD)08 —4—pg
LADoR09 —E—ps
taRi0 —2—aio
L33 —EJayy

- 15K Reet
ovp—den

CSRIES H

i— 572

i
fj

FhhE
EE]

g
g
ZZE8SFALER

m
:Z

_ £s74
i 575

2

04428

z
3

LADDRo0 —1Efrg 1 £s7s
UROR01 ~Lpt v2 S77
uADDR2 —8 a7 ¥3 cs?8
vAbpRe3 —19 Jg3 vaH2 cs79
UADDRYY —L—fpq e
URDDROS —2—{pS fogr
UAD306 —d s
UADDRI? —2—{p7
UADDROG ——3—1gg
UADDROS RS
UADERIO AlD
URDDR1L a1l
18K RAN
CRD N
CSRIES "

2 ,37 |

LR1R00 —15-
UADDRY; —11
tRDDRZ 18
LRAYI0I
VR4

AO
A2

J2IR05

LAJJR06

UADDRO? ~3—]
UADDROS

URIRI0

UADDLL

CSHITES

Y3t
Y4

:,g 1AL}
g 04428

T T
URDDR2
URDDRI3
1D

WIS

LAIR07 -4

UADJ08

N

URJIJRI0

UARDIA1L

ECBESRREBRRR

8

EBBSRBEBRRE

Q-2
%

04428

FHRE

3

m:)):gf]
URJ)RD- A4
2 Jos 15FC
LADJR0S —4
e
r gl
UADDRIL AL
oo 16K RAY
CSRITE2 H

F/G /2 SHEET 3 OF 3

1R22300 ~38—frg) £s92

s
D

w3303 —18-Ja3 yaj2— csas

URDDRO4 —k—JAq

VRIS —2—{RS 5‘1’1‘29

m:::;;og 4 ;‘E

ADDAOS ———1pg

UADR0S —S—Jpg

URJRI0 Al

LRI A1
o 16K R

CSRATTES]

TESTPRSSED!
LRST700LKI |
o
woalok 2
s 3 U
€502~ o4-y |E—sgriumo2
- 3 b3 seUiRo)
@ ~13 wal 112 __ SELUIRNE
csos —i S e uings
€506 —iL LS ce) Lirog
18
€507 Eﬂ:’?& —~ SELUIRD?
TeThan)
)
e 0K % |2 o
503 —4- S ceL LIRS
csi—L4 oy i seump
csu~£4 oo [shmy
€512 14 H2_ s uiRi2
54 2] 18— S ie
£sl4 1
csis —12] Eﬁ:;;ﬂc 19 et Unis
LRST700LKI —y
0
ok
€516 —2- L2 sa UIRiG
cst7 —4 S SECUTRI?
cs8—24 o [caumis
csio—E4 osand |2~ spmmis
cs20 ~13 12 56 uimzn
&z _27—1!1 LJL %S{Rznz
€s22 R2!
£s23 Eﬂ:ﬂg 13 or1u1r23
/ 130/
s]
TPOCLK —x
3
I 302 £s24 A ax _z_mlm‘
R o oSS
o527 —84 a3 |- sriom
BEH g
29
€530 —1Z4 B ol R0
cs31 8] Eﬂ;‘;ﬂc 12 o iRt

1
o
csn2 —3 ALK 12 seiqR32
€573 —4- [S 5ELLIRAS
€5 e serinmae
€535 03813 | ss R3S
£s06 —13. 12 65 UtR3s
= = S eeLumR3?

[1g
C533 18] gg;wc 15 U

(04
tse0 —1 OK L2 50 LTR4D
541 3 -2 SELUMRAY
542 07-y B srrume2
543 03613 |-8— s (rRa3
£s4q —1a. HZ _ 51 1Red
Cs45 e o6 R4S
£546 —11 HE_. 551 UtReg
£s47 EE:;.&; S 561 LiRa7

—ajok &1,
€557 —4 - SELUIRS?

24 ov L5 &oumse
tsss—f5 o33 F9 criimee
cse0 —13] M2 celinrsn
Cs1 —14 T peeyylrivy
€562 —12] 16 o utre2
£se3 %ﬁﬁqc 19 SELURG3

O F .

FIG. I3 sueer o 2

23!37

TESTPASSED2
LASTI0CLK2 ———y, l

x OE

gses —1] QK 2 ¢ 1mmea
cses — B

R 55 1nRss
cs6? —B odeta ['sa_uwms7
£568 —1d 12 o URse
12 6~ &5 ies
csn—18] EEZ:J;&; TEN e

TESTPRSSED2
LRST70CLK2 —p
A
csr2—3 oX -2 sp 1R72
ts73 -3 s 1IR3
cs24~24 v |E—cminrea
€s7s 03613 F—sauRes
tszs —43 2 oe| 1R7e
cs77 —14 i 1 (iR77
cs7e —1Z] HE 5y iiR7s
cs7g — ESZ:)& 1S 1 inRrs

csss 18 Eﬁ:pﬂc HI— se1 1nRes

FIG. 13 sheer 2 oF 2

HE - o£1 UTR00
gsew}am
LUIRD2
H2 o6 UiR03
SELUIR04
s
LU
P sewurer:

£s33
€S34

€s37
€s3s

03916

0192883

HE . 51 U1R3?
SELUIRAZ
SELUIRHM
S

L

L2 SELUIRS?

-5 51 UIR3E

SELUIR3S

HB . g6y UIRSS
L seLuIRS?
SELUIRSS
fu

UIRS0
- Z— SELUIRSI
L 3 SFLUIRS2
-3 cruirsa

FlG. /4 sueerioF 2

25|37
/
TESTPRSSEM
TESTRASSES s
S84 —2.] SELUTRGA
€555 —4 SELUIRES
cses—8 e SELUIRES
cs67 —8 03316 SELUIRG?
€558 —iL. SELUIRGS
cseg —L3] SELUIRES
€570 —13 SELUTR70
tsn —*11 o SELUIR?Y

AP

okl

F/G /4 SHEET 2 OF 2

0192883

SLEWI SLEW
w0 i
SR

PFRUATAL —2-{1R Lr1es]

. 04-P 0GAT
SELUIRM0 —<l-A atl—paRiTY sUR20—3n
SELUTRo —3-1p #4075 glid gy seurz —2dg #4075
SELUIRD? —aC cHi-r v SLUR22—-iC
seLulros —Bp | o pHZ—pR e SDumR23 —Buip

n @ CHD L m%
ureLig ~1b o
an

tfrete v

=Xz Xk]

Livie
[Ryt
ERC
EAl

R
Lin f sauree—4n S0, ali—ere
SELLIR0S 3 gézmsu ?a.umzs—ﬁ—g g g
seLutRo? —Ep pH2—1esT3 sELwmzr—Ep 2 gat
mn-l—u.% m—l—m%&
ureLks —i>ax uraxi—bax
ar aR
R ———3 orerg —— 3

TEST3 —2-1IR e ~2{m
SELUIR0E —a-In AHS—TESTY sam_—_ﬂa s Ara—es2
sELUIRDY —4-i8) SEL UIRzS 418 BH4— €53
SELUIRIO c cH3—1nw SELUIRA0 ~4-{C cHi—gro
seLinri —Ep pH2Ze- 1101 sELUIRS —B-D pH2—Er1

15 _ero

EC3
EALUD
ERLUL

st —adn HAT QIS peg seLiARe —2jn 08AT
SELURt? —4Jp 4025 Lo sELR3? —4-jg 04075
gbnglg ; g L1108 SELUIRAE —aldC

L1108
m—Lugﬁl m—Lm%}.

wrera —Lb ck urRcLk —b 0
ar aR
mm—v—'i o — 3
. 150!

F1G. 15 suget o 2

0192883

.
tedy LN] ¢

ap SLEN? ~ Pt
mIE T, W, relE%
SRS S &
torarn —24m e —2m RANIO ——2-1 TR
200G 1S —A g 19RC g5 <P - S T
SELUIRS —A At~ saLwo SELLIRSS A At sorrmve SELUR?3 —3-1A AH3— pevas
SELURD—-p 9407 gl cqyy SCLUMEo —4]y 04025 plid proocn SELLTRA) —3fp 04025 pll4 _ po-s
SELUIRS] —a—C tH3— saLuz 8 (RG] ~—2{c cH3— prAsc SELIRA] —R{C eHi—z73
SELUIRE2 —ED o2 — w0 seLnRs? —bBdp . b2 presk SELUTRE2 —E—p pHZ— 320
oNp —2-] n_%j oD —Z hzj oND —Z-{p
ureLk? —Lb 8 x umeLk2 b 6 urcLk3 b o i
aR oR o
SLEN? SLENZ SLEW3
PULLLP_S PULLLP_S PULLLP_E _—{ib-
, s =3
0 —2- R —24m RANZS —2{ER
SELUIR4T —2] o selumsy—3q WA QLIS peeenp saumrez—3-jn 18T s’
s 4 e i MU eiewen st MO8 gt
SELUIR4E —EL] “Had SELUIRES —B-p » pH2— C s sELulres —Bip b~
o —2 o —n. oD — - u,g;ig(].:
uIRcLk2 —iL umaz—llb g x ureks —Lbax
R R
OIRTR? URTR2 1 IR 3
SLEN2 SLEN2 SLEND
m_sq_% rufiE% W),
SRS =3
M —2IR cresa —24m RANG0 —2IR
23X 15AT AT
SELUIRE7 —3-A AHI— 10 SELURS? —A aHS-pe SELURS? —dA apE—
oogriv A ST SELURES 04025 00 SermRes 41y 04025 Bya—
saums—lg cHi— 2 SELUIREY —- g g g_saa sa.maas—-'*—g g
s urso—Edp .. B "3 ssWwrre—84p 1 ACOMRITE saLUmee —E4p D
G —2 1% o —Z- m% 00 ~1- m&'&l
ureLk2 —1lb o ¢ R —-Ib a « uroka —l b g
oR QR oR
 vn S |) on o SO | oReon ——— 3
see SLEN2 S50
IR, miff], "y
RS SR SL
83 —24R ACORITE—L IR R0 —2 1R
20X |ys ale 1o lym 2l mar s
LIRS 4]y %4075 plia e Simr]y owzs Bhi— Se0 e —4lg o4ezs SR
SELUIRS3 —aC cH3— ey SELUR?3 —aC cHI— o2 SELURII —C c RAHA3
SELLIRS4 D o DHE—HC2 SELUIR?S D pHZ—sa3 SELLIRS4 —E{p n SPRRE
2 m% ~Zin N —I- ma@g—
urakz-le mncm—"jrcu: ; umcLa ~L ik
o OR R
R ——— ORORZ B mRTR
e -SLEN
“u"’-s_—:;;h "‘W’-‘;% PP — 10 _
5 N R &
12 2w s3I —2m oo —2m
—1iq 10RC oIS e sumrs—2lg 19 s saumes—iln 127 ol oo
SELUIRSE —4p 0925 gy SELuRvE 4 lg 04025 B _are PULLP & 415 Diazs S ITERAS
SELUIRS? —3{¢ cHi—mun SELUIR?? —3-I¢ cH- spasc oRD—2iC c
SELUIRSS —E{p pH2—Hau2 SELUIR7e —8-Jp BH2—- RANID co—Ep . 1
mn—l,-n.g-ﬁ m—"—m% mn—?—xx%s
UTRG K2 —LL] u:L . utRcLi3 —1b A x urcLi —L b A
CLR CLR
oReR OTROCR? ——— 3 TR

FI1G. 15 sueer 2 oF 2

0192883

24]37

9/ 9/

0ooe

101

002

102

(ONILND3XI) O/

(Q3WNSSVY)
001 3 H3.1S1934 QHOMONDIN
NI S,LSNIOMOIN

S3NIT HINT3S

OL 60f Y343n8g
HJL3d434d HONOUHL
Q3.1v9 S, LSNIOHIIN

S3INIT HINT3S OL
&0g Y31S1938HOL3434d

<0l 20l

102

101

WOY4d 43.1v9 S LSNIQHIIN

80f Y3ALSI1934 HOL3434d
Nt S,LSNIOHDIW

20l

101

Z0€ 3Y0LS T0HLNOD
WOY4 378VIVAY

00s 102 002 <0l

0ot

o1 S, LSNIOHIIW
Q3sSvd 1S3L

J I
M 5 LTI 1

| oos _ 102 _ 002 _ zoi | oov _ _o__

———<—— o2

———— €

08¢

ovli

A0 "In
A0 OL LSV

NOILYJ0T
20£ 340LS T04LNOD
9NISS30V

!

0 SANOI3SONVN

S370AD
1 NOLLINY LSNOHIIN

19i

oi9l

609l

809l

209!

909i

S0o9l

09l

€09l

209l

1091

0192883
1137

INCREMENT/DECREMENT { INCREMENTAFTER STACK WRITE

MEANS 1705 DECREMENT BEFORE STACK WRITE
‘ .
ol 20 STACK POINTER /70/
(FLIP-FLOP REGISTER)
_OVERFLOW ;
_UNDERFLOW |DECODER 7702} -
00 ADDRESS
o] SELECTION
10 i LINES /706
STACK 1703
(FOUR LOCATIONS)
DATAI
BUS /704
STAGE POINTER 316
(SIX-STAGE SHIFT REGISTER)
I 2 3 4 5
SHIFT RIGHT SHIFT LEFT
BEFORE STACK—— 0 | ol 0 | o | o I p——AFTER STACK
READ WRITE
STACK
READ
STACK
READ - ADDRESS——|0 . |i 2 |3 1804
SELECTION -~ |
1803 LINES /802
. UNDERFLOW
OVERELOW STACK 3/5

FIG 18

(FOUR LOCATIONS, 0-3)

(12) DATA LINES

s¢(3) 0192883

U243
o —3 ¥ i
e LT 1903
NS0 :
HCA - Mi ;§] %
QLRD — 00231
244
1 B
wo —L PO oS
FF
NS 8
NCos OXp 5512 %
L) 00291

U246
m—|—® I i 5
| e
NS_CLKI 8 s
m:t-D”n §] L
ar w2a
we
RSTKE P [
[2 b ¥
HEW 24t Rt "
B.STKC _ F o
L.STKE RS_CLKI STKC4
W o, B STRea

_1904

NS_Cixt STRCS
N OXpq :§ SIKES
o) 00291

F/G /9 VSHEET | OF 2

0192883

uNs ' reTom w6
£R_TYPD —] 3 2 b— c.se
t&% =] g‘——)@b— (o 1)
: { WPLRITY pooy -
180/
1902

S EE
00201 MLRITYY e n-cm:

Ao o0C
FESTORE 1 .
:Lm 1907
0202 ’ ,
st —L e snoLe |
sTRuzE Yo
Yob,
ST —-{n na syt | ADDRESS
- sTRIE —4je vic SELECTION
_J A 'LINES
%’%-—Eﬁ—i—w A VA sz {802
BSTRE —d L stz —Sdm vac
STRES A snaL3 |
Y38
SRIIE Y
L <))
, RESTORE =2

FIG. 19 sveer2 oF 2

tew e

0192883

iﬁ&ﬁ&g ﬁ%

| B288 BRYR §REQ HPHR

F/G. 20 SHEET I OF 3

LOCATION O LOCATION |
200/

2002

FIG. 20 sueer 2 of 3

i 01928823

«—Q,| 2005

2,3 2006

«~—4,5 2007

«—-6,7 2008

+«—8,9 2009

STK110 ~1 o
N0 = ® B— sTa10

smu——-'-:Dm . e—|0,ll 2010

1 8
.o :’iﬁjm S-S
STKU.3

R
o 0258

LOCATION 2 ' LOCATION 3
2003 ~ 2004

F/G: 20 SHEET 3 OF 3

0192883

[
TS L
0202)
BR_YYPO uies
mLEC T
TICED
et oozt

FIG 2/ sueet 10r3

- N V ,l..wm
mm_‘ p—mm
o021 2103
mu - -

m_z gm

?A’E‘o:}ém I~ 2/04
1803
uxas/

T s o
10LEQ — s STROVFL 2105
STRDY

oo [L.F 2
mpelol

, 1804 :

60202

7
BT
STRTS —2

FIG. 2/ sueer 2 oF 3

0192882

ui3?
ET 1. rETSR
])
, BR_
BR_TYPE0 —4 T
BTV
03019
- Lk
m:zl:il@rl—m
(173
1 R
BR_TyPEY 4 ™
BT
03018

FERA_D S R
RANG_1—2) }:ﬁ
RAM2—3 L L
RS —4 8 ey

F/G: 2/ SHEET 3 OF 3

0192883

	bibliography
	description
	claims
	drawings

