[0001] This invention relates to electrophotographic printing machines and, more particularly,
to a completely automated apparatus and process for establishing basic xerographic
parameters at values previously determined to produce optimum output copy quality.
[0002] In electrophotographic devices, such as a xerographic copier or printer, a photoconductive
surface is charged to a substantially uniform potential. The charged portion of the
photoconductive surface is exposed to a light image of an original document being
reproduced, forming an electrostatic latent image at the photoconductive surface corresponding
to the informal areas contained within the original document. The electrostatic latent
image is subsequently developed by bringing a developer mixture into contact therewith.
The developed image is subsequently transferred to an output copy sheet. The powder
image on the output sheet is then heated to permanently affix it to the sheet in the
image configuration.
[0003] For any given population of electrophotographic printing machines, a primary control
objective is to maintain uniform optimum copy quality from machine to machine. This
goal has proven difficult to achieve since each machine experiences its own peculiar
changes during extended operation. These changes include aging of the developer mixture,
changes in environment, variations in the dark development potential, and residual
voltage of the photoconductor or photoreceptor surface, a thinning of the photoreceptor
surface due to abrasion, photoreceptor fatigue, exposure lamp illumination variations,
and changes in the toner material concentration due to consumption. These variations,
singly or cumulatively, have adverse effects on output copy quality that must be identified
and compensated for on a continuous basis.
[0004] Various control schemes are known to compensate for the variable factors listed above.
These schemes involve adjustment of basic control parameters; viz. adjusting the current
of the device used to deposit the charge on the photoconductive surface, adjusting
the bias applied to the development unit, varying the concentration of the toner mixture
and changing the exposure level. All of these adjustments are interrelated and their
proper selection by a machine operator during operation, or a technician during initial
setup, have proven difficult and expensive to achieve, as well as time consuming.
Generally also, some kind of test density target, either a special document, or an
articulated device is necessary to calibrate exposure levels.
[0005] It would be desirable, therefore, to provide a control apparatus that adjusts for
these various functions in a manner that is automated so as to reduce the potential
for human error and to perform these adjustments within a relatively short period
of time, using an apparatus that is wholly self- contained, e. g. does not require
the use of portable current and voltage measuring devices. It would also be desirable
to calibrate exposure levels by using optical components which are used during normal
system scan operations.
[0006] According to a first aspect, the present invention relates to apparatus for optimizing
the operation of an electrophotographic printing machine having a corona device for
applying a charge to the machine photoreceptor, a scan-illumination optical system
for illuminating a document to be copied on a platen surface and for projecting an
image of the document along an optical path onto the photoreceptor to form a latent
image thereof, a developer unit for applying toner to the photoreceptor surface, optical
test patch generation means comprising part of said scan-illumination system, said
patch generation means adapted to form at least a dark development V
DDP patch, a full illumination (V
BG) patch and an intermediate development (V
0.3D) patch on said photoreceptor, a voltmeter for sensing photoreceptor voltage at said
test patch areas and for generating representative signals, and means operable to
compare said representative signals with reference values and to regulate the corona
device and the illumination output level of the optical system in dependence on the
difference between the representative signals and the reference values, characterized
in that said means comprises:
a digital controller,
memory means within said controller, having stored therein a digital representation
of the photo-induced discharge curve (PIDC) for the machine photoreceptor, and
logic means within said controller for analyzing the voltmeter input signals representing
the V
DDP and V
BG voltage levels, comparing the difference (constant contrast voltage V
C), between these signals and an optimum value of V
C derived from the representation of the PIDC stored within the memory means and selectively
regulating the corona device in dependence on that comparison, said logic means also
being adapted for analyzing the voltmeter input signals representing said intermediate
development patch, comparing said signal with an optimum value derived from the representation
of the PIDC stored within the memory means and selectively regulating the illumination
output level of said scan-illumination optical system in dependence on that comparison,
the corona device and the illumination output level being regulated in an iterative
process until convergence is obtained between the measured photoreceptor voltage values
and the stored PIDC representation.
[0007] The present invention further provides a process of automatically adjusting the basic
xerographic parameters of an electrophotographic printing machine, comprising the
steps of:
driving the machine document scanning optics in a test patch generation mode to
lay down a plurality of test patches of different densities on the machine photoreceptor,
including a patch representing dark decay potential V
DDP, a patch representing background voltage level V
BG and a patch representing an intermediate voltage level V
0.3D,
measuring the voltage levels at said test patches and generating signals indicative
thereof; comparing said signals with reference values, and regulating the charge current
and the system exposure level of the machine in dependence on the difference between
the signals and the reference values, characterized in that the signals are indicative
of the intermediate voltage level V
0.3D and of the difference V
C between the dark decay potential V
DDP and the background voltage level V
BG, and further characterized by the steps of
storing a digital representation of the photo-induced discharge curve (PIDC) for
the machine photoreceptor,
comparing said voltage level signal indicative of V
C with an optimum value derived from the stored representation of the PIDC curve and
adjusting the charge current I
C in dependence on that comparison, and
comparing said voltage level signal indicative of V
0.3D with an optimum value derived from the stored representation of the PIDC curve and
adjusting the system exposure level E
O of the machine in dependence on that comparison,
wherein adjustment of charge current and the system exposure level is regulated
in an iterative process until convergence is obtained between the measured voltage
levels and the stored PIDC representation.
[0008] According to a further aspect, the invention relates to an electrophotographic printing
machine wherein a document is scanned and an image thereof projected onto a photoreceptor
surface, having an optical illumination and scanning system adapted to operate in
a first and second mode of operation, said system comprising:
means for moving an illumination and scan assembly mounted beneath said platen
in a first, document copying, mode from a start of scan to an end of scan to the start
of scan position whereby a latent image of the document is formed on the photoreceptor
surface,
at least one density target strip affixed to the bottom surface of the platen at
a location outside the end of scan position,
said moving means adapted to move said illumination and scan assembly, in a second,
test, mode of operation, to a first position outside the start of scan position, said
motion occuring coincident with the positioning of an opaque occluder in the optical
path to form a dark decay test patch at the photoreceptor surface,
said moving means further adapted to move said illumination and scan assembly from
said first position to a second position beneath said target strip, and
means for selectively and sequentially altering the illumination level directed
to said target strip to thereby form test patches of varying density at the photoreceptor
surface.
[0009] In a particular embodiment of the present invention, there is provided an apparatus
for automatically adjusting basic xerographic parameters in a periodic initialization
mode so as to establish predetermined copy quality and density. This apparatus includes
optical means operable in a normal document scanning mode and in a test mode for forming
at least four varying density patches on a precharged photoconductive surface, means
for sensing the charged levels at three of said density patches, control means having
stored therein a set of interrelated electrical values which define a predetermined
photo-induced discharge curve (PIDC), said control means adapted to evaluate said
sensed charge levels and determine whether they establish convergence with the desired
PIDC and, through an iterative process, to vary charge current and exposure levels,
until such convergence is realized and means responsive to the density of toner particles
deposited on a fourth density patch for controlling the concentration of toner particles
in the developer mixture.
[0010] Other aspects of the present invention will become apparent as the following description
proceeds and upon reference to the drawings in which:
Figure 1 is a side schematic view of an electrophotographic printing machine incorporating
the features of the present invention;
Figure 2 shows PIDC plot of Exposure vs. Photoreceptor Potential;
Figure 3 is a block diagram of the system controller;
Figure 4a, 4b is a functional flow diagram of the patch generation portion of the
automatic setup procedure;
Figure 5 is a side schematic view of the scan carriage at separate density generating
positions;
Figure 6 is a time vs. voltage plot of the test patch generation sequence;
Figure 7 is a top view of a portion of the photoreceptor belt having test patches
formed thereon;
Figure 8 is a functional flow diagram of the 0.3D density patch generation;
Figure 9 is a functional flow diagram showing the exposure convergence sequence;
Figure 10 is a time vs. voltage plot of the 0.7 density test patch generation;
Figure 11 is a top view of a portion of the photoreceptor but having 0.7 density
patch formed thereon.
[0011] For a general understanding of the features of the present invention, reference is
made to the drawings. In the drawings, like reference numerals have been used throughout
to designate identical elements. Figure 1
schematically depicts the various components of an illustrative electrophotographic
printing machine incorporating the control system of the present invention therein.
It will become apparent from the following discussion that this control system is
equally well suited for use in a wide variety of electrophotographic printing machines
and is not necessarily limited in its application to the particular embodiment shown
herein.
[0012] Inasmuch as the art of electrophotgraphic printing is well known, the various processing
stations employed in the Figure 1 printing machine will be shown hereinafter schematically
and their operation described briefly with reference thereto.
[0013] Turning now to Figure 1, the electrophotographic printing machine uses a photoreceptor
belt 10 having a photoconductive surface 12 formed on a conductive substrate. Preferably,
belt 12 has characteristics disclosed in U.S. Patent 4,265,990. Belt 10 moves in the
indicated direction, advancing sequentially through the various xerographic process
stations. The belt is entrained about drive roller 16 and tension rollers 18, 20.
Roller 16 is driven by conventional motor means, not shown.
[0014] With continued reference to Figure 1, a portion of belt 10 passes through charging
station A where a corona generating device, indicated generally by the reference numeral
22, charges photoconductive surface 12 to a relatively high, substantially uniform,
negative potential. Device 22 comprises a charging electrode 24 and a conductive shield
26. A high voltage supply 30 controlled by a portion of controller 31, is connected
to shield 26. A change in the output of power supply 30 causes a change in charging
current, I
c, and consequently, a change in the charge potential applied to surface 12.
[0015] As belt 10 continues to advance, the charged portion of surface 12 moves into exposure
station B. An original document 32 is positioned, either manually, or by a document
feeder mechanism (not shown) on the surface of a transparent platen 34. Optics assembly
36 contains the optical components which incrementally scan-illuminate the document
and project a reflected image onto surface 12 of belt 10. Shown schematically, these
optical components comprise an illumination scan assembly 40, comprising illumination
lamp 42, associated reflector 43 and full rate scan mirror 44, all three components
mounted on a scan carriage 45. The carriage ends are adapted to ride along guide rails
(not shown) so as to travel along a path parallel to and beneath, the platen. Lamp
42 illuminates an incremental line portion of document 32. The reflected image is
reflected by scan mirror 44 to corner mirror assembly 46 on a second scan carriage
46A moving at 1/2 the rate of mirror 44. The document image is projected through lens
47 and reflected by a second corner mirror 48 and belt mirror 50, both moving at a
predetermined relationship so as to precess the projected image, while maintaining
the required rear conjugate onto surface 12 to form thereon an electrostatic latent
image corresponding to the informational areas contained within original document
32. Adjustable illumination power supply 51, controlled by a portion of controller
31, supplies power to lamp 42. The optics assembly 36, besides operating in a document
scanning mode, is also used in the automatic setup mode of the present invention,
to generate and project four alternating density patches onto the centerline of the
belt 10 for purposes to be described more fully below. Positioned between exposure
station B and development station C, and adjacent to surface 12, is electrostatic
voltmeter 52. Voltmeter 52 preferably is capable of measuring either positive or negative
potentials and utilizes ac circuitry requiring no field calibration. Voltmeter 52,
in the automatic setup mode, generates a first signal proportional to the dark decay
potential V
o on photoconductive surface 12. The dark development potential is the charge at surface
12 after charging and exposure reflected from an opaque object. The voltmeter also
generates a second signal proportional to background potential V
B, on the photoreceptor surface. The background potential is the charge on the photoreceptor
after exposure with light reflected from a white object. Both of the voltmeter output
signals are sent to controller 31 through suitable conversion circuitry. Controller
31 operates upon these values, comparing them to values related to a desired output
quantity in the controller memory. Adjustments are made by the controller to the charging
and development bias voltage and to the illumination power supply in an iterative
process described in further detail below:
Referring again to Figure 1, discrete patch generator 53 is a calibrated LED light
source which is energized in one of two modes of operation. In a first mode, operable
during the automatic setup mode, a dedicated digital input provides for LED energization
at a high fixed level. This mode is used primarily for erasing test patch areas generated
during the setup procedures. In a second mode of operation, following the initial
system setup, an analog reference input to the generator 53 provides for energization
of the LEDs so as to generate a variable light intensity for use in toner control
in several contrast modes as described in greater detail below.
[0016] At development station C, a magnetic brush development system, indicated generally
by the reference numeral 54 , advances an insulating development material into contact
with the electrostatic latent image. Preferably, magnetic brush development system
54 includes a developer roller 56 within a housing 58. Roller 56 transports a brush
of developer material comprising magnetic carrier granules and toner particles into
contact with belt 10. Roller 56 is positioned so that the brush of developer material
deforms belt 10 in an arc with the belt conforming, at least partially, to the configuration
of the developer material. The thickness of the layer of developer material adhering
to developer roller 56 is adjustable. Roller 56 is biased by voltage source 57 to
a voltage level V
D.
[0017] The electrostatic latent image attracts the toner particles from the carrier granules
forming a toner powder image on photoconductive surface 12. The detailed structure
of the magnetic brush development system is more fully disclosed in U.S. Patent 4,397,264.
[0018] As successive latent images are developed, toner particles are depleted from the
developer material. A toner particle dispenser, indicated generally by the reference
numeral 60 provides additional toner particles to housing 58 for subsequent use by
developer roller 56. Toner dispenser 60 includes a container for storing a supply
of toner particles therein and means (not shown) for introducing the particles into
developer housing 58. A motor 62, when energized, initiates the operation of dispenser
60.
[0019] Infrared densitometer 64, positioned adjacent belt 10 and located between developer
station C and transfer station D, directs infrared light onto surface 12 upon appropriate
signals from the controller 31. The ratio of reflected light on a developed area to
that of a bare area is an indication of toner patch developability. The densitometer
generates output signals and sends them to controller 31 through appropriate conversion
circuitry. The controller operates upon these signals and sends appropriate output
signals to motor 62 to control dispensing of toner particles. Densitometer 64 is also
used to periodically measure the light rays reflected from the bare photoconductive
surface (i.e. without developed toner particles) to provide a reference level for
calculation of the signal ratios.
[0020] Continuing with the system description, an output copy sheet 66 taken from a supply
tray 67, is moved into contact with the toner powder image at transfer station D.
The support material is conveyed to station D by a pair of feed rollers 68, 70. Transfer
station D includes a corona generating device 71 which sprays ions onto the backside
of sheet 66, thereby attracting the toner powder image from surface 12 to sheet 66.
After transfer, the sheet advances to fusing station E where a fusing roller assembly
72 affixes the transferred powder image. After fusing, sheet 66 advances to an output
tray (not shown) for subsequent removal by the operator.
[0021] After the sheet of support material is separated from belt 10, the residual toner
particles and the toner particles of developed test patch areas are removed at cleaning
station F.
[0022] Subsequent to cleaning, a discharge lamp, not shown, floods surface 12 with light
to dissipate any residual charge remaining thereon prior to the charging thereof for
the next imaging cycle.
[0023] It is believed that the foregoing description is sufficient for purposes of the present
application to illustrate the general operation of an electrophotographic printing
machine incorporating the features of the present invention therein.
[0024] The setup mode described in more detail below may be briefly summarized as:
1. Control of pre-development photoreceptor potentials using voltmeter 52 and associated
controller circuitry;
2. Generation of multiple exposure levels (test patches) using the system optics assembly
36; and
3. Control of developed image density by using densitometer 64 to measure the reflectance
of developed toner patches.
[0025] Only two of the sensors, the voltmeter and the densitometer, need to maintain an
absolute calibration. All major xerographic parameters are automatically established
during the automatic setup mode and are automatically maintained thereafter. The setup
procedure is reproducible over time within a single machine and from machine to machine
across a population of machines.
Automatic Setup Mode
[0026] Upon initial installation of a particular electrophotographic printing machine and
periodically (daily) thereafter, the basic machine parameters are automatically checked
and adjusted. Each machine is associated with the same development potentials (V₁
- V
D) by adjustment of the shape of the photo-induced discharge curve (PIDC) which has
previously been determined to ensure uniform output copy quality across the machine
population. A PIDC is a fundamental characteristic of a photoreceptor that has been
charged to a specific dark potential V
O in combination with the reflective density of the input document and the document
illumination intensity. But any given population of photoreceptors will have a distrubution
of shapes. Figure 2 shows a typical plot for a machine with the range of values indicated.
Digital values representing the PIDC slope are contained within controller 31 memory
of each machine. The setup mode and associated apparatus is designed to measure the
basic parameters of the particular machine and plot the PIDC, based on these measured
values. Insofar as the actual PIDC shape varies from the standard, adjustments are
made to the basic parameters of charge voltage I
C, developer bias V
BIAS and system exposure E
O in an iterative process, until covergence of the measured, with the preset, values
is realized. These basic control circuit subsystems which accomplish these operations
are shown in Figure 3. Referring to this Figure, controller 31 consists of Input/Output
Board 80, and master control board 82, Input/Output processor 86 and a serial bus
controller 88. Input signals from the densitometer 64, voltmeter 52 and patch generator
53 are converted by I/O board 80; sent to I/O processor 86 and then to processor 84.
Output signals are sent to adjust the corona generator, system illumination, toner
dispenser and development bias via processor 86. Operation of the optical scanning
system is controlled by processor 84 via controller 88.
[0027] The master control processor is an Intel Model 8085 which can be programmed to perform
the described iterative functions, using the algorithms set forth in the Appendix.
Incorporation of these algorithms into a larger and central unit is a procedure well
understood by those skilled in the art.
[0028] The automatic setup mode is initiated by applying initial power application to the
machine. The sequence of operations occurring thereafter is shown with reference to
Figure 4a, 4b.
[0029] Figure 4a, 4b is a flow chart sequence of these operations. Figure 5 is a side view
schematic drawing of the scan carriage at different density patch generating positions.
Figure 6 is a time vs. voltage plot of the test patch generation sequence, and Figure
7 is a top view of belt 10 showing the imaged patched zones. Figure 9 is a flow chart
of the test patch generator and machine functions. Referring to Figures 4a, 5, and
6, once machine power is turned on, the photoreceptor moves through a first cycle
of operation at the system process speed. Scan carriage 45 moves to the home park
position. Carriage 45, in this position is shown to the left of the platen in Figure
5. The components are shown dotted. Scan lamp 42 is energized at the normal lamp power
level used during the preceding operational interval. An opaque occluder 90 is positioned
in the optical path at a point above the belt 10 surface 12, thus preventing light
from falling on the surface in an area corresponding to the occluder. Thus a first
test patch 100 shown formed on the belt centerline in Figure 7 is therefore at the
dark decay charging level V
DDP. Carriage 45 is then moved to the right, scanning at a constant velocity, until it
reaches park position 1 past the end of scan position (shown in solid line in Figure
5). At this position, a 0.3 density target strip 92 centrally overlies the scan carriage.
At this point, lamp 42 output is doubled so as to form a second patch area 102 conforming
in size to strip 92 representing a 100% transmission, completely discharged strip
at background voltage level, V
BG.
[0030] With carriage 45 still in the solid line position shown in Figure 5, the lamp illumination
input is halved. The exposed patch area 104 on belt 10 forms a 0.3 density patch 104
on the photoreceptor. Carriage 45 is then returned to the home position and a second
V
DDP patch 106 is formed on the center line of belt 10.
[0031] Further operation of the carriage is dependent upon whether PIDC convergence is present
as determined by comparisons of voltmeter-generated signals processed by the microprocessor
84 and compared to values stored in the microprocessor memory.
[0032] Electrostatic voltmeter 52, shown in Figure 1, is used to directly sense photoreceptor
voltage at the test patch areas 100, 102, 104, 106. The voltmeter is positioned approximately
3 mm from the belt surface.
[0033] Figure 4b shows the functional flow diagram for the voltmeter readings and the related
microprocessor control operation. Referring to this figure, and to Figure 6, the voltmeter
measures each of test patch charge levels on successive belt cycles. Signals representing
the voltage at patch 100 (V
DDP), patch 102 (V
BG) and patch 104 (V
0.3D) are sent to the control processor 84 through the associated I/O circuitry and temporarily
stored therein. The difference between V
DDP and V
BG is computed by logic means within the controller and a signal, representing this
value and designated constant contrast voltage (V
C) is generated. This signal is compared to a preset V
CSET(V
S). If V
C = V
S, (no convergence), a signal is generated within the processor and sent to change
the bias (V
GRID) on the charge electrode 24 (Figure 1) thereby changing the value of charge current
I
C and the value of V
DDP. Signals are also sent to patch generator 53 to erase the previously generated patch
areas. Scan carriage 45 then repeats the sequence described with respect to Figures
4a and 5, beginning at the home park position and continuing to park position 2. The
newly formed patches are again read by the voltmeter and compared to processor 84
(Fig. 4b). This process is an iterative one governed by a control algorithm set forth
in Appendix; the process is continued until the measured value of V
C conforms to V
S. At this point, the value of V
DDP and V
BG conforms to the PIDC for the machine. These values, as well as V
S, V
D and V
BIAS are stored in the processor memory.
[0034] According to one feature of the present invention, a second iterative process is
controlled by logic means within processor 84, which compares the measured values
of the V
0.30 patch to a preset V
0.3DSvalue. System illumination is varied to achieve identity of the set and measured values;
convergence establishes a third point on the PIDC. As shown in Figure 8, processor
84 measures the difference between the test value of V
.3D and the V
.3DS, set into the processor memory. If V
0.30
V
.3DS (no convergence) processor 84 sends a signal to lamp power supply 51 to vary the
output of lamp 42 and to patch generator 53 to erase the V
.3D patch 104. Scan carriage 45 repeats the process beginning at the home position 1
and the voltmeter again measures the charge at patch 104 sending the output signal
to the processor. This iterative process is controlled by a second algorithm provided
in the Appendix.
[0035] Upon convergence of V
0.3D and V
0.3DS, the value of E
O, system exposure level, is stored. Convergence has assured that the 0.3D voltage
also falls on the PIDC curve shown in Figure 2. Thus, the charge at the high (V
DDP), low (V
BG) and intermittent levels all lie along the predetermined PIDC, thus ensuring that
the copy quality will be consistent with machine population utilizing that particular
PIDC.
[0036] To summarize the automatic setup procedure to this point, the basic xerographic parameters
of charge current, illumination level and the developer bias have been set. The remainder
of the setup procedure is directed to the calibration of the patch generator based
on these values and the adjustment, if necessary, of toner concentration. Figure 9
shows a functional flow diagram setting forth these steps.
[0037] Referring to Figures 5 and 9, and to the timing diagram shown in Figure 10, scan
carriage 45 is moved to the right, past park position 1 to park position 2 where it
is parked directly beneath a centrally located 0.7 density target strip 107. A 0.7
patch 108 (Fig. 11) is thus formed along the centerline of belt 10 conforming in area
to strip 107. The carriage then returns to the home position where a V
DDP patch 110 is formed. As patch 110 passes beneath patch generator 53, the patch is
illuminated by a light output from the generator determined by the bias voltage V
PG applied to the patch generator. The charge level patch 110 is therefore reduced to
level V
DPG which is lower than V
0.7D.
[0038] Both patches 108 and 110 are developed at development station C (Figure 1) and pass
beneath densitometer 64. As illustrated in Figure 1 and Figure 11, the densitometer
detects the density of the developed test area and produces electrical output signals
indicative thereof. Thus the densitometer produces output signals proportional to
the toner mass deposited on the V
0.7D patch 108 and the V
DPG patch 110. These signals are conveyed to processor 84 through conversion circuitry
shown in Figure 3. Processor 83 compares the two values and if there is a difference
(V
DSS) a signal is generated which changes the voltage level at the patch generator. The
developed patches are cleaned at cleaning station F, Figure 1, and patches 108 and
110 are laid down as previously described, developed and again measured by densitometer
64. Adjustments are made to patch generator 53 in an iterative process governed by
the algorithm set forth in the Appendix until the two measured values are equal. When
this occurs, the patch generator is properly calibrated to the system parameters and
value representing V
PG is stored.
[0039] The final task of the setup procedure is to adjust the developer parameters, if necessary.
An adjustment may not be necessary since the toner concentration level is monitored
during normal operation and toner periodically added, as is known in the art. Therefore,
a previous operation cycle should have left the toner concentration in a proper operating
condition. However, the present setup procedure ensures proper toner concentrations
by comparing the last V
DDS value measured and stored by processor 84 with a previously stored V
DSS value representing a value of V
DSS which if exceeded, indicates a low level of toner concentration is present. As shown
in Figure 9, if the difference between the two exceeds a set value, processor 84 activates
toner dispenser motor 63 causing toner dispenser 60 to discharge toner particles into
toner container 62. This increases the concentration of toner particles in the developer
mixture so as to increase the density of subsequent developed test patches. Carriage
45 forms a subsequent V
0.70, V
DDP patch. Densitometer 64 measures the respective density and processor 82 determines
a new V
DSS value as described above. The new V
DSS is compared with the V
DSS set, the process repeated, if necessary. Once the values are within the predefined
difference range, toner developability parameters have been defined and the automatic
setup procedure is terminated. Normal machine operation then begins.
APPENDIX
CONTROLLER ALGORITHMS
1. Apparatus for optimizing the operation of an electrophotographic printing machine
having a corona device (22) for applying a charge to the machine photoreceptor (10),
a scan-illumination optical system (36) for illuminating a document (32) to be copied
on a platen surface (34) and for projecting an image of the document along an optical
path onto the photoreceptor to form a latent image thereof, a developer unit (54)
for applying toner to the photoreceptor surface, optical test patch generation means
(Fig. 5) comprising part of said scan- illumination system, said patch generation
means adapted to form at least a dark development VDDP patch (100), a full illumination (VBG) patch (102) and an intermediate development (V0.3D) patch (104) on said photoreceptor, a voltmeter (52) for sensing photoreceptor voltage
at said test patch areas and for generating representative signals, and means operable
to compare said representative signals with reference values and to regulate the corona
device and the illumination output level of the optical system in dependence on the
difference between the representative signals and the reference values, characterized
in that said means comprises:
a digital controller (31),
memory means within said controller, having stored therein a digital representation
of the photo-induced discharge curve (PIDC) for the machine photoreceptor, and
logic means within said controller for analyzing the voltmeter input signals representing
the VDDP and VBG voltage levels, comparing the difference (constant contrast voltage VC), between these signals and an optimum value of VC derived from the representation of the PIDC stored within the memory means and selectively
regulating the corona device in dependence on that comparison, said logic means also
being adapted for analyzing the voltmeter input signals representing said intermediate
development patch, comparing said signal with an optimum value derived from the representation
of the PIDC stored within the memory means and selectively regulating the illumination
output level of said scan-illumination optical system in dependence on that comparison,
the corona device and the illumination output level being regulated in an iterative
process until convergence is obtained between the measured photoreceptor voltage values
and the stored PIDC representation.
2. The apparatus of claim 1 further including discrete patch generator erase means (53)
positioned adjacent the photoreceptor and adapted to selectively erase said development
patches during said iterative process.
3. The apparatus of claim 2, which includes a densitometer (64) positioned adjacent the
photoreceptor downstream from the developer unit (54) and in which, for the calibration
of the erase means (53), the patch generation means (Fig. 5) is adapted to produce
a second intermediate development (V0.7D) patch (108) on said photoreceptor together with dark development patch for subsequent
illumination by the erase means to produce a calibration (VDPG) patch (110), said logic means being further adapted for comparing signals from the
densitometer representing the toner density of the second intermediate development
patch and the calibration patch and, if a difference (VDSS) is detected, for selectively regulating the output of the erase means in an iterative
process until the two measured values are equal.
4. The apparatus of claim 3, wherein the logic means is also adapted to compare the difference
(VDSS) between the toner density signals with a pre-set value stored in the memory means
and, in dependence on that comparison, to regulate the developer unit (54).
5. The apparatus of any one of the preceding claims, wherein said optical test patch
generation means (Fig. 5) includes a scan carriage (45) including an elongated illumination
means (42) and a scan mirror (44), an opaque occluder (90) which can be positioned
in the optical path before the photoreceptor, said platen surface having a first intermediate
density target strip (92) affixed to the bottom surface at a test patch generation
position and a second intermediate density target strip (107) affixed to the bottom
surface at a further position, said digital controller being adapted to vary the output
of said illumination means (42) at each of the test patch generation positions.
6. A process of automatically adjusting the basic xerographic parameters of an electrophotographic
printing machine, comprising the steps of:
driving the machine document scanning optics in a test patch generation mode to
lay down a plurality of test patches of different densities on the machine photoreceptor,
including a patch representing dark decay potential VDDP, a patch representing background voltage level VBG and a patch representing an intermediate voltage level V0.3D,
measuring the voltage levels at said test patches and generating signals indicative
thereof; comparing said signals with reference values, and regulating the charge current
and the system exposure level of the machine in dependence on the difference between
the signals and the reference values, characterized in that the signals are indicative
of the intermediate voltage level V0.3D and of the difference VC between the dark decay potential VDDP and the background voltage level VBG, and further characterized by the steps of
storing a digital representation of the photo-induced discharge curve (PIDC) for
the machine photoreceptor,
comparing said voltage level signal indicative of VC with an optimum value derived from the stored representation of the PIDC curve and
adjusting the charge current IC in dependence on that comparison, and
comparing said voltage level signal indicative of V0.3D with an optimum value derived from the stored representation of the PIDC curve and
adjusting the system exposure level EO of the machine in dependence on that comparison,
wherein adjustment of charge current and the system exposure level is regulated
in an iterative process until convergence is obtained between the measured voltage
levels and the stored PIDC representation.
7. The process of claim 6, including the step of selectively erasing said test patches
using a discrete light source.
8. The process of claim 7, including the additional step of calibrating said discrete
light source to the final machine parameters.
9. An electrophotographic printing machine wherein a document (32) on a support platen
(34) is scanned and an image thereof is projected onto a photoreceptor surface, having
an optical illumination and scanning system (36) adapted to operate in a first and
second mode of operation, said system comprising:
means (45) for moving an illumination and scan assembly (40) mounted beneath said
platen in a first, document copying, mode from a start of scan to an end of scan to
the start of scan position whereby a latent image of the document is formed on the
photoreceptor surface,
at least one density target strip (92) affixed to the bottom surface of the platen
at a location outside the end of scan position,
said moving means adapted to move said illumination and scan assembly, in a second,
test, mode of operation, to a first position outside the start of scan position, said
motion occurring coincident with the positioning of an opaque occluder (90) in the
optical path to form a dark decay test patch (100) at the photoreceptor surface,
said moving means further adapted to move said illumination and scan assembly from
said first position to a second position beneath said target strip, and
means for selectively and sequentially altering the illumination level directed
to said target strip to thereby form test patches (102, 104) of varying density at
the photoreceptor surface.
10. The electrophotographic printing machine of claim 9, wherein the test patches are
formed along the centerline of the photoreceptor.
1. Dispositif pour optimiser le fonctionnement d'une machine d'impression électrophotographique
comportant un dispositif à effet couronne (22) pour appliquer une charge au photorécepteur
(10) de la machine, un système optique (36) d'éclairage-balayage pour éclairer un
document (32) à reproduire sur la surface (34) d'une platine et pour projeter une
image du document suivant un trajet optique sur le photorécepteur et en former une
image latente, un ensemble de développement (54) pour appliquer du toner à la surface
du photorécepteur, un moyen (figure 5) de génération de pastilles de test optique
comprenant une partie du système d'éclairage- balayage, le moyen de génération de
pastilles étant destiné à former au moins une pastille (100) de développement obscur
V
DDP, une pastille (102) de plein éclairage (V
BG) et une pastille (104) de développement intermédiaire (V
0,3D) sur le photorécepteur, un voltmètre (52) pour détecter la tension du photorécepteur
au droit des surfaces des pastille de test et pour générer des signaux représentatifs,
et un moyen servant à comparer les signaux représentatifs à des valeurs de référence
et à réguler le dispositif à effet couronne et la valeur de l'éclairage de sortie
du système optique en fonction de la différence entre les signaux représentatifs et
les valeurs de référence, caractérisé en ce que ledit moyen comprend :
- un contrôleur numérique (31),
- un moyen de mémoire à l'intérieur du contrôleur, dans lequel est stockée une représentation
numérique de la courbe de décharge photo-induite (PIDC) pour le photorécepteur de
la machine, et
- un moyen logique à l'intérieur du contrôleur pour analyser les signaux appliqués
au voltmètre représentant les valeurs des tensions VDDP et VBG, comparer la différence (tension de contraste constant VC) entre ces signaux et une valeurs optimum de VC obtenue à partir de la représentation de la courbe PIDC stockée dans le moyen de
mémoire et régulant sélectivement le dispositif à effet couronne en fonction de cette
comparaison, le moyen logique étant aussi destiné à analyser les signaux appliqués
au voltmètre qui représentent le trajet de développement intermédiaire, comparer le
signal à une valeur optimum obtenue à partir de la représentation de la courbe PIDC
stockée dans le moyen de mémoire et réguler sélectivement la valeur de l'éclairage
de sortie du système optique d'éclairage-balayage en fonction de cette comparaison,
le dispositif à effet couronne et la valeur de l'éclairage de sortie étant régulés
dans un processus itératif jusqu'à obtention d'une convergence entre les valeurs mesurées
de la tension du photorécepteur et la représentation PIDC stockée.
2. Dispositif selon la revendication 1, comprenant en outre un moyen (53) d'effacement
de générateur de pastilles finies placé à proximité du photorécepteur et destiné à
effacer sélectivement les pastilles de développement pendant le processus itératif.
3. Dispositif selon la revendication 2, qui comprend un densitomètre (64) placé à proximité
du photorécepteur en aval de l'ensemble de développement (54) et dans lequel, pour
l'étalonnage du moyen d'effacement (53), le moyen de génération de pastilles (figure
5) est destiné à produire une seconde pastille (108) de développement intermédiaire
(V0,7D) sur le photorécepteur en même temps qu'une pastille de développement obscur pour
éclairage ultérieur par le moyen d'effacement afin de produire une pastille (110)
d'étalonnage (VDPG), le moyen logique étant en outre destiné à comparer les signaux provenant du densitomètre
qui représentent la densité du toner de la seconde pastille de développement intermédiaire
et la pastille d'étalonnage, et s'il y a détection d'une différence (VDSS), pour réguler sélectivement la sortie du moyen d'effacement dans un processus itératif
jusqu'à ce qu'il y ait égalité des deux valeurs mesurées.
4. Dispositif selon la revendication 3, dans lequel le moyen logique est également destiné
à comparer la différence (VDSS) entre les signaux de densité du toner à une valeur préétablie qui est stockée dans
le moyen de mémoire et, en fonction de cette comparaison, à réguler l'ensemble de
développement (54).
5. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le moyen
(figure 5) de génération de pastilles de test optique comprend un chariot de balayage
(45) comportant un moyen allongé d'éclairage (42) et un miroir de balayage (44), un
élément opaque d'occultation (90) qui peut être placé dans le trajet optique à l'avant
du photorécepteur, la surface de la platine ayant une première bande-cible (92) de
densité intermédiaire fixée à la surface inférieure à une position de génération des
pastilles de test et une seconde bande-cible (107) à densité intermédiaire fixée à
la surface inférieure d'une position ultérieure, le contrôleur numérique étant destiné
à faire varier la sortie du moyen d'éclairage (42) à chacune des positions de génération
des pastilles de test.
6. Procédé pour ajuster automatiquement les paramètres xérographiques de base d'une machine
d'impression électrophotographique, comprenant les étapes consistant à :
- entraîner le système optique de balayage des documents de la machine dans un mode
de génération de pastilles de test pour établir une multitude de pastilles de test
de densités différentes sur le photorécepteur de la machine, comprenant une pastille
représentant le potentiel à décroissance dans l'obscurité VDDP, une pastille représentant la valeur de la tension de fond VBG et une pastille représentant une valeur intermédiaire de la tension V0,3D,
- mesurer les valeurs de la tension au droit des pastilles de test et engendrer des
signaux représentatifs de celles-ci, comparer les signaux à des valeurs de référence,
et réguler le courant de charge et la valeur de l'exposition du système de la machine
en fonction de la différence entre les signaux et les valeurs de référence, caractérisé
en ce que les signaux sont représentatifs de la valeur intermédiaire de la tension
V0,3D et de la différence VC entre le potentiel VDDP et la valeur de la tension VBG, et caractérisé en outre par les étapes consistant à :
- stocker une représentation numérique de la courbe de décharge photo-induite (PIDC)
pour le photorécepteur de la machine,
- comparer le signal de valeur de tension représentatif de VC à une valeur optimum provenant de la représentation stockée de la courbe PIDC et
ajuster le courant de charge IC en fonction de cette comparaison, et
- comparer le signal de valeur de tension, représentatif de V0,3D, à une valeur optimum provenant de la représentation stockée de la courbe PIDC et
ajuster la valeur EO de l'exposition du système de la machine en fonction de cette comparaison,
- où le réglage du courant de charge et la valeur de l'exposition du système sont
régulés dans un processus itératif jusqu'à obtention de la convergence entre les valeurs
mesurées des tensions et la représentation PIDC stockée.
7. Procédé selon la revendication 6, comprenant l'étape consistant à effacer sélectivement
les pastilles de test en utilisant une source lumineuse finie.
8. Procédé selon la revendication 7, comprenant l'étape supplémentaire d'étalonnage de
la source lumineuse finie aux paramètres finals de la machine.
9. Machine d'impression électrophotographique dans laquelle un document (32) placé sur
une platine de support (34) est balayé, et une image de celui-ci est projetée sur
une surface du photorécepteur, comportant un système optique (36) d'éclairage et de
balayage destiné à fonctionner dans des premier et second modes de fonctionnement,
le système comprenant :
- un moyen (45) pour déplacer un ensemble d'éclairage et de balayage (40) monté au-dessous
de la platine dans un premier mode de reproduction de documents, entre une position
de départ de balayage et une position de fin de balayage jusqu'à la position de départ
du balayage, à la suite de quoi une image latente du document est formée sur la surface
du photorécepteur,
- au moins une bande-cible (92) de densité fixée à la surface inférieure de la platine
à un endroit situé à l'extérieur de la position de fin de balayage,
- le moyen mobile étant destiné à déplacer l'ensemble d'éclairage et de balayage,
dans un second mode de fonctionnement, mode d'essai, jusqu'à une première position
à l'extérieur de la position de départ du balayage, le mouvement se produisant en
coïncidence avec la mise en place d'un élément occultant opaque (90) dans le trajet
optique de manière à former une pastille de test (110) à décroissance dans l'obscurité
au droit de la surface du photorécepteur,
- le moyen mobile étant en outre destiné à déplacer l'ensemble d'éclairage et de balayage
pour le faire passer de la première position à une seconde position située au-dessous
de la bande-cible; et
- un moyen pour modifier sélectivement et séquentiellement la valeur de l'éclairage
dirigé vers la bande-cible de manière à former des pastilles de test (102, 104) de
densité variable à la surface du photorécepteur.
10. Machine d'impression électrophotographique selon la revendication 9, dans laquelle
les pastilles de test sont formées le long de l'axe du photorécepteur.
1. Vorrichtung zum Optimieren des Betriebs eines elektrophotographischen Kopiergeräts,
enthaltend eine Koronavorrichtung (22) zum Aufbringen einer Ladung auf den Photorezeptor
(10) des Geräts, ein optisches Ablenkbeleuchtungssystem (36) zum Beleuchten eines
zu kopierenden Dokuments (32) auf einer Auflagefläche (34) und zum Projizieren eines
Abbilds des Dokuments längs eines optischen Weges auf den Photorezeptor, um ein Latenzbild
des Dokuments zu bilden, eine Entwicklereinheit (54) zum Zuführen von Toner zur Photorezeptorfläche,
eine optische Testfleck-Erzeugungseinrichtung (Fig. 5), die Teil des Ablenkbeleuchtungssystems
ist und die dazu eingerichtet ist, wenigstens einen Dunkelentwicklungsfleck VDDP (100), einen Vollbeleuchtungsfleck (VBG) (102) und einen Zwischenentwicklungsfleck (V0,3D) (104) auf dem Photorezeptor zu bilden, ein Voltmeter (52) zum Ermitteln der Photorezeptorspannung
an den Testfleckbereichen und zum Erzeugen repräsentativer Signale, und eine Einrichtung,
die dazu dient, die repräsentativen Signale mit Bezugswerten zu vergleichen und die
Koronavorrichtung und den Beleuchtungsausgangspegel des optischen Systems in Abhängigkeit
von der Differenz zwischen den repräsentativen Signalen und den Bezugswerten zu regeln,
dadurch gekennzeichnet, daß die genannte Einrichtung enthält:
einen digitalen Regler (31),
eine Speichereinrichtung in dem Regler, die eine digitale Darstellung der photoinduzierten
Entladungskurve (PIDC) des Gerätephotorezeptors gespeichert enthält, und
eine Logikeinrichtung in dem Regler zum Analysieren der Voltmetereingangssignale,
die VDDP- und VBG-Spannungspegel repräsentieren, zum Vergleichen der Differenz (konstante Kontrastspannung
VC) zwischen diesen Signalen und einem Optimalwert von VC, der aus der Repräsentation der PIDC, die in der Speichereinrichtung gespeichert
ist, abgeleitet ist, vergleicht und selektiv die Koronavorrichtung in Abhängigkeit
von diesem Vergleich regelt, wobei die Logikeinrichtung auch dazu eingerichtet ist,
die Voltmetereingangssignale zu analysieren, die den Zwischenentwicklungsfleck repräsentieren,
dieses Signal mit einem Optimalwert vergleicht, der aus der Repräsentation des in
der Speichereinrichtung gespeicherten PIDC abgeleitet wird, und selektiv den Beleuchtungsausgangspegel
des optischen Ablenkbeleuchtungssystems in Abhängigkeit von diesem Vergleich regelt,
wobei die Koronavorrichtung und der Beleuchtungsausgangspegel in einem iterativen
Prozeß geregelt werden, bis Konvergenz zwischen den gemessenen Photorezeptorspannungswerten
und der gespeicherten PIDC-Repräsentation erhalten ist.
2. Vorrichtung nach Anspruch 1,
weiterhin enthaltend diskrete Fleckgeneratorlöscheinrichtungen (53), die benachbart
dem Photorezeptor angeordnet und dazu eingerichtet sind, selektiv die Entwicklungsflecken
während des iterativen Prozesses zu löschen.
3. Vorrichtung nach Anspruch 2,
enthaltend einen Dichtemesser (64), der benachbart dem Photorezeptor stromabwärts
von der Entwicklereinheit (54) angeordnet ist, und in der für die Kalibrierung der
Löscheinrichtung (53) die Fleckerzeugungseinrichtung (Fig. 5) dazu eingerichtet ist,
einen zweiten Zwischenentwicklungsfleck (V0,7D) (108) an den Photorezeptor zusammen mit dem Dunkelentwicklungsfleck für nachfolgende
Beleuchtung durch die Löscheinrichtung zu erzeugen, um einen Kalibrierungsfleck (VDPG) (110) zu erzeugen, wobei die Logikeinrichtung weiter dazu eingerichtet ist, Signale
von dem Dichtemesser, die die Tonerdichte des zweiten Zwischenentwicklungsflecks repräsentieren,
und den Kalibrierfleck zu vergleichen, und wenn eine Differenz (VDSS) ermittelt wird, selektiv den Ausgang der Löscheinrichtung in einem iterativen Prozeß
zu regeln, bis die zwei gemessenen Werte gleich sind.
4. Vorrichtung nach Anspruch 3,
bei der die Logikeinrichtung auch dazu eingerichtet ist, die Differenz (VDSS) zwischen den Tonerdichtesignalen mit einem vorgewählten Wert, der in der Speichereinrichtung
gespeichert ist, zu vergleichen und in Abhängigkeit von diesem Vergleich die Entwicklereinheit
(54) zu regeln.
5. Vorrichtung nach einem der vorhergehenden Ansprüche,
bei der die optische Testfleckerzeugungseinrichtung (Fig. 5) einen Ablenkschlitten
(45) mit einer langgestreckten Beleuchtungseinrichtung (42) und einen Ablenkspiegel
(44), einen lichtundurchlässigen Verschluß (90) enthält, der in den optischen Weg
vor den Photorezeptor gebracht werden kann, wobei die Auflagefläche einen ersten Zwischendichtezielstreifen
(92), der an der Unterseite an einer Testfleckerzeugungsposition befestigt ist, und
einen zweiten Zwischendichtezielstreifen (107), der an der Unterseite an einer weiteren
Position befestigt ist, aufweist, wobei der digitale Regler dazu eingerichtet ist,
den Ausgang der Beleuchtungseinrichtung (42) an jeder der Testfleckerzeugungspositionen
zu variieren.
6. Verfahren zum automatischen Einstellen der xerographischen Grundparameter eines elektrophotographischen
Kopiergeräts, enthaltend die folgenden Schritte:
Betreiben der Dokumentenabtastoptik des Geräts in einem Testfleckerzeugungsmode, um
eine Vielzahl von Testflecken unterschiedlicher Dichten auf den Photorezeptor des
Geräts abzuscheiden, einschließlich eines Flecks, der ein Dunkelabfallpotential VDDP repräsentiert, eines Flecks, der einen Hintergrundspannungspegel VBG repräsentiert, und eines Flecks, der einen Zwischenspannungspegel V0,3D repräsentiert,
Messen der Spannungspegel an den Testflecken und Erzeugen von Signalen, die dafür
repräsentativ sind; Vergleichen der Signale mit Bezugswerten und Regeln des Ladungsstroms
und des Systembelichtungspegels des Geräts in Abhängigkeit von der Differenz zwischen
den Signalen und den Bezugswerten, dadurch gekennzeichnet, daß die Signale für den Zwischenspannungspegel V0,3D und für die Differenz VC zwischen dem Dunkelabnahmepotential VDDP und dem Hintergrundspannungspegel VBG kennzeichnend sind, und weiterhin gekennzeichnet durch die Schritte:
Speichern einer digitalen Darstellung der photoinduzierten Entladungskurve (PIDC)
für den Photorezeptor des Geräts,
Vergleichen des Spannungspegelsignals, das für VC kennzeichnend ist, mit einem Optimalwert, der aus der gespeicherten Darstellung der
PIDC-Kurve abgeleitet ist, und Einstellen des Ladungsstroms IC in Abhängigkeit von diesem Vergleich, und
Vergleichen des Spannungspegelsignals, das für V0,3D kennzeichnend ist, mit einem Optimalwert, der aus der gespeicherten Darstellung der
PIDC-Kurve abgeleitet ist, und Einstellen des Systembelichtungspegels EO des Geräts in Abhängigkeit von diesem Vergleich,
wobei die Einstellung des Ladungsstroms und des Systembelichtungspegels in einem iterativen
Prozeß geregelt wird, bis Konvergenz zwischen den gemessenen Spannungspegeln und der
gespeicherten PIDC-Repräsentation erreicht ist.
7. Verfahren nach Anspruch 6,
umfassend den Schritt des selektiven Löschens der Testflecken unter Verwendung einer
diskreten Lichtquelle.
8. Verfahren nach Anspruch 7,
enthaltend den zusätzlichen Schritt des Kalibrierens der diskreten Lichtquelle auf
die endgültigen Maschinenparameter.
9. Indem ein Dokument (32) auf einer Auflageplatte (34) abgetastet und ein Abbild davon
auf eine Photorezeptorfläche projiziert wird, mit einem optischen Beleuchtungs- und
Ablenksystem (36), das dazu eingerichtet ist, in einer ersten und einer zweiten Betriebsart
zu arbeiten, enthaltend:
Eine Einrichtung (45) zum Bewegen einer Beleuchtungs- und Ablenkgruppe (40), die unter
der Auflageplatte angeordnet ist, in einer ersten, das Dokument kopierenden Betriebsart
von einem Ablenkstart zu einem Ablenkende zur Ablenkstartposition, wodurch ein Latenzbild
des Dokuments auf der Photorezeptorfläche erzeugt wird,
wenigstens einen Dichtezielstreifen (92), der an der Unterseite der Auflageplatte
an einer Stelle außerhalb der Ablenkendposition befestigt ist,
wobei die Bewegungseinrichtung dazu eingerichtet ist, die Beleuchtungs- und Ablenkgruppe
in einer zweiten, Testbetriebsart auf eine erste Position außerhalb der Ablenkstartposition
zu bewegen, wobei die Bewegung koinzident mit der Positionierung eines lichtundurchlässigen
Verschlusses (90) in den optischen Weg auftritt, um einen Dunkelabnahmetestfleck (100)
auf der Photorezeptorfläche auszubilden,
wobei die Bewegungseinrichtung weiterhin dazu eingerichtet ist, die Beleuchtungs-
und Ablenkgruppe von der ersten Position in eine zweite Position unter dem Zielstreifen
zu bewegen, und
eine Einrichtung zum selektiven und sequentiellen Ändern des Beleuchtungspegels, der
auf den Zielstreifen gerichtet ist, um dadurch Testflecken (102, 104) variierender
Dichte auf der Photorezeptorfläche auszubilden.
10. Elektrophotographisches Kopiergerät nach Anspruch 9,
bei dem die Testflecken längs der Mittellinie des Photorezeptors ausgebildet werden.