11 Veröffentlichungsnummer:

0 196 992 A1

12

EUROPÄISCHE PATENTANMELDUNG

- (21) Anmeldenummer: 86730039.4
- 2 Anmeldetag: 04.03.86

(5) Int. Cl.4: **H01F 40/06** , H01F 27/30 , H01F 27/32

- (3) Priorität: 06.03.85 DE 3508327
- (43) Veröffentlichungstag der Anmeldung: 08.10.86 Patentblatt 86/41
- Benannte Vertragsstaaten: DE FR GB IT SE

- Anmelder: Siemens Aktiengesellschaft Berlin und München
 - Wittelsbacherplatz 2 D-8000 München 2(DE)
- ② Erfinder: Bradt, Peter, Dipl.-Ing. Bachstrasse 10 D-2875 Ganderkesee(DE)

Erfinder: Prietzel, Günter, Dipl.-Ing.

Beerwinkel 39a D-1000 Berlin 20(DE)

- 54 Stromwandler mit einem rechteckigen Eisenkern.
- (7) Ein Stromwandler (1) weist auf gegenüberliegenden Schenkeln eines rechteckigen Eisenkernes (7) sitzende Spulenkörper (2) und Isolierteile (25) zur Isolierung des Eisenkernes (7) gegenüber einer durch den Innenraum des Stromwandlers (1) hindurchzuführenden Stromschiene (9) auf. Die Spulenkörper (2) sind an beiden Enden durch je ein Isolierteil (25) verbunden, das die freien Schenkel (45) des Eisenkernes (7) U-förmig wenigstens teilweise umgibt. Zur Herstellung eines Stromwandlers (1) werden zunächst die Spulenkörper (2) durch Anbringen der Isolierkörper (25) zu einen Rahmen verbunden, in den zur Bildung des Eisenkerns (7) L-förmige Bleche (42) eingelegt werden. Diese werden an den Stoßfugen durch eine Schweißnaht (43) verbunden. Der Stromwandler eignet sich insbesondere zum Einsatz in Niederspannungs-Leistungsschaltern.

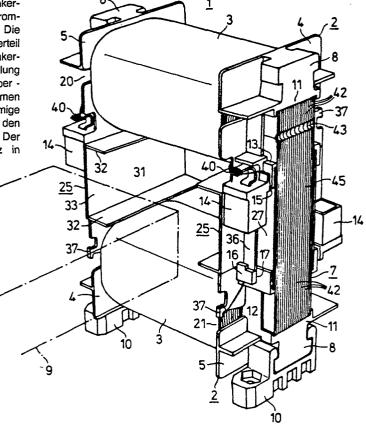


FIG 1

0 196

20

Die Erfindung betrifft einen Stromwandler mit einem rechteckigen Eisenkern, insbesondere für Niederspannungs-Leistungsschalter, mit auf gegenüberliegenden Schenkeln des Eisenkerns sitzenden Spulenkörpern, sowie mit Anschlußvorrichtungen für auf den Spulenkörpern befindliche Wicklungen und Isolierteilen zur Isolierung des Eisenkernes gegenüber einer von dem Eisenkern zu umschließenden Stromschiene.

Stromwandler dieser Art, wie sie beispielsweise der Firmendruckschrift "Mitsubishi Electric 04 82/AE-S/G" zu entnehmen sind, dienen in der Anwendung auf Niederspannungs-Leistungsschalter dazu, aus den über die Hauptstrombahnen fließenden Strömen kleine, für die Speisung von elektromechanischen oder elektronischen Auslösem geeignete Ströme zu gewinnen. Im Prinzip sind die Stromwandler als Transformatoren ausgebildet, deren Primärwicklung eine Stromschiene als Bestandteil der Strombahn des Leistungsschalters ist. Da in der Regel für jede Phase ein Stromwandler benötigt wird und Niederspannungs-Leistungsschalter, Einschübe für Motorsteuerungen und ähnliche Anwendungsfälle in relativ großer Stückzahl gefertigt werden, besteht ein Interesse an einer Bauform solcher Stromwandler, die eine preiswerte Herstellung ermöglicht.

Der Erfindung liegt in diesem Zusammenhang die Aufgabe zugrunde, bei einfacher Herstellbarkeit eine wirksame und dauerhafte Isolierung zwischen dem Primärteil und dem Sekundärteil des Stromwandlers sicherzustellen.

Diese Aufgabe wird bei einem Stromwandler der eingangs genannten Art dadurch gelöst, daß die Spulenkörper an beiden Enden durch je ein Isolierteil verbunden sind und daß die Isolierteile die freiliegenden Schenkel des Eisenkernes U-förmig wenigstens teilweise umgreifen. Durch die Isolierteile werden die der Stromschiene zugewandten Seiten des Eisenkernes abgedeckt. Zugleich bilden die Isolierteile eine mechanische Verbindung der beiden Spulenkörper. Dies gibt die Möglichkeit, zunächst die Spulen zu einem selbsttragenden Rahmen zu komplettieren und die erforderlichen Schaltverbindungen vorzunehmen, bevor der Eisenkern eingebaut wird. Hierdurch ist die Handhabung der Teile während des Herstellungsganges der Stromwandler wesentlich erleichtert.

Die erwähnten Isolierkörper können ferner so ausgebildet sein, daß sie die Stromschiene über die Breite des Stromwandlers U-förmig wenigstens teilweise umgreifen. Auf diese Weise wird auch in dem Raum zwischen den Spulenkörpern für eine Verlängerung der Kriechwege zwischen der Stromschiene und den Wicklungen bzw. ihren Anschlußstellen erreicht. Die Isolierteile erhalten durch diese Gestaltung annähernd die Form zweier sich rechtwinkelig kreuzender und nach entgegengesetzten Richtungen offener U-Profile.

Es empfiehlt sich, die Spulenkörper mit Anschlußkammern für die Wicklungsanschlüsse zu versehen, wobei diese Anschlußkammern Anlageflächen für den die Stromschiene umgreifenden Bereich jedes Isolierteiles bilden. Diese Ausgestaltung erleichtert das Zusammenfügen der Spulenkörper mit den Isolierteilen.

Ferner können die Anschlußkammern nur einseitig offen ausgebildet sein; dabei können von ihnen umschlossene Anschlußstücke gegenüber der Mündung der Anschlußkammern zurückstehend angeordnet sein. Dies erweist sich als vorteilhaft im Zusammenhang mit einem Verfahren zur Herstellung eines Stromwandlers, wie noch erläutert wird.

Eine vorteilhaft einfache Zusammenfügbarkeit der Spulenkörper und der sie verbindenden Isolierteile kann dadurch erzielt werden, daß die Spulenkörper und die Isolierteile formschlüssig zusammenwirkend ausgebildet sind. In diesem Zusammenhang empfiehlt es sich, den Isolierkörper so auszubilden, daß sein den Eisenkern U-förmig umgreifender Bereich an beiden Enden in passend geformte Anschlußbereiche der Spulenkörper überlappend eingreift. Dies wirkt sich gleichermaßen günstig auf die mechanische Stabilität des erwähnten rahmenartigen Gebildes als auch auf die Erhöhung der Kriechwege aus.

Hierzu können insbesondere einander zugeordnete Vertiefungen und Erhebungen an den Spulenkörpern und an den Isolierteilen vorgesehen sein, die eine formschlüssig wirkende Schnappverbindung bilden. Damit lassen sich die Spulenkörper und die Isolierteile ohne Zuhilfenahme von Werkzeugen oder gesonderten Verbindungselementen lediglich durch kurzzeitige Krafteinwirkung zu einem geschlossenen Rahmen zusammenfügen.

Die Isolierkörper können in paralleler Anordnung zu einem den Eisenkern seitlich abdeckenden Wandungsteil einen Steg zur Bildung eines Leitungskanales aufweisen. In diesem Leitungskanal können Verbindungsleitungen der auf den Spulenkörper befindlichen Wicklungen mechanisch nut geschützt verlegt werden, wobei auch die Kreichwege vergrößert sind.

Ein vorteilhaftes Verfahren zur Herstellung eines Stromwandlers der vorstehend beschreibenen Art kann vorsehen, daß nach der Aufbringung der Wicklungen auf die Spulenkörper diese durch Anbringen der Isolierteile zu einem Rahmen verbunden und in diesen zur Bildung des Eisenkerns L-förmige Bleche ohne Überlappung eingefügt werden und daß anschließend die Blechpakete an den außenliegenden Kanten der Stoßfugen durch eine Lichtbogen-Schweißnaht verbunden werden. Durch die Schweißnaht werden, obwohl sie als Aufschmelzung mit geringer Eindringtiefe ausführbar ist, die Blechpakete fest miteinander verbunden. Die magnetischen Eigenschaften des Eisenkerns bleiben daher unabhängig von späteren Einflüssen des Betriebes wie Erschütterungen, Temperaturwechsel und dergleichen erhalten. Zugleich bildet nun der Eisenkern eine die Spulenkörper zusammenhaltende Klam-

Die Erfindung wird im folgenden anhand des in den Figuren dargestellten Ausführungsbeispieles näher erläutert.

Die Figur 1 zeigt einen Stromwandler in einer prespektivischen Darstellung.

In der Figur 2 sind zwei Spulenkörper und diese verbindende Isolierteile gleichfalls perspektivisch in auseinandergezogener und gegenüber der Figur 1 gedrehter Darstellung gezeigt.

Die Figure 3 zeigt als Einzelheit eines Spulenkörpers eine Asnchlußkammer im Schnitt mit eingesetztem Anschlußstück, wobei die Oberfläche eines Tränkbades angedeutet ist.

Der Stromwandler 1 gemäß der Figur 1 weist zwei gleiche Spulenkörper 2 mit darauf befindlichen Wicklungen 3 auf. Jeder der Spulenkörper 2 besitzt in üblicher Weise Wicklungsflansche 4 und 5 zur Begrenzung des Wicklungsraumes auf und ferner einen rechteckigen hohlen Wickelkern 6 (vgl. Fig. 2) zur Aufnahme jeweils eines Schenkels eines rechteckigen Eisenkernes 7. Wie insbesondere der Figur 2 zu entnehmen ist, sind die Spulenkörper 2 einheitliche Körper, die vorzugsweise im Spritzverfahren aus einem geeigneten Kunststoff hergestellt sein können. An die Flansche 4 und 5 der Spulenkörper 2 sind für eine ratio-

45

50

55

nelle Fertigung des Stromwandlers 1 wesentliche Elemente angeformt. Insbesondere trägt jeder der Flansche 4 und 5 einen etwa pilzförmigen Ansatz 8, der zum Aufsetzen eines Fußteiles 10 dient, das in der Figur 1 gezeigt ist und dessen Anwendung noch beschrieben wird. Ferner sind die Flansche 4 und 5 mit Wandteilen versehen, die sich in der Verlängerung des Wickelkernes 6 erstrecken. Durch die Wandteile wird der Eisenkern in diesem Bereich teilweise abgedeckt. Der eine Wandteil 11 ist Bestandteil des Ansatzes 8 und hat die Höhe des Eisenkerns 7, während die seitlichen Wandteile 12 und 13 zu einem noch zu erläuternden Zweck örtlich eine etwas geringere Höhe als der Wandteil 11 aufweisen.

An die Flansche 4 und 5 sind ferner Anschlußkammern 14 zur Aufnahme eines Kontaktstiftes, einer Schraubklemme oder dergleichen angeformt. Zwischen der Anschlußkammer 14 und dem Wandteil 13 befindet sich ein Schlitz 15, der zur geschützten Verlegung eines Wicklungsdrahtes bzw. einer Leitung vorgesehen ist, wie noch erläutert wird. Sinngemäß die gleiche Gestaltung befindet sich auf der gegenüberliegenden Seite im Bereich des Wandteiles 12, wo durch einen parallel angeordneten niedrigeren Wandteil 16 gleichfalls ein Schlitz 17 gebildet ist. Die Flansche 4 und 5 sind darüber hinaus sowohl im Bereich der Anschlußkammer 14 als auch des Schlitzes 17 mit Ausnehmungen 20 bzw. 21 versehen, die zur bequemen Einführung bzw. Herausführung der Wicklungsdrähte aus dem Wicklungsraum dienen.

Wie man erkennt, ist der Abstand 22 der Wandteile 12 und 13 auf ihrer dem Ansatz 8 gegenüberliegenden Seite durch einen Absatz auf einen vergrößerten Abstand 23 erweitert. Sinngemäß in gleicher Weise sind die Flansche 4 und 5 in diesem Bereich zur Schaffung einer Vertiefung mit verringerter Wandstärke ausgeführt. Hierdurch wird jeweils ein Anschlußbereich 24 für das Eingreifen von Isolierteilen 25 geschaffen, wobei die erwähnte Maßerweiterung und die Verringerung der Wandstärke eines zum Umgreifen des freiliegenden Schenkels 45 des Eisenkernes 7 vorgesehenen U-förmigen Bereiches 26 entspricht. Dieser ist durch Seitenwände 27 mit der Höhe des Eisenkernes 7 sowie ein Bodenteil 28 mit der Breite des Eisenkernes 7 gebildet. Nahe ihren Enden sind die Seitenwände 27 und der Bodenteil 28 außen mit einer Rille 29 versehen, die mit entsprechend geformten Vorsprüngen 30 der Wandteile 12 und 13 in dem Anschlußbereich 24 formschlüssig nach Art einer Schnappverbindung zusammenwirken.

Senkrecht zu dem durch die Seitenwände 27 und den Bodenteil 28 gebildeten U-förmigen Bereich 26 des Isolierteiles 25 erstreckt sich ein weiterer, nach der gegenüberliegenden Seite geöffneter U-förmiger Bereich 31 mit Wandteilen 32 und einem Bodenteil 33. Die Länge dieses Bereiches ist entsprechend der Gesamtbreite des Stromwandlers 1 (Fig. 1) bemessen und erstreckt sich dementsprechend über die Breite der Flansche 4 und 5. Der U-förmige Bereich 31 dient zur Verlängerung des Kriechweges zwischen einer in der Fig. 1 angedeuteten rechteckigen Stromschiene 9 und den Wicklungen 3 sowie den Anschlußvorrichtungen der Wicklungsenden. Die über den U-förmigen Bereich 26 des Isolierteiles 25 überstehenden Enden des U-förmigen Bereiches 31 wirken zugleich als Widerlager an den Spulenkörpern 2 beim Zusammenfügen dieser Spulenkörper mit den Isolierteilen 25. Als Gegenflächen an den Spulenkörpern 2 dienen hierzu einerseits die Unterseiten 34 der Anschlußkammern 14 und ein in der Verlängerung jedes Wandteiles 16 angeformter Ansatz 35.

Parallel zu den Seitenwänden 27 des Isolierteiles 25 sind Stege 36 vorgesehen, die in der Verlängerung der beschriebenen Leitungskanäle an den Flanschen 4 und 5 verlaufen und zur Aufnahme der Spulendrähte bzw. Anschlußleitungen dienen.

Die Isolierteile 25 können gleichfalls als Kunststoff-Spritzteile ausgebildet sein. Ihre Wandstärke kann geringer gewählt werden als die Wandstärke der Spulenkörper 2, da es im wesentlichen auf die Einhaltung elektrischer Kriechweglängen ankommt und eine nennenswerte mechanische Beanspruchung nicht auftritt.

Zur Herstellung des in der Fig. 1 gezeigten Stromwandlers 1 werden zunächst auf die Spulenkörper 2 in bekannter Weise Wicklungen aufgebracht. Je nach der beabsichtigten Schaltung der beiden Wicklungen werden die Wicklungsenden nur mechanisch an Zapfen 37 der Flansche 4 und 5 festgelegt oder mit in die Anschlußkammern 14 hineinragenden Anschlußstücken 40 verlötet. Anschließend werden beide Spulenkörper mit den darauf befindlichen Wicklungen mit Hilfe der Isolierstücke 25 verbunden, was aufgrund der vorgesehenen Schnappverbindung in einfacher Weise durch einen kurzzeitigen Kraftaufwand in Richtung der Pfeile 41 in Fig. 2 zu erreichen ist. Der Einbau des Eisenkernes 7 in den auf diese Weise gebildeten Rahmen erfolgt nun durch das Einführen L-förmiger Eisenbleche 42 von gegenüberliegenden Seiten ohne Überlappung, wie dies in der Fig. 2 angedeutet ist. Der geschlossene magnetische Kreis wird dadurch hergestellt, daß die beiden L-förmigen Blechpakete an ihren Stoßfugen durch eine Lichtbogen-Schweißnaht 43 verbunden werden. Die Wandteile 12 und 13 an den Außenseiten der Flansche 4 und 5 sind hierzu örtlich mit einer gegenüber der Höhe des Eisenkernes 7 verringerten Höhe ausgeführt, um den Schweißvorgang ohne Beschädigung der Kunststoffteile ausführen zu können.

Bei dem Schweißvorgang genügt es, die Bleche ohne Hinzufügung eines Schweißwerkstoffes bis zur einer geringen Tiefe aufzuschmelzen. Zweckmäßig werden die Blechpakete dabei in Richtung der Pfeile 46 (Fig. 2) unter Druck gesetzt, wobei die Kräfte über die Ansätze 8 eingeleitet werden können. An den Stoßfugen der Bleche 42 entsteht somit praktisch kein Luftspalt. Da auch keine Querbohrungen für Klemmbolzen, äußere Klammern oder Niete benötigt werden, hat der Eisenkern 7 gleichbleibend gute magnetische Eigenschaften bei vergleichsweise geringem Querschnitt.

Die gewünschte Art der Spulenschaltung kann vor oder nach Einbau des Eisenkernes vorgenommen werden, in dem beispielsweise die Wicklungsenden der einen Wicklung durch die erwähnten Leitungskanäle geführt und mit den an dem anderen Spulenkörper befindlichen Anschlußstücken 40 verlötet werden.

Falls gewünscht, kann der mechanisch und elektrisch fertiggestellte Stromwandler 1 noch einer Lackbehandlung unterzogen werden, um das Isoliervermögen zu verbessern und den Eisenkern 7 gegen Korrosion zu schützen. Wie aus der vorstehenden Beschreibung zu entnehmen ist, ist die Herstellung des Stromwandlers 1 dadurch wesentlich erleichtert, daß die Spulenkörper mittels der Isolierteile 25 vor dem Einbau des Eisenkernes zu einem stabilen und maßgenauen Rahmen zusammengesetzt werder können. Ferner gewährleisten die Isolierteile 25 eine dauerhafte Isolierung des Eisenkernes 7 gegenüber der Stromschiene 9 und den Anschlußvorrichtungen der Wicklungsenden. Wegen der Gleichheit der Spulenkörper 2 besteht eine weitgehende Freizügigkeit hinsichtlich der Lage der Anschlußstellen, da insgesamt vier Anschlußkammern 14 zur Verfügung stehen, die auf beide Seiten des Stromwandlers

20

25

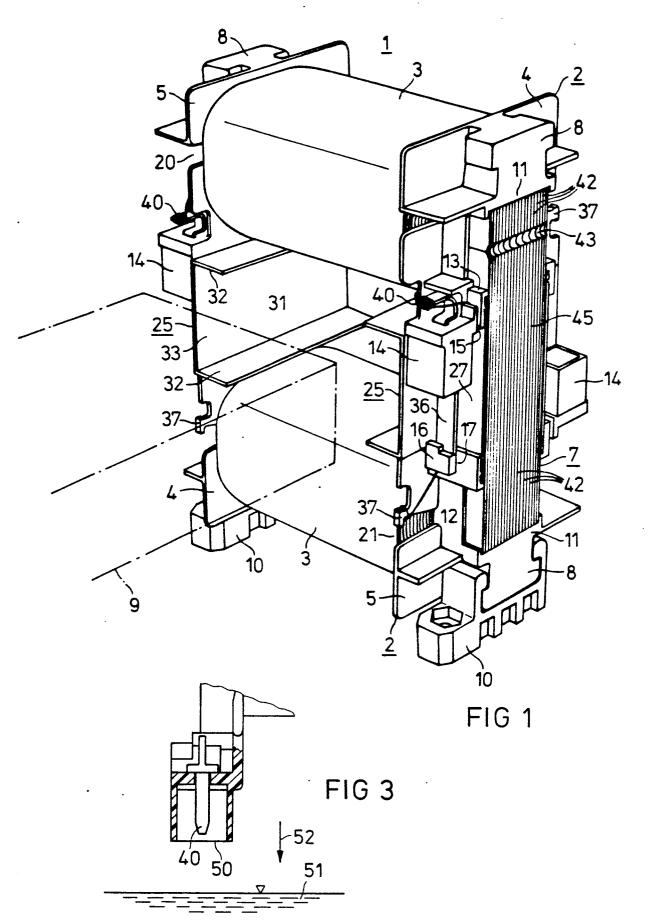
1 verteilt sind. Ebenso läßt sich der Stromwandler wegen des Vorhandensein von vier Ansätzen 8 wahlweise in der einen oder einer um 180° gedrehten Stellung befestigen. Hierzu können die Fußteile 10 auf die entsprechenden Ansätze 8 aufgeschoben werden.

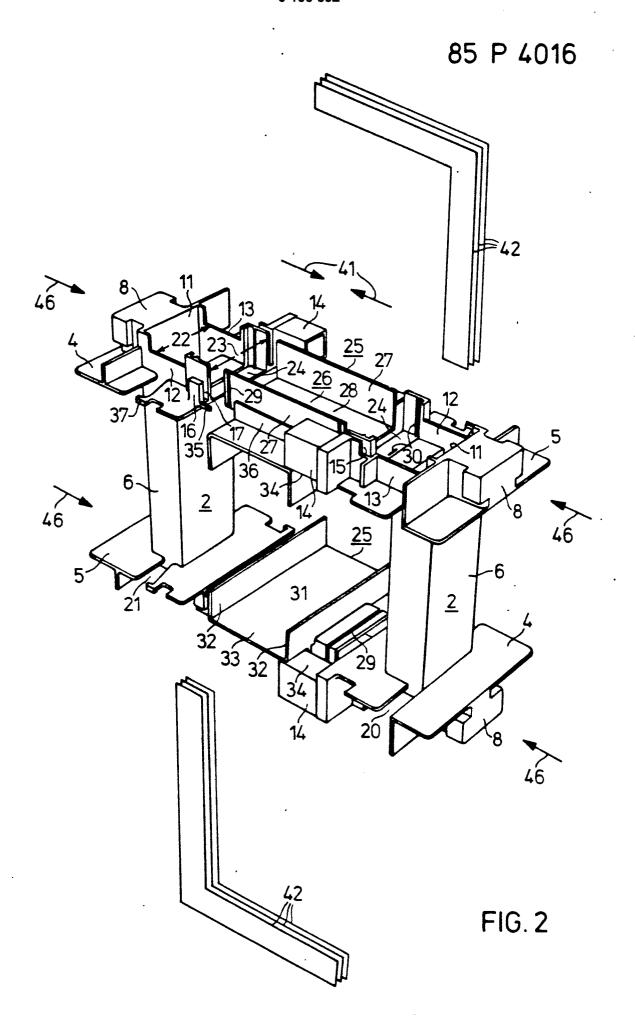
Bei der Durchführung der erwähnten Lackbehandlung wird durch die besondere Ausgestaltung der Anschlußkammern 14 und der Anordnung der Anschlußstücke 40 erreicht, daß die Anschlußstücke 40 von dem Tränklack nicht benetzt werden und somit eine nachträgliche Reinigung der Anschlußstücke entbehrlich ist. Die Figur 3 zeigt hierzu an dem Beispiel einer der Anschlußkammern 14, daß das zugehörige Anschlußstück 40 gegenüber der Mündung 50 zurückstehend angeordnet ist. Wird nun der fertiggestellte Stromwandler 1 (Fig. 1) in Richtung des Pfeiles 52 in das Tränkbad eingeführt, so ist die Mündung 50 der mit Anschlußstücken 40 bestückten Anschlußkammem 14 der Oberfläche 51 des Tränkbades zugewandt. Die Anschlußkammern wirken dabei als Taucherglocken, da sie nur einseitig offen ausgebildet sind. Dies verhindert eine Benetzung der Anschlußstücke mit dem Tränkmittel.

Ansprüche

- 1. Stromwandler (1) mit einem rechteckigen Eisenkern (7), insbesondere für Niederspannungs-Leistungsschalter, mit auf gegenüberliegenden Schenkeln des Eisenkerns (7) sitzenden Spulenkörpern (2), sowie mit Anschlußvorrichtungen (14, 40) für auf den Spulenkörpern (2) befindliche Wicklungen (3) und Isolierteilen zur Isolierung des Eisenkernes (7) gegenüber einer von dem Eisenkern (7) zu umschließenden Stromschiene (9), dadurch gekennzeichnet, daß die Spulenkörper (2) an beiden Enden durch je ein Isolierteil (25) verbunden sind und daß die Isolierteile (25) die freiliegenden Schenkel (45) des Eisenkernes (7) U-förmig (Bereich 26) wenigstens teilweise umgreifen.
- 2. Stromwandler nach Anspruch 1, dadurch gekennzeichnet, daß die Isolierkörper (25) die Stromschiene (9) über die Breite des Stromwandlers (1) U-förmig wenigstens teilweise umgreifen (Bereich 31).
- 3. Stromwandler nach Anspruch 2, dadurch gekennzeichnet, daß die Spulenkörper (2) mit Anschlußkammern (14) für die Wicklungsanschlüsse versehen sind und daß diese Anschlußkammern Anlageflächen für den die Stromschiene (9) umgreifenden Bereich (31) jedes Isolierteiles (25) bilden.

- 4. Stromwandler nach Anspruch 3, dadurch gekennzeichnet, daß die Anschlußkammern (14) nur einseitig offen ausgebildet und von ihnen umschlossene Anschlußstücke (40) gegenüber der Mündung (50) der Anschlußkammern (14) zurückstehend angeordnet sind.
- 5. Stromwandler nach Anspruch 1, dadurch gekennzeichnet, daß die Spulenkörper (2) und die Isolierkörper (25) formschlüssig zusammenwirkend ausgebildet sind.
- 6. Stromwandler nach Anspruch 3, dadurch gekennzeichnet, daß der den Eisenkern (7) U-förmig umgreifende Bereich (26) jedes Isolierkörpers (25) an beiden Enden in passend geformte Anschlußbereiche (24) der Spulenkörper (2) überlappend eingreift.
- 7. Stromwandler nach Anspruch 6, dadurch gekennzeichnet, daß durch einander zugeordnete Vertiefungen (30) und Erhebungen (31) an den Enden des Isolierkörpers (25) und an den Anschlußbereichen (24) der Spulenkörper (2) eine formschlüssig wirkende Schnappverbindung gebildet ist.
- Stromwandler nach Anspruch 1, dadurch gekennzeichnet, daß die Isolierkörper (25) in paralleler Anordnung zu einem den Eisenkern (7) seitlich abdeckenden Wandteil (27) zur Bildung eines Leitungskanales einen Steg (36) aufweisen.
- 9. Verfahren zur Herstellung eines Stromwandlers nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß nach dem Aufbringen der Wicklungen (3) auf die Spulenkörper (2) diese durch Anbringen der Isolierteile (25) zu einem Rahmen verbunden und in diesen zur Bildung des Eisenkernes (7) L-förmige Bleche (42) ohne Überlappung eingefügt und an den außenliegenden Kanten der Stoßfugen durch eine Schweißnaht (43) verbunden werden
- 40 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der mechanisch fertiggestellte Stromwandler (1) zur Behandlung in einem Tränkbad mit in Richtung der Oberfläche (51) des Tränkbades weisender Mündung (50) der mit Anschlußstücken (40) versehenen Anschlußkammern (14) in das Tränkbad eingetaucht wird.


50


55

60

65

85 P 4016

EUROPÄISCHER RECHERCHENBERICHT

ΕP 86 73 0039

EINSCHLÄGIGE DOKUMENTE				
Categorie		nts mit Angabe, soweit erforderlich, geblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
A	DE-A-2 006 736 MENDE RUNDFUNK KO * Seite 5, Zeiler	Ġ)	1,3,5	H 01 F 40/06 H 01 F 27/30 H 01 F 27/32
A	DE-A-2 233 005 SEISAKUSHO) * Seite 5, Absä Absatz 1 *	(K.K. TAMURA tze 2-4; Seite 6,	1	
A	US-A-2 544 658 ELECTRIC)	- (GENERAL		
A	GB-A- 808 030 THOMSON-HOUSTON			
A	DE-B-1 117 213	- (SIEMENS)		RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
A	US-A-4 238 753	-		H 01 F 40/00 H 01 F 27/00 H 01 F 5/00
A	GB-A-1 339 151 ENGINEERING CO.)	(HINCHLEY	-	
A	US-A-2 880 401 MANUFACTURING CO	•		
	·			
Der	vorliegende Recherchenbericht wurd	de für alle Patentansprüche erstellt.		
Recherchenort AbsorbEN HAAG		Abschlußdatum der Recherche 16-06-1986	. VANHU	LLE R.

EPA Form 1503 03 82

X: von besonderer Bedeutung allein betrachtet
Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
A: technologischer Hintergrund
O: nichtschriftliche Offenbarung
P: Zwischenliteratur

A : O : P : T :

der Erfindung zugrunde liegende Theorien oder Grundsätze

nach dem Anmeldedatum veröffentlicht worden ist
D: in der Anmeldung angeführtes Dokument
L: aus anderh Gründen angeführtes Dokument

& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument