(19)
(11) EP 0 197 235 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
15.10.1986  Patentblatt  1986/42

(21) Anmeldenummer: 86100009.9

(22) Anmeldetag:  02.01.1986
(51) Internationale Patentklassifikation (IPC)4G21F 9/02
(84) Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI LU NL SE

(30) Priorität: 28.03.1985 DE 3511320

(71) Anmelder: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
D-37073 Göttingen (DE)

(72) Erfinder:
  • Weichselgartner, Heinrich, Dr. Dipl.-Chem.
    D-8000 München 83 (DE)

(74) Vertreter: von Bezold, Dieter, Dr. et al
Dr. Dieter von Bezold Dipl.-Ing. Peter Schütz Dipl.-Ing. Wolfgang Heusler Brienner Strasse 52
80333 München
80333 München (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Einrichtung zur Reinigung der Gasatmosphären mehrerer getrennter, geschlossener Arbeitsräume


    (57) Es wird eine Einrichtung zur Reinigung der Gasatmosphären mehrerer getrennter geschlossener Arbeitsräume durch Entfernung schädlicher, insbesondere radioaktiver Gase, wie Tritium, beschrieben, welche für jeden Arbeitsraum einen eine Umwälzpumpe enthaltenden individuellen Gaskreislauf aufweist. Jeder Gaskreislauf enthält eine regenerierbare Einrichtung (28), z.B. eine Absorptionseinrichtung, zum Abtrennen und temporären Zwischenspeichern der zu entfernenden Gase sowie eine Vorrichtung (46) zum Freisetzen der zwischengespeicherten Gase. Ferner ist eine gemeinsame Gasbeseitigungseinheit (12) vorgesehen, die wahlweise an die Abtrennungs- und Zwischenspeichereinrichtung jedes Arbeitsraumkreislaufes anschließbar ist und eine Vakuumpumpenanordnung (50) zum Absaugen der in der gerade angeschlossenen Einrichtung (28) freigesetzten Gase, einen Behälter zu Aufnahme der abgesaugten Gase sowie eine mit dem Behälter verbundene Einrichtung zum Binden der zu entfernenden Gase enthält.




    Beschreibung


    [0001] Die vorliegende Erfindung betrifft eine Einrichtung zur Reinigung der Gasatmosphären mehrerer getrennter geschlossener Arbeitsräume durch Entfernung schädlicher, insbesondere radioaktiver Gase, wie Tritium, mit einem eine Umwälzpumpe enthaltenden individuellen Gaskreislauf für jeden Arbeitsraum.

    [0002] In größeren Tritiumlabors gibt es die verschiedensten Experimentiereinrichtungen, die jeweils in einem eigenen geschlossenen Arbeitsraum ("Containment"), wie einer Glove-Box, einem Caisson oder dergl. untergebracht sind. Diese Arbeitsräume werden zum Teil mit Atmosphärendruck, zum Teil mit Unterdruck betrieben, sie können gewöhnliche Luft oder eine gereinigte Atmosphäre (Luft, der der Sauerstoff und/oder etwaige Feuchtigkeit entzogen worden sind) oder ein Inertgas, wie ein Edelgas, enthalten.

    [0003] Die in den Arbeitsraumen installierten Experimente oder Betriebseinrichtungen weisen im allgemeinen sowohl unterschiedliche Tritiuminventare als auch unterschiedliche Gefährdungspotentiale auf. Beispiele solcher unterschiedlicher Einrichtungen sind ganzmetallische Apparaturen, Systeme mit offener Probeentnahme, Elektrolysierzellen mit hoher Wahrscheinlichkeit der Freisetzung von tritiertem Wasserdampf, temperierte Metallgetter, bei denen T-Permeation oder Leckage auftreten können, um nur einige Beispiele zu nennen.

    [0004] Aus Sicherheitsgründen wird die Atmosphäre solcher geschlossener Arbeitsräume laufend überwacht und durch Einrichtungen zur Tritiumentfernung verarbeitet, wobei sowohl sogenannte Normal-Freisetzungen (Freisetzung von Tritium durch Permeation, Leckage, Wartung, Probenentnahme) als auch Störfall-Freisetzungen (schlagartige Freisetzung des gesamten Tritiuminventars) in Betracht gezogen werden müssen.

    [0005] Es ist bekannt, jeden geschlossenen Arbeitsraum mit einer eigenen Einrichtung zur Tritiumbeseitigung zu versehen, die an die jeweiligen Verhältnisse individuell angepaßt ist, d.h. z.B. hinsichtlich Durchsatz, T-Aufnahmevermögen, Wartungsintervall und Gefährdungspotential für den betreffenden Arbeitsraum und die in ihm enthaltenen Experimentier- und Betriebseinrichtungen speziell ausgelegt ist. Diese Lösung ist jedoch sehr aufwendig, da für jeden Arbeitsraum eigene Gebläse, Kompressoren, Reaktoren, Absorptionsstrecken, Filter, Wärmetauscher, Regel- und Steuerorgane usw. vorgesehen werden müssen.

    [0006] Der apparative Aufwand läßt sich durch ein zentrales Tritium-Beseitigungssystem verringern, welches an mehrere oder alle geschlossenen Arbeitsräume des Labors angeschlossen ist. Ein solches zentrales System muß dann aber den Bedingungen aller Arbeitsräume genügen, und zwar sowohl hinsichtlich der Atmosphäre, z.B. Luft, Inertgas, Edelgas, mit oder ohne Sauerstoff, mit oder ohne Feuchtigkeit), hinsichtlich der Druckverhältnisse (Überdruck, Unterdruck, Atmosphärendruck, niederer oder hoher Durchsatz), hinsichtlich des Gefährdungspotentials (Art des Experiments und des äußeren Einschlusses, wie metallisch, offen usw.) und hinsichtlich des Tritiuminventars (Menge absolut gerechnet), Aggregatzustand (wie gasförmig oder an feste oder flüssige Stoffe gebunden) usw. Hieraus folgt, daß ein zentrales System mit den unterschiedlichsten Betriebszuständen gefahren werden muß. Die Anzahl der Regel- und Steuerorgane für Druck, Temperatur, Durchsatz, Zusatzgas-Dosierung usw. steigt dadurch drastisch an und für die Lüfter, Gebläse und Kompressoren sind große Durchsatz- und Druckbereiche erforderlich. Die Steuerung von Katalysatoröfen, die Dimensionierung von Absorptionsstrecken, Bemessung von Filtern und Abscheidern müssen weite, verfahrenstechnisch nur schwierig abzudeckende Bereiche umfassen. Ein zentrales System ist daher komplex und unübersichtlich, die Sicherheitsbedingungen sind schwer zu überblicken und werden dadurch leicht unrealistisch angesetzt, Störfälle und Systemausfälle sind schwer beherrschbar.

    [0007] Ähnliche Probleme treten auch bei anderen Anlagen auf, in denen radioaktive oder andere schädliche Gase aus getrennten Arbeitsräumen entfernt werden müssen.

    [0008] Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Rückhaltesystem für mehrere geschlossene Arbeitsräume anzugeben, welches sich einerseits optimal an die Verhältnisse jedes einzelnen Arbeitsraumes anpassen läßt und andererseits eine weitgehend zentrale Verarbeitung der zu entfernenden Gase mit einem Minimum an apparativem Aufwand ermöglicht.

    [0009] Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß jeder Gaskreislauf eine regenerierbare Einrichtung zum Abtrennen und temporären Zwischenspeichern der zu entfernenden Gase sowie eine Vorrichtung zum Freisetzen der zwischengespeicherten Gase enthält, und daß eine gemeinsame Gasbeseitigungseinheit vorgesehen ist, die wahlweise an die Abtrennungs- und Zwischenspeichereinrichtung jedes Arbeitsraumkreislaufes anschließbar ist und eine Vakuumpumpenanordnung zum Absaugen der in der gerade angeschlossenen Einrichtung freigesetzten Gase, einen Behälter zur Aufnahme der abgesaugten Gase sowie eine mit dem Behälter verbundene Einrichtung zum Binden der zu entfernenden Gase enthält.

    [0010] Dadurch, daß jedem Arbeitsraum eine dessen Bedingungen angepaßte Einzel-Sorptionseinheit zugeordnet ist, und daß zur Verarbeitung der zu entfernenden, z. B. tritiumhaltigen Gase aus allen diesen Einzel-Sorptionseinheiten ein gemeinsamer Anlagenteil vorgesehen ist, wird sowohl eine optimale Anpassung an die Verhältnisse der einzelnen Arbeitsräume als auch eine effektive Weiterverarbeitung der zu entfernenden Gase mit geringem apparativen Aufwand gewährleistet.

    [0011] Die regenerierbare Einrichtung kann eine Tritium-Sorptionseinrichtung enthalten und die gemeinsame Gasbeseitigungseinrichtung enthält dann eine Einrichtung zum Binden von tritiumhaltigen Bestandteilen der abgesaugten Gase. Die regenerierbare Tritium-Sorptionseinrichtung enthält vorzugsweise ein durch Erhitzen regenerierbares Sorptionsmittel.

    [0012] Die Umwälzpumpe ist vorzugsweise innerhalb des betreffenden Arbeitsraumes angeordnet, so daß an ihre Dichtigkeit keine besonderen Ansprüche gestellt zu werden brauchen.

    [0013] Bei einer vorteilhaften Ausführungsform enthält die Pumpenanordnung der gemeinsamen Einheit eine ölfreie Hochvakuumpumpe und eine dieser nachgeschaltete ölfreie Verdrängungspumpe.

    [0014] Der Behälter der gemeinsamen Einheit und die Einrichtung zum Binden der zu beseitigenden Gase sind vorzugsweise in Reihe mit einer Pumpe in einen Gaskreislauf geschaltet. Die gemeinsame Einheit kann mehrere verschiedene, wahlweise einschaltbare Einrichtungen zum Binden der zu beseitigenden Gasbestandteile enthalten.

    [0015] Im folgenden wird ein Tritium-Rückhaltesystem als bevorzugtes Ausführungsbeispiel der Erfindung unter Bezugnahme auf die Zeichnungen näher erläutert, dabei werden noch weitere Merkmale und Vorteile der Erfindung zur Sprache kommen.

    [0016] Es zeigen:

    Fig. 1 eine schematische Darstellung einer bevorzugten Ausführungsform eines Tritium-Rückhaltesystems gemäß der Erfindung, und

    Fig. 2 bis Fig. 5 verschiedene Ausführungsformen von Tritium-Beseitigungseinrichtungen für das System gemäß Fig. 1.



    [0017] Das in Fig. 1 dargestellte Tritium-Rückhaltesystem besteht aus einer Anzahl individueller Einheiten 10a, 10b, 10c, .. und einer gemeinsamen Einheit 12. Die individuellen Einheiten 10 sind jeweils einem geschlossenen Arbeitsraum, wie einer Glove-Box, einem Caisson und dergl. zugeordnet; da sie im Prinzip gleich sind, ist nur die Einheit 10a genauer dargestellt und wird im folgenden im einzelnen erläutert.

    [0018] Die Einheit 10a enthält einen geschlossenen Arbeitsraum 14, in dem sich eine Tritium-Experimentier- oder Betriebseinrichtung 16 oder mehrere solcher Einrichtungen befinden. Der Arbeitsraum 14 ist in einen Sorptionskreislauf 18 geschaltet, der ein im Arbeitsraum 14 angeordnetes Gebläse 20 enthält, durch das das im Arbeitsraum 14 enthaltene Gas durch eine Leitung 22, die eine Aktivitätsmeßstelle 23, z.B. mit einer Ionisationskammer enthält, in eine Sorptions-Einrichtung 26 gefördert wird. (Der Begriff "Sorption" soll Adsorption und Absorption umfassen).

    [0019] Die Sorptions-Einrichtung 26 enthält zwei Sorptionskolonnen 28a, 28b, deren Einlaß durch ein Ventil 24a bzw. 24b wahlweise mit der Leitung 22 verbunden werden kann. Die Auslässe der Sorptionskolonnen können über weitere Ventile 30a bzw. 30b mit einer Leitung 34 verbunden werden, die über eine weitere Aktivitätsmeßstelle 38 mit einer Einlaßleitung 40 verbunden ist, die im Arbeitsraum 14 mündet. Die Auslässe der Sorptionskolonnen 28a, 28b können ferner über jeweils ein Ventil 32a bzw. 32b mit einer Leitung 36 verbunden werden. Die Leitung 36 ist über ein Absperrventil 42a mit einer Sammelleitung 44 verbunden, die zum Einlaß der gemeinsamen Einheit 12 führt.

    [0020] Die Sorptionskolonnen 28a, 28b sind jeweils mit einer zur Regenerierung dienenden Heizvorrichtung 46a, 46b versehen.

    [0021] Die gemeinsame Einheit 12 enthält eine Pumpenanordnung 50, deren Einlaß an die Sammelleitung 44 angeschlossen ist. Die Pumpenanordnung 50 enthält eine Turbomolekularpumpe 52, deren Einlaß mit der Sammelleitung 44 verbunden ist, und eine trockene (ölfreie) Verdrängerpumpe 54, z.B. eine Kolbenpumpe, deren Einlaß mit dem Auslaß der Trubomolekularpumpe 52 verbunden ist.

    [0022] Der Auslaß der Verdrängerpumpe 54 ist über ein Absperrventil 56 mit dem Einlaß 58 eines Behälters 60 verbunden, dessen Auslaß über ein Absperrventil 62 mit dem Einlaß eines trockenen (ölfreien) Membrankompressors 64 verbunden ist. Der Auslaß des Membrankompressors ist mit dem Einlaß x einer Tritium-Beseitungseinrichtung 66 verbunden, die anhand der Figuren 2 bis 4 noch genauer erläutert werden wird. Der Auslaß y der Tritium- Beseitigungseinrichtung ist über eine Ringleitung 68, die eine Aktivitätsmeßstelle 70 und ein Absperrventil 72 enthält, mit dem Einlaß 58 des Behälters 60 verbunden.

    [0023] Zur Tritiumbeseitigung können verschiedene bekannte Einrichtungen alleine oder in Kombination verwendet werden. Die Einrichtung 66 kann gemäß Fig. 2 durch Druck-Tritiation von Linolsäure in Gegenwart eines Pd-Katalysators in einem Einweggefäß 74 erfolgen. Um dies einfach und sicher auswechseln zu können, sind zwischen der Pumpe 64 und dem Einlaß x bzw. zwischen dem Auslaß y und der Ringleitung 68 jeweils ein Absperrventil 76 bzw. 78 vorgesehen. Die Beseitigung von Tritium mit Hilfe von Linolsäure ist beispielsweise in der EP-B-43 401 beschrieben. Das Einweggefäß 74 enthält eine mit Linolsäure und Pd-Katalysator getränkte Packung, die durch Absperrventile 80 verschließbar ist und nach Sättigung mit Tritium ausgewechselt und als Ganzes gelagert werden kann.

    [0024] Gemäß Fig. 3 kann die Einrichtung 66 eine Katalysatorkammer 82 und eine anschließende Absorberkammer 84 enthalten. In der Katalysatorkammer wird das gasförmige T oxidiert und das dabei entstehende tritiumhaltige Wasser wird in einer Molekularsiebpackung in der Absorberkammer 84 absorbiert. Die Absorberkammer 84 kann ähnlich wie es in Fig. 2 dargestellt ist, als Einweggefäß ausgebildet sein.

    [0025] Die Absorberkammer 84 kann auch ein Material, wie gebrannten Kalk oder Gips enthalten, in dem das tritiumhaltige Wasser chemisch oder als Kristallwasser gebunden wird.

    [0026] Gemäß Fig. 4 enthält die Einrichtung 66 als erstes eine Absorberkammer 86 zum Absorbieren von tritiumhaltigem Wasser durch ein Molekularsieb (z.B. Zeolith) durch Gips, gebrannten Kalk und dergl. und anschließend eine Absorptionseinheit 88 zur Absorption von gasförmigem T2 unter Druck. Das Ventil 78 wird in diesem Falle dann als Drosselventil benutzt, um den erforderlichen Druck in der Einheit 88 zu erzeugen.

    [0027] Beim Betrieb der beschriebenen Anlage wird die Atmosphäre jedes einzelnen Arbeitsraumes 14 durch das entsprechend der Größe des Arbeitsraumes bemessene Gebläse 20 durch die eingeschaltete Sorptionskolonne 28a oder 28b umgewälzt. Die Kolonnen 28 sind so dimensioniert, daß ein Mehrfaches des gesamten Tritiuminventars an das Sorptionsmittel angelagert werden kann. Als Sorptionsmittel kann aktiviertes Palladiummetall 1 auf Alpha-Aluminiumoxid-Trägermaterial verwendet werden. Die Kolonnenfüllung wird durch Ausheizen bei vermindertem Druck aktiviert. Dies geschieht vorzugsweise bei 200 bis 300°C und einem Druck von 10 1 bis 10 Pa. Die Ausheizdauer beträgt, je nach dem vorangegangenen Beladungsvorgang einige Stunden, im allgemeinen zwischen 2 und 6 Stunden.

    [0028] An dem Sorptionsmittel wird gasförmiges Tritium (T2) und tritiumhaltiger Wasserdampf (THO und T20) reversibel durch Adsorption bzw. Lösung gebunden. Im Sorptionsmittel werden auch andere Stoffe aus dem umgewälzten Gas, wie normaler Wasserdampf und Sauerstoff gebunden. Hierdurch ergeben sich eine raschere Sättigung des Sorptionsmittels und kürzere Regenerierungsperioden.

    [0029] Eine Folge einer Sauerstoffaufnahme durch das Sorptionsmittel ist die Umwandlung des adsorbierten Tritiums in THO bzw. T20. Dieser Vorgang läuft teilweise bereits während des Absorptionsprozesses ab, die vollständige Umsetzung erfolgt während des Aufheizens des Sorptionsmaterials beim Reaktivieren.

    [0030] Wenn das Sorptionsmittel in der Sorptionskolonne 28a bis zu einem gewissen Grade gesättigt ist, was durch Vergleich der von 23 und 38 gemessenen Radioaktivitäten bestimmt wird, wird die Sorptionskolonne 28a aus dem Kreislauf abgetrennt und dafür die Sorptionskolonne 28b eingeschaltet. Hierzu werden Ventile 24a und 30a geschlossen und dafür die Ventile 24b und 30b geöffnet. Die Ventile 32a und 32b sind geschlossen.

    [0031] Die Regenerierung bzw. Reaktivierung des Sorptionsmittel in der Sorptionskolonne 28a erfolgt mittels der zentralen Einheit 12. Hierzu werden die Ventile 32a und 42a geöffnet (die Ventile 42b, 42c,.. sind geschlossen), die Heizvorrichtung 46a wird eingeschal- . tet, die Pumpenanordnung 50 wird in Betrieb gesetzt und das Ventil 56 wird geöffnet. Die Ventile 62 und 72 bleiben geschlossen. Während des Aufheizens des Sorptionsmittels in der Kolonne 28a wird durch die Turbomolekularpumpe 52 in der Kolonne 28a ein Vakuum von mindestens 10 1 bis 10 -2 Pa erzeugt und dadurch die sorbierten Substanzen abtransportiert. Das von der Hochvakuumpumpe 52 abgesaugte Gas wird durch die Verdrängungspumpe 54 in den als Zwischenspeicher dienenden Behälter 60 gefördert. Die einen Heizmantel bildende Heizvorrichtung 46a heizt das Sorptionsmittel, das bei der bevorzugten Ausfuhrungsform aus aktiviertem Palladiummetall auf Alpha-Aluminiumoxid-Trägermaterial besteht, auf etwa 200 bis 300°C auf. Wenn das Sorptionsmittel regeneriert ist, werden die Ventile 32a, 42a sowie 56 geschlossen und die Pumpenanordnung 50 wird abgestellt. Das im Behälter 60 enthaltene, tritiumhaltige Gasgemisch kann nun unter kontrollierten Bedingungen verarbeitet werden. Hierzu werden die Ventile 62, 72, 76 sowie 78 geöffnet und die Pumpe 64 wird angestellt. Das Gasgemisch aus dem Behälter 60 wird nun durch die Tritiumbeseitigungseinrichtung 66 zirkuliert, in der das Tritium und/oder tritiumhaltige Wasser gebunden werden, was mittels des Aktivitäts-Meßgerätes 70 überwacht wird.

    [0032] Die Zentraleinheit oder gemeinsame Einheit 12 kann über die Ventile 42b, 42c... nach Bedarf an die anderen individuelle Einheiten 10b, 10c,... angeschlossen werden.

    [0033] Die Einrichtung gemäß der Erfindung weist eine Reihe wesentlicher Vorteil auf:

    Die Sorptionskolonnen 28 können speziell an die in der zugehörigen Einheit 10 installierten Experimente und Einrichtungen 16 angepaßt werden. Die Kapazität der Sorptionskolonne wird entsprechend dem T-Inventar und dem Gefährdungspotential ausgelegt. Entsprechendes gilt für das Gebläse 20, dessen Förderkapazität entsprechend dem Volumen des zugehörigen Arbeitsraumes 14 ausgelegt werden kann.

    Über die Sammelleitung 44 können beliebig viele individuelle Einheiten an die zentrale oder gemeinsame Einheit 12 angeschlossen werden.

    Bei Erschöpfung des Sorptionsmittels, z.B. der Kolonne 28a, kann die redundante Sorptionskolonne 28b so lange betrieben werden, bis die erste Sorptionskolonne 28a regeneriert ist. Die zweite Sorptionskolonne kann also hinsichtlich der Kapazität kleiner ausgelegt werden, da sie im Prinzip nur während der Regenerierung der "Hauptkolonne" benötigt wird.

    Die Zentraleinheit oder gemeinsame Einheit 12, die die Pumpenanordnung 50, den Behälter 60 und den Kompressor 64 enthält, also die apparativ aufwendigsten Einheiten der Anlage, braucht nur ein einziges Mal vorhanden zu sein.

    Wenn vorwiegend tritiumhaltiges Wasser aus den Arbeitsräumen zu beseitigen ist, erfolgt die letztliche Beseitigung des Tritiums vorzugsweise nach dem Oxidation/Absorptions-Prinzip. Wenn jedoch hauptsächlich gasförmigs T2 anfällt, hat das TROC-Verfahren (Bindung des Tritiums an einer ungesättigten organischen Verbindung) Vorteile.

    Wenn ausschließlich tritiumhaltiges Wasser zur Beseitigung vorliegt, was dann der Fall ist, wenn gleichzeitig mit Tritium auch 02 an das Sorptionsmittel gebunden wird, können auch andere Trocknungsmittel als Molekularsiebe, z.B. Kalk, Gips usw. in der Beseitigungseinrichtung verwendet werden.

    Die Beseitigungseinrichtung 66 kann auch mehrere verschiedene Beseitigungseinrichtungen, z.B. die gemäß Fig. 2 bis 4, enthalten, die über entsprechende Ventile wahlweise in den Kreislauf einschaltbar sind.


    BEISPIEL



    [0034] Bei einem praktisch realisierten Ausführungsbeispiel der Erfindung ist der Arbeitsraum 14 eine Glove-Box mit einem Volumen von 6 m3 und He-Atmosphäre. Das Gebläse 20 hat eine Förderleistung von 20 m3/h, so daß also die Atmosphäre der Glove-Box etwa dreimal in der Stunde umgewälzt wird. Die Absorptionskolonne 28a besteht aus einem zylindrischen Edelstahlrohr mit einem Durchmesser von 20 cm und einer Höhe von 2 m. In diesem Rohr befinden sich zehn Körbe mit jeweils 2 kg eines Pd/A1203-Absorptionsmittels (0,5% Pd auf aus Alpha-Al2O3-bestehenden Kugeln von 4 mm Durchmesser) auf Drahtgeflecht-Sieben angeordnet, insgesamt also 20 kg. Dieses Absorptionsmittel wird vor dem Gebrauch aktiviert, indem es unter einem Vakuum von 10-2 Pa etwa 4 Stunden auf 220°C erhitzt wird. Dadurch werden alle Feuchtigkeitsspuren und Gase ausgetrieben.

    [0035] Bei einem ersten Test wurden 600 ml H2 in eine Glove-Box eingespritzt, was auf T2 umgerechnet ca. 1500 Ci, d. h. etwa 250 Ci/m3 entsprach, und das Gebläse wurde bei abgekühltem Adsorbens in Betrieb genommen. Bereits nach dreißigminütiger Betriebszeit konnte in der Glove-Box kein H2 mehr nachgewiesen werden, was bedeutet, daß innerhalb dieser Zeit mehr als 99 % der Anfangskonzentration durch Adsorption abgebaut wurde.

    [0036] Bei einem zweiten Versuch mit Tritium und THO ergab sich, daß die Adsorption von T2 zwar rascher verläuft als die von THO, letzteres wird jedoch auch noch mit ausreichender Schnelligkeit adsorbiert, so daß sich eine Restaktivität von nur wenigen µCi/m3 in relativ kurzer Zeit erzielen läßt.

    [0037] Bei einer Modifikation der oben beschriebenen Anlage ist die Zentraleinheit mit den Einheiten 10a, 10b, ... nicht fest verbunden, sondern als fahrbare Einheit ausgebildet, die nach Bedarf zu den verschiedenen Einheiten 10 gefahren und über eine entsprechende Rohrleitungskupplung an diejenige Einheit 10 angeschlossen werden kann, deren Sorptionseinrichtung gerade zu regenerieren ist.


    Ansprüche

    1. Einrichtung zur Reinigung der Gasatmosphären mehrerer getrennter geschlossener Arbeitsräume durch Entfernung schädlicher, insbesondere radioaktiver Gase, wie Tritium, mit einem eine Umwälzpumpe enthaltenden individuellen Gaskreislauf für jeden Arbeitsraum, dadurch gekennzeichnet, daß jeder Gaskreislauf eine regenerierbare Einrichtung (28) zum Abtrennen und temporären Zwischenspeichern der zu entfernenden Gase sowie eine Vorrichtung (46) zum Freisetzen der zwischengespeicherten Gase enthält, und daß eine gemeinsame Gasbeseitigungseinheit (12) vorgesehen ist, die wahlweise an die Abtrennungs- und Zwischenspeichereinrichtung jedes Arbeitsraumkreislaufes anschließbar ist und eine Vakuumpumpenanordnung (50) zum Absaugen der in der gerade angeschlossenen Einrichtung (28) freigesetzten Gase, einen Behälter zur Aufnahme der abgesaugten Gase sowie eine mit dem Behälter verbundene Einrichtung zum Binden der zu entfernenden Gase enthält.
     
    2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die regenerierbare Einrichtung eine regenerierbare Tritium-Sorptionseinrichtung (28) enthält, und daß die gemeinsame Gasbeseitigungseinheit (12) eine Einrichtung (66) zum Binden von tritiumhaltigen Bestandteilen der abgesaugten Gase enthält.
     
    3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die regenerierbare Tritium-Sorptionseinrichtung (28) ein durch Erhitzen regenerierbares Sorptionsmittel enthält.
     
    4. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Umwälzpumpe (20) innerhalb des Arbeitsraumes (14) angeordnet ist.
     
    5. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Pumpenanordnung (50) der gemeinsamen Einheit (12) eine ölfreie Hochvakuumpumpe (52) und eine dieser nachgeschaltete ölfreie Verdrängungspumpe (54) enthält.
     
    6. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Behälter (60) der gemeinsamen Einheit (12) und die Einrichtung (66) zum Binden der zu beseitigenden Gase in Reihe mit einer Pumpe (64) in einen Gaskreislauf geschaltet sind.
     
    7. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die gemeinsame Einheit (12) mehrere verschiedene, wahlweise einschaltbare Einrichtungen zum Binden der zu beseitigenden, insbesondere tritiumhaltigen Gasbestandteile enthält.
     




    Zeichnung







    Recherchenbericht