(11) Veröffentlichungsnummer:

0 197 315 **A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: **86103080.7**

(22) Anmeldetag: 07.03.86

(6) Int. Cl.⁴: **F 02 D 43/04** F 02 D 41/26, F 02 P 15/00

(30) Priorität: 12.04.85 DE 3513086

(43) Veröffentlichungstag der Anmeldung: 15.10.86 Patentblatt 86/42

(84) Benannte Vertragsstaaten: DE FR GB IT SE

(71) Anmelder: ROBERT BOSCH GMBH Postfach 50 D-7000 Stuttgart 1(DE)

(72) Erfinder: Beyer, Hans-Ernst, Dipl.-Ing. August-Lämmle-Strasse 1 D-7141 Oberriexingen(DE)

(72) Erfinder: Bonitz, Jörg, Dipl.-Ing. Marsstrasse 19 D-7130 Mühlacker 6(DE)

(72) Erfinder: Entenmann, Robert, Dipl.-Ing. Beihinger Weg 15 D-7141 Benningen(DE)

72 Erfinder: Förster, Siegmar, Dip.-Ing. Holdergasse 46 D-7141 Schwieberdingen(DE)

(72) Erfinder: Knab, Rochus Danneckerstrasse 10 D-7014 Kornwestheim(DE)

(72) Erfinder: Kugler, Wolfgang Oberriexingerweg 75 D-7143 Vaihingen/Enz 3(DE) Erfinder: Künzel, Walter, Dr. Dipl.-Phys. Schönbeinstrasse 28 D-7140 Ludwigsburg(DE)

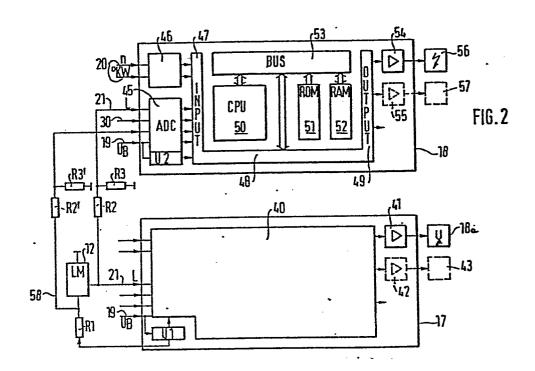
Erfinder: Mahlberg, Alfred, Dr. Weinstrasse 48 D-7149 Freiberg(DE)

72) Erfinder: Miller, Bernhard Lehenstrasse 31 D-7000 Stuttgart 1(DE)

72) Erfinder: Philipp, Matthias, Dipl.-Ing. Güglingweg 10 D-7000 Stuttgart 40(DE)

Erfinder: Rohde, Siegfried, Dr. Memelweg 1 D-7141 Schwieberdingen(DE)

(72) Erfinder: Unland, Stefan, Dipl.-Ing. **Beichertshalde 96** D-7140 Ludwigsburg(DE)


72) Erfinder: Viess, Walter, Dipl:-ing... Triebweg 109 D-7141 Schwieberdingen(DE)

(72) Erfinder: Winter, Herbert, Dipl.-Ing. Triebweg 109 D-7000 Stuttgart 30(DE)

(72) Erfinder: Zimmermann, Jürgen, Dr. Dipl.-Phys. Hölderlinweg 4 D-7141 Schwieberdingen(DE)

(54) Vorrichtung für eine Brennkraftmaschine zur Beeinflussung von Betriebsparametern.

(57) Es wird eine Vorrichtung für eine fremdgezündete Brennkraftmaschine mit einem ersten Steuergerät (17) zur Beeinflussung wenigstens des der Brennkraftmaschine zugeführten Kraftstoff-Luft-Gemisches wenigstens in Abhängigkeit von einer die Last der Brennkraftmaschine charakterisierenden Größe, bei der dem ersten Steuergerät die Lastinformation als Ausgangsgröße eines Lastsensors (12), insbesondere eines Luftmengensensors für die von der Brennkraftmaschine angesaugte Luftmenge, zugeführt wird und mit einem im Funktionsablauf vom ersten Steuergerät im wesentlichen unabhängigen zweiten Steuergerät (18) zur Beeinflussung wenigstens des Zündzeitpunktes der Brennkraftmaschine, wobei das zweite Steuergerät (18) wenigstens einen Mikrocomputer und Festwertspeichermittel (51, 52) aufweist und in den Festwertspeichermittel wenigstens Daten für den Zündzeitpunkt der Brennkraftmaschine als Funktion von Last- und Drehzahlinformationen abgelegt sind, vorgeschlagen. Gekennzeichnet ist diese Vorrichtung dadurch, daß die Lastinformation für das zweite Steuergerät (18) vom Lastsensor (12), der die Lastinformation für das erate Steuergerät (17) liefert, bezogen werden und im zweiten Steuergerät (18) Rechenfunktionen zur Beeinflussung der Ausgangscharakteristik des Lastsensors (12) vorgesehen sind.

9. 19960 26.3.1985 Vb/Le

ROBERT BOSCH GMBH, 7000 STUTTGART 1

Vorrichtung für eine Brennkraftmaschine zur Beeinflussung von Betriebsparametern

Stand der Technik

Die Erfindung geht aus von einer Vorrichtung für eine fremdgezündete Brennkraftmaschine nach der Gattung des Hauptanspruchs. Derartige Vorrichtungen werden bereits von verschiedenen Kraftfahrzeugherstellern zur Beeinflussung von Betriebsparametern verschiedener Brennkraftmaschinentypen in Serie eingesetzt. Zu diesen Kraftfahrzeugen gehören unter anderem der Volvo B200E (Europa) sowie der Audi 200 Turbo und der VW Rabbit GTI, die beide nach USA exportiert werden. Durch die Verwendung von zwei Steuergeräten, von denen das eine wenigstens für die Beeinflussung des der Brennkraftmaschine zugeführten Kraftstoff-Luft-Gemisches und das andere für die Beeinflussung der Zündung der Brennkraftmaschine verantwortlich ist, wird eine hohe Flexibilität dadurch erreicht, daß jedes der beiden Steuergeräte individuell an verschiedene Anforderungen der Kraftfahrzeughersteller angepaßte werden kann. Da die beiden Steuergeräte weitgehend unabhängig vonsinander arbeiten, sozusagen als eigenständige Komponenten auch einzeln eingesetzt werden können, liegt beim gemeinsamen Einsatz der beiden Steuergeräte der Sachverhalt vor, daß für ein und dieselbe Steuergeräteeinzwei verschiedene Sensoren gangsinformation eingesetzt werden. So ist es beispielsweise üblich, für das Steuergerät, das im wesentlichen für die Zündung zuständig ist, als Lastsignalsensor einen im Ansaugrohr der Brennkraftmaschine angebrachten Drucksensor zu verwenden. Für das, im wesentlichen das der Brennkraftmaschine zugeführte Kraftstoff-Luft-Gemisch beeinflussende zweite Steuergerät kann als Lastsensor natürlich auch ein Drucksensor eingesetzt werden, es hat sich jedoch als vorteilhaft erwiesen, als Lastinformation die von der Brennkraftmaschine angesaugte Luftmenge zu erfassen. Hierzu wird beispielsweise ein an sich bekannter Luftmengenmesser, der als Klappe im Saugrohr der Brennkraftmaschine ausgebildet ist oder ein Hitzdraht-Luftmassenmesser verwendet. Natürlich sind auch andere Arten der Lasterfassung, beispielsweise eine Erfassung der Drosselklappenstellung oder ähnliches denkbar.

Es besteht nun das Bestreben, anstelle von zwei verschiedenen Lastsensoren nur einen einzigen Lastsensor für beide Steuergeräte einzusetzen, um eine noch wirtschaftlichere Fertigung dieser Systeme zu gewährleisten. Allerdings sollen dadurch keine oder nur minimale, insbesondere hardwaremäßige Änderungen im Aufbau der Steuergeräte durchgeführt werden, da beide Steuergeräte an sich eigenständige Komponenten bleiben und zur wirtschaftlichen Fertigung auch weitgehend gleiche Pauteile unabhängig vom speziellen Einsatz aufweisen sollen.

Aufgabe ier Erfindung ist es daher, eine Vorrichtung zu schaffen, die es erlaubt, zwei weitgehend voneinander unabhängig arbeitende Steuergeräten zur Steuerung bzw. Regelung von Betriebsparametern unter Berücksichtigung der wirtschaftlichen Gesichtspunkte bei der Herstellung und dem Einsatz im Kraftfahrzeug unter Beibehaltung wenigstens der Genauigkeit der herkömmlichen Systeme und unter Minimierung des Änderungsaufwandes miteinander zu kombinieren.

Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Hauptanspruchs gelöst.

Vorteile der Erfindung

Mit der erfindungsgemäßen Vorrichtung mit den Merkmalen des Hauptanspruchs läßt sich eine erheblich preisgünstigere Fertigung der Steuergeräte erreichen. Darüber hinaus werden Fehlerquellen aufgrund von Ausfällen von Sensoren reduziert.

Eine vorteilhafte Ausgestaltung der Erfindung besteht in der Tatsache, daß die Lastinformation vom zweiten Steuergerät als Relativwert verarbeitet wird. Hierdurch werden Exemplarstreuungen des Lastsensors weitgehend entschärft.

Als sehr vorteilhaft hat sich erwiesen, die Ausgangssignale des Lastsensors mit additiven bzw. multiplikativen Größen zu beaufschlagen, die darüber hinaus noch
eine Abhängigkeit von der Drehzahl der Brennkraftmaschine
aufweisen können. Durch geeignete Festlegung dieser
Größen, die in vorteilhafter Weise in Speichermitteln des
Steuergerätes abgelegt sind, kann eine Anpassung des
Wertevorrates der Ausgangssignale des Lastsensors an
die Gegebenheiten des Steuergerätes erzielt werden unter
Gewährleistung einer sehr hohen Verarbeitungsgenauigkeit
bei einen minimalen hardwaremäßigen Aufwand.

Darüber hinaus hat es sich als sehr vorteilhaft erwiesen, die Ausgangssignale des Lastsensors einer korrigierenden Beeinflussung zu unterwerfen, die auf einem Vergleich der Soll- und Istwertlastkennlinie des Lastsensors beruht. Hierdurch wird eine hervorragende Stabilität des Sensorsystems bezogen auf die Zeit garantiert.

Weitere Vorteile der Erfindung und zweckmäßige Ausgestaltungen ergeben sich in Verbindung mit den Unteransprüchen aus der nachfolgenden Beschreibung der Ausführungsbeispiele.

Zeichnung

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Figur 1 eine schematische Darstellung einer Brennkraftmaschine mit zwei Steuergeräten und verschiedenen Signalgebern,

Figur 1a den bekannten Stand der Technik bezüglich der Lastsignalgewinnung für die beiden Steuergeräte,

Figur 1b die erfindungsgemäße Vorrichtung zur Gewinnung der Lastinformation für die beiden Steuergeräte,

Figur 2 ein grobes Blockschaltbild der beiden Steuergeräten mit einer Signalanpassung für die Ausgangssignale des Lastsensors,

Figur 3a ein Drehzahllastkennfeld für beispielsweise den Zündzeitpunkt, wobei das Lastsignal entsprechend dem bekannten Stand der Technik von einem Drucksensor abgeleitet wird,

Figur 3b ein zu Figur 3a äquivalentes Kennfeld, wobei in diesem Fall die Lastinformation von einem Luftmengenmesser abgeleitet wird,

Figur 4 einen Ausschnitt der Figur 3b zur Erläuterung zur korrigierenden Beeinflussung der Ausgangssignale des Lastsensors.

Beschreibung der Ausführungsbeispiele

In Figur 1 ist eine symbolisch dargestellte Brennkraftmaschine mit der Bezugsziffer 10 gekennzeichnet. Eingangsseitig tritt durch ein Ansaugrohr 11 die zur Verbrennung des Kraftstoffs notwendige Luft in die Brennkraftmaschine 10 ein. Im Ansaugrohr 11 ist ein Sensor 12 zur
Erfassung der von der Brennkraftmaschine angesaugten Luftmenge, stromab vom Sensor 12 eine Drosselklappe 13 mit
einem Drosselklappenschalter 14 sowie stromab von der
Drosselklappe 13 ein Sensor 15 zur Erfassung des im
Ansaugrohr 11 vorhandenen Drucks angebracht. Ausgangsseitig der Brennkraftmaschine 10 ist ein Abgaskanal 16
für den Auslaß der Abgase der Brennkraftmaschine 10 vorgesehen.

Ein erstes Steuergerät 17 dient zur Beeinflussung des Kraftstoff-Luft-Gemisches und liefert im vorliegenden Ausführungsbeispiel Signale zur Ansteuerung von Einspritzventilen 18 und beeinflußt dadurch die in die Arbeitszylinder der Brennkraftmaschine eingespritzte Kraftstoffmenge. Natürlich ist die Erfindung nicht auf eine Einzelzylindereinspritzanlage, wie sie im Ausführungsbeispiel der Figur 1 dargestellt ist, beschränkt. Sie läßt sich aufgrund der vorliegenden Offenbarung des Erfindungsgedankens ohne erfinderisches Zutun ebensogut auf Anlagen mit Saugrohreinspritzung oder mit kontinuierlicher Einzelzylindereinspritzung (im Gegensatz zur intermittierender Einzelzylindereinspritzung) übertragen.

Dem ersten Stedergerät 17 werden verschiedene Eingangsinformationen, nämlich Informationen 19 bezüglich der Batteriespannung, Informationen 20 bezüglich der Drehzahl, Informationen 21 bezüglich der Last, die im vorliegenden Ausführungsbeispiel vom Sensor 12 abgeleitet werden, Informationen 22 bezüglich der Ansauglufttemperatur, Informationen 23 bezüglich der Drosselklappenstellung der Drosselklappe 13, die vom Drosselklappenstellungssensor 14 abgeleitet werden, Informationen 24 bezüglich der Motortemperatur und weitere nicht näher spezifizierte Informationen 26 zugeführt. Neben der Ausgabe der Einspritzzeiten für die Einspritzventile 18a sind weitere Ausgabegrößen 27 vorgesehen, mit denen das Kraftstoff-Luft-Verhältnis zu beeinflussen ist. Beispielsweise kann mittels dieser Ausgabegrößen eine Drehzahlregelung über einen in der Zeichnung nicht dargestellten steuerbaren Luftbypaß oder eine Steuerung einer Abgasrückführung durchgeführt werden. Der Einfachheit halber soll im weiteren jedoch nur auf die Steuerung der Kraftstoffzumessung eingegangen werden.

Das zweite Steuergerät 18 liefert im wesentlichen Ausgangssignale zur Ansteuerung der Zündungseinheiten 29 der Brennkraftmaschine in Abhängigkeit von der Eingangsinformation Drehzahl bzw. Grad Kurbelwellenwinkel 20, der Batteriespannung 19 und von anderen nicht näher spezifizierten Eingangsgrößen 30, die Informationen über die Kraftstoffzumessung oder über den Ladedruck eines in der Zeichnung nicht dargestellten Laders oder über die Klopfneigung der Brennkraftmaschine beinhalten. Weitere Ausgabegrößen können zur Regelung des Ladedrucks oder anderer Betriebsparameter der Brennkraftmaschine oder für eine Klopfregelung dienen.

In Figur 1a ist als Stand der Technik dargestellt, von welchen Sensoren die beiden Steuergeräte ihre Lastinformation beziehen. Während das erste Steuergerät 17 seine Lastinformation vom Sensor 12 für die angesaugte Luftmenge bezieht, wird die Lastinformation für das zweite Steuergerät 18 vom Drucksensor 15 zur Messung des Ansaugdrucks im Ansaugrohr 11 der Brennkraftmaschine 10 abgeleitet.

In Figur 1b ist ein Teil der Verbesserung der vorliegenden Erfindung gegenüber dem Stand der Technik dargestellt, nämlich das die Lastinformation für das zweite Steuergerät 18 ebenfalls vom Sensor 12 zur Messung der von der Brennkraftmaschine 10 angesaugten Luftmenge abgeleitet wird. Hierdurch wird, wie symbolisch in der Figur 1b dargestellt ist, der Drucksensor 15 eingespart und damit eine wirtschaftlichere Fertigung und größere Störsicherheit der Kombination der beiden Steuergeräte gewährleistet. Allerdings besteht die Erfindung nicht ausschließlich in einem Austausch des Lastsensors für das zweite Steuergerät 18, sondern auch darin, eine insbesondere hardwaremäßig unaufwendige Anpassung dieses zweiten Steuergerätes 18 an die geänderte Charakteristik der Lasteingangsinformation des Sensors 12 zu erzielen. Für eine Anpassung stehen folgende Kriterien im Vordergrund: Aufgrund der geänderten Lasteingangsinformation sollen keine weitgreifenden Änderungen im hardwaremäßigem Aufbau des zweiten Steuergerätes 18 durchgeführt werden. Die Anpassung soll vielmehr im wesentlichen durch softwaremäßige Änderungen realisiert werden. Die Ansprechgenauigkeit des zweiten Steuergerätes 18 auf die neue Lastinformation soll sich gegenüber der Version gemäß dem Stand der Technik wenigstens nicht verschlechtern und es soll eine weitgehende Unabhängigkeit von Fertigungsstreuungen des Sensors 12 gewährleistet sein.

In Figur 2 ist der blockschaltmäßige Aufbau der beiden Steuergeräte 17, 18 schematisch dargestellt. Da das Innenleben des ersten Steuergerätes 17 für die Bestimmung des Kraftstoff-Luft-Gemisches im vorliegenden Fall nicht näher interessiert, ist es durch einen Block 40 (black box) dargestellt. Diesem Block 40 werden die schon erwähnten Eingangsinformationen, insbesondere Informationen 19 bezüglich der Batteriespannung und Informationen 21 bezüglich der Last zugeführt. Alle weiteren Eingangsinformationen sollen für die folgende Betrachtung außer Acht bleiben. Ausgangsseitig steuert der Block 40 Endstufen 41 an, die ihrerseits an die Einspritzventile 18 angeschlossen sind. Weitere Endstufen 42 zur Betätigung weiterer

Stellglieder 43 sind vorgesehen.

Vom Sensor 12 zur Erfassung der angesaugten Luftmenge wird ein Lastsignal abgenommen, das am Mittelabgriff eines mit dem beweglichen Teil des Luftmengenmessers gekoppelten Potentiometers zur Verfügung steht. Dieses Potentiometer des Sensors 12 liegt in Serie mit einem Schutzwiderstnd R1, der seinerseits an eine Referenzspannungsquelle U1, die von der Batteriespannung UB gespeist wird, angeschlossen ist. Die am Mittelabgriff des Potentiometers des Sensors 12 anliegende Spannung ist somit ein Maß für die Auslenkung des beweglichen Teils des Luftmengenmessers und beinhaltet somit eine Information über die Last. Sollten Sensoren zur Erfassung der angesaugten Luftmenge der Brennkraftmaschine eingesetzt werden, die auf einem anderen Meßprinzip beispielsweise auf dem Hitzdrahtprinzip oder dem Vortexprinzip basieren, so werden diese als äquivalente Lastinformationen weiterverarbeitet.

Der Aufbau des zweiten Steuergerätes 18 ist in Figur 2 etwas detaillierter dargestellt. Die Eingangsgrößen 19, 21 und weitere Eingangsgrößen 30 beispielsweise für eine Klopfregelung werden in einem Analog-Digital-Wandler 45 in digitale Größen umgesetzt. Die aufgrund der Gebercharakteristik schon weitgehend digital vorliegende Informationen 20 über die Drehzahl und die Kurbelwellenwinkelgrade werden einem Impulsformer 46 zugeführt, der die Pulsform der Eingangspulse im wesentlichen normiert. Alle in digitaler Form vorliegenden Signale werden einer Eingabeeinheit 47 zugeführt, die über eine Ein/Ausgabe-Einheit 48 mit einer Ausgabeeinheit 49 in Verbindung steht. Diese Einheiten 47, 48, 49 bilden die Peripherie einer digitalen Signalverarbeitungseinheit, die aus der Zentraleinheit 50, Festwertspeichern 51, Betriebsdatenspeichern 52, einem Bus 53, die alle datenmäßig miteinander in Verbindung stehen, aufgebaut ist. Im Festwertspeicher 51 sind alle Programme und alle Kenndaten, Kennliniensollwerte usw. unverlierbar gespeichert, während im Schreib/Lese-Speicher 52 die von den Sensoren gelieferten Daten gespeichert werden, bis sie vom Mikroprozessor abgerufen oder durch aktuellere Daten ersetzt werden. In der Zentraleinheit 50 werden die arithmetischen und logischen Operationen mit den eingespeisten Daten durchgeführt. Die Ausgabeeinheit 49 steuert ihrerseits wiederum verschiedene Endstufen 54, 55 an, die zur Zündung 56 oder zur Ansteuerung anderer Stellglieder 57, beispielsweise zur Steuerung des Ladedrucks dienen.

Dem zweiten Steuergerät wird ebenfalls als Lastinformation 21 das Ausgangssignal des Sensors 12 zur Erfassung der Ansaugluftmenge zugeführt. Da das zweite Steuergerät 18 eine von der Referenzspannungsquelle U1 des ersten Steu-

ermarates in unabhängige Referenzspannungsquelle U2 aufweist, muß wegen der Toleranz in der Ausgangsspannung dieser Referenzspannungsquellen dafür Sorge getragen werden, daß das Eingangssignal für das zweite Steuergerät 16 in keinem Fall Werte annimmt, die oberhalb dem aktuellen Wert der Referenzspannungsquelle U2 liegen. Aus fiesem Grunde ist eine Spannungsteilerschaltung bestehend aus den Widerständen R2 und R3 vorgesehen, die die Ausgangsspannung des Lastsensors um einen gewissen Anteil herunterteilt. Damit darüber hinaus eine Unabhängigkeit des Lastsignals vom Absolutwert des im Sensor 12 angeordneten Potentiometers gegeben ist, ist ein zweiter Signalpfad 58 vorgesehen, der die am Gesamtwiderstand des Potentiometers des Sensors 12 anliegende Spannung dem zweiten Steuergerät 18 zuführt. Damit auch dieser Spannungswert den Referenzspannungswert U2 nicht überschreiten kann, ist eine weitere Spannungsteilerschaltung bestehend aus den Widerständen R2, R3' vorgesehen. Im Steuergerät 18 werden diese beiden Informationen 21, 58 im wesentlichen durcheinander dividiert, so daß eine vom Absolutwert des Gesamtwiderstandes des Poteniometers des Sensor 12 unabhängige Meßgröße als Lastinformation zur Verfügung steht. In Abhängigkeit von den verschiedenen Eingangsinformationen berechnen nun beide Steuergeräte Ausgabegrößen zur Ansteuerung der Stellglieder. Hierfür sind insbesondere beim hier interessierenden zweiten Steuergerät 18 Kennfelder vorgesehen, in denen beispielsweise der Zündzeitpunkt in Grad Kurbelwellenwinkel als Funktion der Last und Drehzahl in den Festwertspeichermitteln 51, 52 abgelegt sind.

Ein Beispiel für ein derartiges Kennfeld ist in Figur 3a dargestellt, in dem die Kennfeldwerte als Funktion der Drehzahl und der Ausgangssignale eines Drucksensors als

Lastsensor abgelegt sind. In Abhängigkeit vom Ausgangssignal des Drucksensors können im vorliegenden Fall acht Lastbereiche L1 bis L8 und acht Drehzahlbereiche unterschieden werden, so daß insgesamt 64 Kennfeldwerte abgespeichert sind. Natürlich ist es möglich, zur feineren Abstufung zwischen den einzelnen Kennfeldwerten zu interpolieren. Werden nun die Lastsignale zur Kennfeldansteuerung anstelle von einem Drucksensor von einem Luftmengensensor, insbesondere von einem Luftklappensensor abgeleitet, so nimmt das Kennfeld aufgrund der völlig anderen Ausgangssingalcharakteristik des Luftmengensensors die in Figur 3b dargestellte Form an. Insbesondere verdeutlicht diese Figur, daß ein Lastbereich, beispielsweise der Lastbereich L1 nicht mehr durch einen festen Ausgangsspannungswert über den ganzen Drehzahlbereich beschreibbar ist, sondern daß die Spannungswerte pro Lastbereich eine weite, drehzahlabhängige Bandbreite annehmen. Darüber hinaus wird verdeutlicht, daß die Ausgangssignalcharakteristik des Luftmengensensors derart gestaltet ist, daß die Ausgangswerte des Luftmengensensors in den verschiedenen Drehzahlbereichen gar nicht die volle maximale mögliche Bandbreite der möglichen Ausgangswerte annehmen. Hieraus folgt, daß zur Erzielung der gleichen Auflösung, wie sie mit einem Drucksensor als Lastsensor möglich ist, ein wesentlich größerer Speicher zur Abspeicherung der Kennfeldwerte erforderlich ist. Da der Speicherplatz der heutigen Systeme noch rar ist, und auch hardwaremäßigen Änderungen, beispielsweise durch Einbau weiterer Speicherbausteine im Steuergerät, vermieden werden sollen, werden erfindungsgemäß die Ausgangssignale des Sensors 12 im zweiten Steuergerät durch Rechenfunktionen beeinflußt, so daß die Ausgangscharakteristik des Sensors 12 änderbar ist. Dadurch wird letztendlich erreicht,

daß der Werteverrat der Ausgangssignale des Luftmengensensers in der Weise drehzahlabhängig komprimiert und verschoben wird, daß eine optimale Nutzung des vorhandenen Speicherplatzes bei gleichbleibender Auflösung gegenüber einer Drucksensor-Version zur Lasterfassung gewährleistet ist. Das Verfahren zur Änderung der Ausgangssignalcharakteristik des Luftmengensensors wird im folgenden anhand der Figur 3b näher erläutert.

Der in den einzelnen Drehzahlbereichen mögliche Wertevorrat der Ausgangswerte des Luftmengensensors wird mit einzelnen, insbesondere drehzahlabhängigen additiven Größen C1 (n1), ..., C1 (n8), ... derart beaufschlagt, daß beispielsweise die niedrigsten Werte aller Wertebereiche einen gemeinsamen gleichen Wert annehmen. Dies kann beispielsweise die Nullinie im abgildeten Koordinatensystem oder aber auch eine andere, vorteilhaft erscheinende Basisgröße sein. In einem zweiten Schritt werden die einzelnen möglichen Werte eines jeden drehzahlabhängigen Wertebereiches durch die Beaufschlagung mit einer insbesondere drehzahlabhängigen multiplikativen Größe C2 (n1), ..., C2 (n8), ... beaufschlagt, um die drehzahlabhängigen Wertebereiche aneinander anzupassen. In einer einfachen Version kann die multiplikative Konstante C2 auch einen für alle Drehzahlbereiche konstanten Wert annehmen, insbesondere dann, wenn die Variation der einzelnen drehzahlabhängigen Wertbereiche der Ausgangssignale des Luftmengensensors im wesentlichen gleich ist oder vernachlässigbare Unterschiede voneinander aufweist. Durch diese additive und/oder multiplikative Änderung der Ausgangssignale des Luftmengensensors wird erreicht, daß der Wertevorrat in den einzelnen Drehzahlbereichen im wesentlich identisch wird.

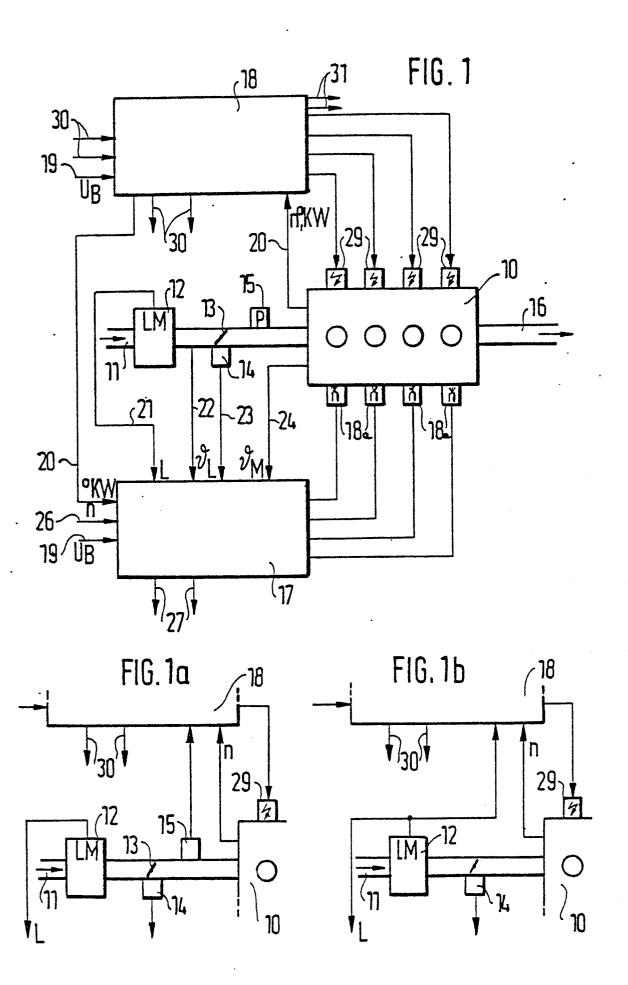
Nach einer experimentiellen Bestimmung der Größen C1 (n) und C2 (n) und Abspeicherung dieser Größen in den Festwertspeichermitteln 51 bzw. 52 ist dann eine Anordnung der Kennfeldwerte möglich, wie sie in Figur 3a in bezug auf die Druckgeberversion dargestellt ist. Auch die Genauigkeit, d.h. die Quantisierung bleibt erhalten, so daß mittels dieser softwaremäßigen Transformation der Ausgangssignale des Luftmengensensors eine zur Druckgeber-Version identischer Kennfeldanordnung möglich ist. Darüber hinaus ist es möglich, diese Größen C1 (n), C2 (n) mittels adaptiver Regelstrategien an zeitliche Veränderung anzupassen. Derartige adaptive Regelstrategien sind beispielsweise in der Patentanmeldung P 34 08 215.8 dargestellt, die als Referenz vom Fachmann herangezogen werden kann und deren Offenbarungsgehalt damit Bestandteil dieser Anmeldung ist.

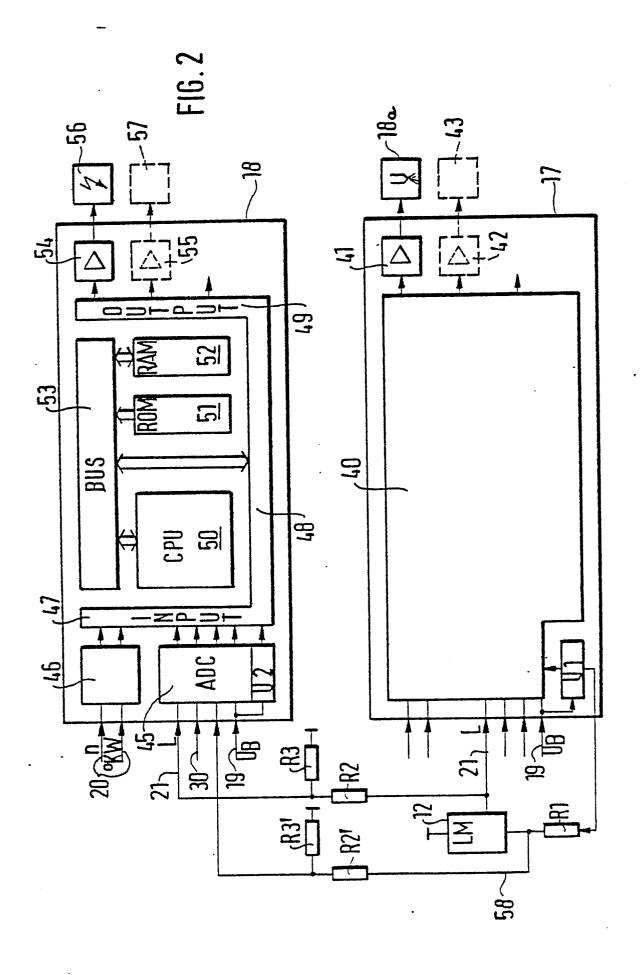
Eine weitere vorteilhafte Ausgestaltung der Erfindung wird anhand der Figur 4 im folgenden näher erläutert. Mögliche Fehlerquellen in den Ausgangswerten des Luftmengensensors sind beispielsweise darin begründet, daß sich die Stellung des Potentiometers in bezug auf die Stellung der Klappe des Luftmengenmessers im Ansaugkanal verändern kann. Eine hieraus resultierende Dejustage würde zu einer falschen Zuordnung von Kennfeldwerten und Last führen. Auch andere Langzeiteinflüsse können eine Verfälschung des Ausgangssignals des Sensors herbeiführen. Um diese Effekte zu eliminieren, wird erfindungsgemäß eine Plausibilitätsprüfung des Luftmengensensorsignals durchgeführt, indem die Werte einer in den Festwertspeichermitteln 51, 52 abgespeicherten Lastkennlinie mit den Istwerten des Luftmengensensors insbesondere drehzahlabhängig verglichen werden. Wird dabei eine nach der Plausibilitätsprüfung noch zulässig Abweichung gegenüber einem der Sallwerte festgestellt, so läßt sich durch Addition eines Korrekturgliedes A C1 zu den Größen zur additiven Beninflussung C1 (n) eine Übereinstimmung zwischen Soll- und Istwert erreichen. Als Sollwertkennlinie kann insbesondere die Vollastkennlinie abgespeichert werden, wobei zur Detektion des Vollastfalles die Stellung der Drosselklappe 13 mittels des Drosselklappenstellungssensors 14 überwacht wird. Ist die Drosselklappe voll geöffnet, so liegt der Vollastfall vor und der beschriebene Soll-Istwertvergleich kann durchgeführt werden. Diese Korrektur kann in erster Näherung für den gesamten Drehzahlbereich gültig sein, d.h. daß alle additiven C1 (n) mit ein und demselben Korrekturwert 🛕 C1 modifiziert werden. In einer höheren Näherung ist es darüber hinaus möglich und sehr vorteilhaft, auch den Korrekturwert 🛕 C1 drehzahlabhängig zu bestimmen, so daß für jeden Drehzahlbereich ein Korrekturwert \(\Delta \) C1 (n) gültig ist. Darüberhinaus hat es sich in verschiedenen Anwendungsfällen als vorteilhaft erwiesen, eine multiplikative Korrekturgröße 🛆 C2 einzuführen, die in analoger Weise C2 (n) drehzahlabhängig bzw. -unabhängig beeinflußt. Mittels dieser adaptiven Korrekturen der Istwert-Vollastlinie des Luftmengensensors mit einer im Speicher abgelegten Sollwert-Vollastkennlinie ist es möglich, trotz Toleranzen im Meßsystem des Luftmengensensors die korrekten Vollast bzw. oberen Teillastwerte eines Kennfeldes auszugeben. Die Bestimmung des Korrekturwertes △ C1/2 (n) erfolgt in der Weise, daß die Differenz zwischen dem Scll- und Istwert der Lastkennlinie eliminiert wird. Insgesamt gesehen läßt sich durch die Erfindung ein Luftmengensensor anstelle eines zusätzlichen Drucksensors zur Lasterfassung einsetzen ohne Einbußen in der Genauigkeit und Langzeitstabilität aufzuweisen. Die Erfindung ist nicht nur auf Kennfeldgrößen, wie beispielsweise die in den Ausführungsbeispielen genannten Zündwinkel beschränkt, sondern läßt sich auf Kennfelder für alle möglichen Betriebsparameter einer Brennkraftmaschine, wie beispielsweise für Abgasregelgrößen, Klopfregelgrößen, Ladedruckregelgrößen, Kraftstoffzumeßgrößen, die in Festwertspeichermitteln abgelegt sind, anwenden.

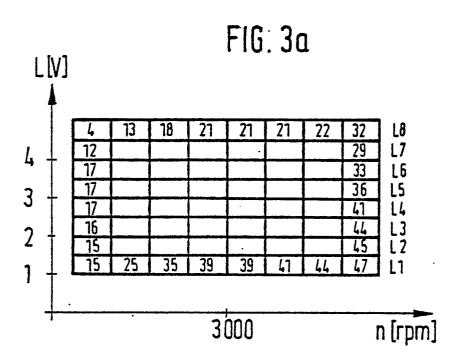
R. 19960 26.3.1985 Vb/Le

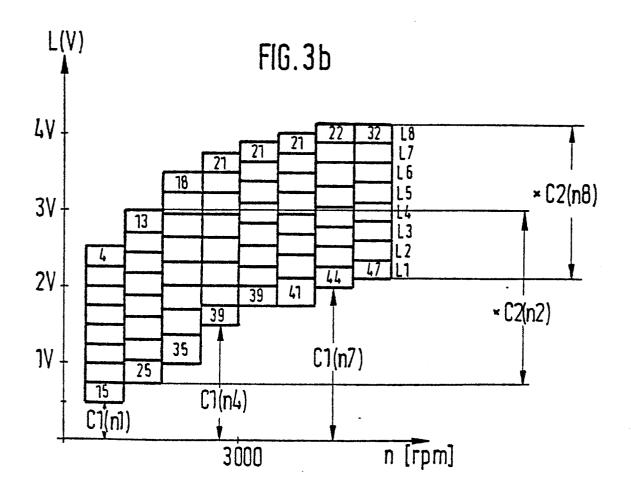
ROBERT BOSCH GMBH, 7000 STUTTGART 1

Ansprüche


- 1. Vorrichtung für eine fremdgezündete Brennkraftmaschine mit einem ersten Steuergerät zur Beeinflussung wenigstens des der Brennkraftmaschine zugeführten Kraftstoff-Luft-Gemisches wenigstens in Abhängigkeit von einer die Last der Brennkraftmaschine charakterisierenden Größe, bei der dem ersten Steuergerät die Lastinformationen als Ausgangsgröße eines Lastsensors, insbesondere eines Luftmengensensors für die von der Brennkraftmaschine angesaugte Luftmenge zugeführt wird und mit einem im Funktionsablauf vom ersten Steuergerät im wesentlichen unabhängigen zweiten Steuergerät zur Beeinflussung wenigstens des Zündzeitpunktes der Brennkraftmaschine, wobei das zweite Steuergerät wenigstens einen Mikrocomputer und Speichermittel aufweist und in den Speichermitteln wenigstens Daten für den Zündzeitpunkt der Brennkraftmaschine als Funktion von wenigstens Last- und Drehzahlinformationen abgelegt sind, dadurch gekennzeichnet, daß die Lastinformationen für das zweite Steuergerät (18) vom Lastsensor (12), der die Lastinformation für das erste Steuergerät (17) liefert, bezogen werden und im zweiten Steuergerät (18) Rechenfunktionen zur Beeinflussung der Ausgangscharakteristik des Lastsensors (12) vorgesehen sind.
- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Werte der Ausgangssignale des Lastsensors (12) mit einer additiven Größe (C1) beaufschlagt werden.


- 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Werte der Ausgangssignale des Lastsensors (12) mit einer multiplikativen Größe (C2) beaufschlagt werden.
- 4. Vorrichtung nach wenigstens einem der Ansprüche 2 und 3, dadurch gekennzeichnet, daß die Größen (C1, C2) eine funktionelle Abhängigkeit von der Drehzahl der Brennkraftmaschine aufweisen.
- 5. Vorrichtung nach wenigstens einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Größen über adaptive Regelstrategien bestimmt werden.
- 6. Vorrichtung nach wenigstens einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Größen in Speichermitteln abgelegt sind.
- 7. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß additive (C1) bzw. multiplikative Größen (C2) zur Beeinflussung der Übertragungscharakteristik des Lastsensors (12) vorgesehen sind, die derart festgelegt werden, daß der Wertevorrat der Ausgangssignale des Lastsensors (12) im wesentlichen keine Abhängigkeit von der Drehzahl der Brennkraftmaschine aufweist.
- 8. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Mittel vorgesehen sind um die Lastinformation vom zweiten Steuergerät (18) als Relativwert in der Weise zu verarbeiten, daß Fehler aufgrund von Fertigungsstreuungen des Lastsensors reduziert bzw. eliminiert werden.


- 9. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Lastsensor (12) ein Potentiometer aufweist, an dem die Lastinformation abgegriffen wird.
- 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die am Mittelabgriff des Potentiometers auftretende Spannung und die über den gesamten Potentiometerwiderstand abfallende Spannung dem zweiten Steuergerät (18) zur Verarbeitung zugeführt werden.
- 11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die beiden, dem zweiten Steuergerät (18) zugeführten Spannungen durcheinander dividiert werden.
- 12. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für einen bestimmten Lastbetrieb der Brennkraftmaschine die Istwerte des Lastsensors (12) mit einer abgespeicherten Sollwert-Lastkennlinie verglichen werden und in Abhängigkeit vom Ergebnis dieses Vergleiches eine korrigierende Beeinflussung (\Delta C) der Übertragunscharakteristik des Lastsensors (12) möglich ist.
- 13. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß der bestimmte Lastbetrieb der Brennkraftmaschine über die Stellung der Drosselklappe (13) erfaßt wird.
- 14. Vorrichtung nach wenigstens einem der Ansprüche 12 und 13, dadurch gekennzeichnet, daß zur korrigierenden Beeinflussung additive Korrekturwerte (AC1) am Ausgangssignal des Lastsensors (12) angebracht werden.
- 15. Vorrichtung nach wenigstens einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß zur korrigierenden Beeinflussung multiplikative Korrekturwerte (Δ C2) am


Ausgangssignal des Lastsensors (12) angebracht werden.

- 16. Vorrichtung nach wenigstens einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, daß die Korrekturwerte (AC1, AC2) eine funktionelle Abhängigkeit von der Drehzahl der Brennkraftmaschine aufweisen.
- 17. Vorrichtung nach wenigstens einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß die korrigierende Beeinflussung im Vollast- bzw. oberen Teillastbetrieb der Brennkraftmaschine durchgeführt wird.
- 18. Vorrichtung nach wenigstens einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, daß die korrigierende Beeinflussung derart durchgeführt wird, daß die Differenz zwischen den Soll- und Istwerten der Lastkennlinien minimiert wird.
- 19. Vorrichtung nach wenigstens einem der Ansprüche 1 bis 17, gekennzeichnet durch ihre Verwendung für alle Kennfeldgrößen zur Ansteuerung von Brennkraftmaschinen, wie Zündwinkelgrößen, Abgasregelgrößen, Klopfregelgrößen, Ladedruckregelgrößen, Kraftstoffzumeßgrößen und ähnliches, die in Abhängigkeit von der Last in Kennfeldern abgelegt sind.

