11) Veröffentlichungsnummer:

0 201 794 A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 86105848.5

(51) Int. Cl.4: B 65 H 75/10

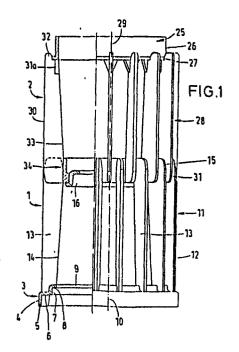
(22) Anmeldetag: 28.04.86

30 Priorität: 10.05.85 DE 8514349 U

43 Veröffentlichungstag der Anmeldung: 20.11.86 Patentblatt 86/47

84 Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI NL 71) Anmelder: Firma Jos. Zimmermann Ros-Strasse 9 - 13 D-5100 Aachen(DE)

72 Erfinder: Gilljam, Hans Nicolaus Schloss-Rahe-Strasse 23 D-5100 Aachen-Soers(DE)


22 Erfinder: Chardon, Manfred Franziskanerstrasse 6 D-4050 Mönchengladbach(DE)

72 Erfinder: Gebald, Gregor
Donatusstrasse 48a
D-4052 Korschenbroich-Pesch(DE)

74 Vertreter: König, Werner, Dipl.-Ing. Habsburgerallee 23-25 D-5100 Aachen(DE)

(64) Aus zwei Hülsenteilen bestehender Wickelträger.

(57) Ein aus zwei ineinanderschiebbaren Hülsenteilen (1,2) bestehender Wickelträger hat eine im wesentlichen zylindrische Mantelfläche zur Aufnahme eines Garnwickels. Beide Hülsenteile (1, 2) haben in Achsrichtung verlaufende Tragelemente (11,28), die durch Ringelemente miteinander verbunden sind. Nur einer der Hülsenteile (1) hat an seinem einen Ende einen in Umfangsrichtung geschlossenen Anlaufring (3), der eine über die Wickelfläche radial nach außen vorstehende Anlaufringfläche (4) und an seinem radial innen liegenden Rand eine Abdeckfläche (5) und eine dieser gegenüber weiter radial nach innen versetzte Führungsfläche (7) hat. An dem äußeren Ende des anderen Hülsenteils (2) ist ein in bezug auf die Wickelfläche radial nach innen versetzter, axial vorstehender Ringkörper (25) vorgesehen, dessen Außenflächenradius gleich oder geringfügig kleiner ist als der Radius der Führungsfläche (7) des Anlaufrings (3). Die ineinandergreifenden Enden der Hülsenteile (1, 2) sind einerseits mit einem durch Druckeinwirkung von den Tragelementen (11) lösbaren Sperring (16) und andererseits fest mit einem Stützring (34) verbunden, wobei Sperring (16) und Stützring (34) aneinander zur Anlage kommen.

읎

1

Aus zwei Hülsenteilen bestehender Wickelträger

Beschreibung

Die Erfindung bertrifft einen aus zwei Hülsenteilen bestehenden Wickelträger mit im wesentlichen zylindrischer Mantelfläche zur Aufnahme eines Garnwickels, wobei jeder Hülsenteil in Achsrichtung des Wickelträgers verlaufende, durch Ringelemente miteinander käfigartig verbundene Tragelemente hat und beide Hülsenteile axial ineinanderschiebbar sind.

Bei einem bekannten Wickelträger dieser Art (DE-GM 71 02 230) sind beide Hülsenteile mit einem radial nach außen vorstehenden Endring versehen. Dabei ist insbesondere nachteilig, daß bei diesem bekannten Wickelträger keine Fadenreserve gebildet werden kann, die auch nach axialem Zusammendrücken des Wikkelträgers und des darauf befindlichen Wickels noch frei zugänglich ist.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Wickelträger der eingangs erwähnten Art so auszubilden, daß er auch bei axialer Kompression die Bildung einer stets frei zugänglichen Fadenreserve ermöglicht.

Diese Aufgabe wird erfindungsgemäß bei einem Wickelträger der eingangs erwähnten Art dadurch gelöst, daß das axial äußere Ende nur eines der Hülsenteile mit einem in Umfangsrichtung geschlossenen Anlaufring versehen ist, der eine über die von den Tragelementen gebildete Wickelfläche radial nach außen vorstehende Anlaufringfläche und an seinem radial innen liegenden Rand eine Abdeckfläche und eine dieser gegenüber weiter radial nach innen versetzte Führungsfläche aufweist, und daß an dem axial äußeren Ende des anderen Hülsenteils ein in bezug auf die Wickelfläche radial nach innen versetzter, axial über die Tragelemente hinaus vorstehender Ringkörper vorgesehen ist, dessen Außenflächenradius gleich oder geringfügig kleiner ist als der Radius der Führungsfläche des Anlaufrings.

Der radial nach außen über die Wickelfläche vorstehende Anlaufring gewährleistet, daß die Spultrommel beim Anspulen nur an diesem Ring angreift und nicht an den die Wickelfläche bildenden Tragelementen sowie den ersten darauf gewickelten Garnlagen.

Auf dem Ringkörper kann eine gesicherte Fadenreserve untergebracht werden, die in ihrer gesamten Länge vollkommen freiliegt und nicht verschoben oder beschädigt werden kann.

Wenn derartige Wickelträger, wie das bei axialer Kompression üblich ist, axial ineinandergesetzt werden, dann greift der Ringkörper des einen Wickelträgers in den Anlaufring des axi-

al benachbarten Wickelträgers ein, wobei die Außenfläche des Ringkörpers mit der Führungfläche des Anlaufrings zusammenarbeitet. Die Abdeckfläche des Anlaufrings deckt dabei einen weiteren Teil der Außenfläche des Ringkörpers ab. In diesem abgedeckten Bereich des Ringkörpers kann somit eine Fadenreserve untergebracht werden, die beim axialen Ineinandersetzen derartiger Wickelträger völlig geschützt ist und folglich nach einer axialen Kompression und nach dem Auflösen der Wikkelträgersäule in einzelne Wickelträger frei zugänglich ist.

Dieser Wickelträger eignet sich insbesondere dazu, Garnwickel auf einem Färbeschwert oder einem -speer säulenartig zusammenzustellen, wobei dann die Färbeflotte durch die Mantelwandung der Wickelträger und der darauf befindlichen Wickel hindurchgeführt wird. Die einzelnen Wickel können bei der axialen Kompression unmittelbar aneinander zur Anlage kommen und somit eine Säule bilden, deren Dichte und damit auch Strömungswiderstand über die gesamte Länge homogen ist. Eine solche Verdichtung kann aber auch allein oder zusätzlich zu dem Zweck erfolgen, das Abspulen des Wickels zu vereinfachen, indem durch axiale Kompression der Wickel die beim Bespulen erzeugten Kreuzungswinkel reduziert werden, so daß sich der Faden beim Abspulen nur noch relativ geringfügig in axialer Richtung verlagert.

Der erfindungsgemäße Wickelträger kann ferner so ausgebildet sein, daß die Abdeckfläche und die Führungsfläche des Anlaufrings koaxial verlaufen. Während die Führungsfläche jeweils zwei axial benachbarte Wickelträger zueinander ausrichtet, ergibt die Abdeckfläche einen geschützten Raum zur Unterbringung der Fadenreserve.

Der erfindungsgemäße Wickelträger kann ferner so ausgebildet sein, daß die Endabschnitte der den Ringkörper tragenden Tragelemente radial außerhalb der Außenfläche des Ringkörpers mit radialem Abstand davon enden. Auf diese Weise wird ein ungestörter Fadenübergang von der Fadenreserve zum Wickel sichergestellt.

Der erfindungsgemäße Wickelträger kann ferner so ausgebildet sein, daß das im Bereich der Längsmitte liegende Ende eines Hülsenteils mit einem Sperring verbunden ist, der über Sollbruchstellen mit radial innen liegenden Flächen der Tragelemente in Verbindung steht, während die im Bereich der Längsmitte des Wickelträgers liegenden Enden der Tragelemente anderen Hülsenteils fest auf der Außenfläche eines Stützrings sitzen und der Sperring sowie der Stützring axial aneinander zur Anlage kommen. Der Sperring definiert dabei die axiale Länge der Hülse vor der Kompression. Bei Überschreiten eines Grenzwertes für den Axialdruck löst sich der Sperring von dem Tragelementen und gleitet mit dem Stützring in Richtung auf den Anlaufring. Sperring und Stützring tragen zu einer radialen Aussteifung des Wickelträgers bei. Dabei kann der Sperrring eine Führung ergeben, die mit einem Färbeschwert oder -speer zusammenarbeitet.

Der erfindungsgemäße Wickelträger kann so ausgebildet sein, daß der Sperring einen Aufnahmeabschnitt hat, der in bezug auf die ihn tragenden Tragelemente radial nach innen versetzt ist, und daß der Stützring in den Raum zwischen dem Aufnahme-abschnitt und den diesen tragenden Tragelementen eingreift. Somit greift der Stützring in eine Art Ringnut ein, die von Sperring und den ihn tragenden Tragelementen definiert ist. Dabei entsteht eine Klemmverbindung, welche die beiden Hülsenteile lösbar aneinander festlegt. Der Stützring kann damit in der Ausgangsposition des Wickelträgers mit der erforderlichen Sicherheit festgelegt werden.

Der erfindungsgemäße Wickelträger kann so ausgebildet sein, daß die beiden Hülsenteile über den Sperring und den Stützring in der Art einer Schnappverbindung miteinander verbunden

sind. Wenn die Hülsenteile ineinandergesteckt sind, dann sind sie nur unter Kraftaufwendung wieder lösbar. Die Schnappverbindung kann in vielfältiger Weise dadurch gebildet werden, daß zumindest ein vorspringender Abschnitt eines Hülsenteils einen vorspringenden Abschnitt des anderen Hülsenteils nachgiebig übergreift oder in eine Vertiefung dieses anderen Hülsenteils eingreift.

Der erfindungsgemäße Wickelträger kann so ausgebildet sein, daß die Tragelemente in Richtung auf die Längsachse des Wikkelträgers nachgiebig sind. Diese Nachgiebigkeit, die durch Werkstoffauswahl, Dimensionierung und Konstruktion erreicht werden kann, ermöglicht es, bei Auftreten entsprechender nach radial innen gerichteter Drücke einem Schrumpfen des Garnwikkels zu folgen.

Der erfindungsgemäße Wickelträger kann schließlich so ausgebildet sein, daß der Ringkörper, der Sperring und der Stützring in Richtung auf die Längsachse des Wickelträgers nachgiebig sind. Diese Nachgiebigkeit, die durch Werkstoffauswahl, Dimensionierung und Konstruktion erreicht werden kann, trägt ebenfalls dazu bei, bei Auftreten entsprechender nach radial innen gerichteter Drücke einem Schrumpfen des Garnwikkels zu folgen.

Der hier verwendete Begriff "zylindrisch" umfaßt auch Abweichungen von einer rein mathematischen zylindrischen Form, welche sich insbesondere aufgrund des Schrumpfverhaltens der verwendeten Werkstoffe und aufgrund von Erfordernissen der Entformungsvorgänge ergeben.

Im folgenden Teil der Beschreibung wird eine Ausführungsform des erfindungsgemäßen Wickelträgers anhand von Zeichnungen beschrieben. Es zeigt:

- Fig. 1 links einen Axialschnitt und rechts eine Seitenansicht einer Ausführungsform des erfindungsgemäßen Wickelträgers in Ausgangsposition,
- Fig. 2 eine Draufsicht auf den Wickelträger nach Fig. 1,
- Fig. 3 eine der Fig. 1 ähnliche Schnittansicht des Wickelträgers in maximal zusammengeschobenem Zustand,
- Fig. 4 einen Detailschnitt betreffend das Zusammenwirken von Sperring und Stützring,
- Fig. 5 links einen Axialschnitt und rechts eine Seitenansicht auf den oberen Hülsenteil (Kopfteil) des Wikkelträgers nach Fig. 1,
- Fig. 6 eine Draufsicht auf den Kopfteil nach Fig. 5,
- Fig. 7 links einen Axialschnitt und rechts eine Seitenansicht auf den unteren Hülsenteil (Fußteil) des Wikkelträgers nach Fig. 1 und
- Fig. 8 eine Draufsicht auf den Fußteil nach Fig. 7.

Der Wickelträger gemäß dem in den Figuren dargestellten Ausführungsbeispiel hat ein unteres Hülsenteil, das nachstehend als Fußteil 1 bezeichnet wird, und ein oberes Hülsenteil, das nachstehend als Kopfteil 2 bezeichnet wird.

Zunächst soll das Fußteil 1 insbesondere anhand der Fig. 1, 7 und 8 beschrieben werden.

Es hat an dem axialen Ende, welches auch ein Ende des gesamten Wickelträgers bildet, einen Anlaufring 3. Dieser Anlaufring 3 bildet an seiner radial außen liegenden Fläche eine Anlaufringfläche 4, die über den gesamten Umfang geschlossen verläuft. Auf der radial nach innen weisenden Seite seines Querschnitts hat der Anlaufring 3 eine vom Ende des Fußteils 1 ausgehende Abdeckfläche 5, die durch eine Schulter 6 begrenzt ist. An diese Schulter 6 schließt sich gegenüber der Abdeckfläche 5 radial nach innen versetzt eine im wesentlichen zylindrische Führungsfläche 7 an. Diese wird durch eine nach innen vorspringende Schulter 8 begrenzt, welche eine Durchtrittsöffnung 9 freiläßt.

An den Anlaufring 3 schließen sich im wesentlichen parallel zur Achse 10 des Fußteils 1 verlaufende Tragelemente 11 an, deren radial außen liegende Kanten 12 eine zylindrische Wikkelfläche definieren. Die Tragelemente 11 sind gleichmäßig über den Umfang des Fußteils 1 verteilt und haben parallel zueinander verlaufende Seitenflächen 13, die im wesentlichen radial in bezug auf die Achse 10 gerichtet sind. Sie haben radial innen liegende Kanten 14, welche aus Entformungsgründen in Richtung auf den Anlaufring 3 divergieren.

An den Enden, die bei zusammengebautem Wickelträger im Bereich von dessen Längsmitte liegen, verlaufen die äußeren Kanten 12 der Tragelemente bei 15 radial nach innen geneigt. Nahe diesen Enden der Tragelemente 11 ist ein Sperring 16 vorgesehen, der über Sollbruchstellen 17 mit den innen liegenden Kanten 14 der Tragelemente 11 verbunden ist. Dieser Sperring 16 hat in seinem Querschnitt eine sich an die Sollbruchstellen 17 anschließende Druckschulter 18 und darauffolgend einen im wesentlichen zylindrischen Aufnahmeabschnitt 19, der in einen radial nach innen weisenden Ringabschnitt 20 übergeht, welche eine zentrale Öffnung 21 freiläßt.

Anschließend soll nun der obere Hülsenteil, also der Kopfteil 2, insbesondere anhand der Fig. 1, 5 und 6 beschrieben werden.

hat an dem Ende, welches ein Ende des Wickelträgers bildet, einen Ringkörper 25 mit einer Außenfläche 26, normal dazu verlaufender Ringabschnitt 27 folgt. Von dem Ringkörper 25 gehen Tragelemente 28 aus, welche parallel 29 des Kopfteils 2 verlaufen. Die Tragelemente 28 sind gleichmäßig über den Umfang des Kopfteils 2 verteilt und ben Außenkanten 30, die eine zylindrische Wickelfläche definieren. An dem Ende, das bei zusammengebautem Wickelträger im Bereich von dessen Längsmitte liegt, haben die Außenkanten 30 eine zur Achse 29 hin abfallende Neigung 31. Zur Aussteifung der Verbindung zwischen den Tragelementen 28 und dem Ringkörper 25 sind Ansätze 31 vorgesehen. Die Tragelemente 28 haben ferner einen Abschnitt 32, der über den Ringabschnitt 27 hinausreicht und mit radialem Abstand zur Außenfläche 26 det.

Die Tragelemente 28 haben ferner radial innen liegende Kanten 33, die in Richtung auf den Ringkörper 25 divergieren.

An dem Ende der Tragelemente 28, das bei zusammengebautem Wickelträger im Bereich der Längsmitte dieses Wickelträgers liegt, ist an die Innenkanten 33 des Kopfteils 2 ein Stützring 34 angesetzt, der einen Stirnabschnitt 35 und daran anschließend einen Endabschnitt 36 geringerer Wandstärke aufweist.

Der Fußteil 1 und der Kopfteil 2 werden zunächst jeder für sich, insbesondere aus Kunststoff, hergestellt. Anschließend werden diese beiden Teile mit fluchtenden Achsen 10 und 29 ineinandergefügt, wobei der Stirnabschnitt 35 des Stützrings 34 des Kopfteils 2 auf dem Aufnahmeabschnitt 19 und an der Druckschulter 18 des Sperrings 16 zur Anlage kommt. Ein ringförmiger Vorsprung 40 des Stirnabschnitts 35 greift dann in

eine Rille 41 des Aufnahmeabschnitts 19 ein, so daß eine Schnappverbindung gebildet wird, die die beiden Hülsenteile 1,2 zusammenhält und nur unter Kraftaufwand gelöst werden kann. Die Tragelemente 11 des Fußteils 1 liegen dabei jeweils zwischen zwei Tragelementen 28 des Kopfteils 2. In diesem zusammengebauten Zustand kann der Wickelträger in üblicher Weise bespult, also mit einem nicht dargestellten Wickel versehen werden. Zu Beginn des Spulvorgangs kann dabei auf der Außenfläche 26 des Ringkörpers 25 nahe dem Ringabschnitt 27 eine Fadenreserve gebildet werden, von der ausgehend der Faden zwischen zwei Abschnitten 32 hindurch zum übrigen Wickel verläuft.

Derart bespulte Wickelträger können nun axial übereinander angeordnet werden, wobei der Ringkörper 25 eines Wickelträmit einer Führungsfläche 7 eines axial benachbarten gleich ausgebildeten Wickelträgers zusammenarbeitet. überdeckt die gegenüber der Führungsfläche 7 radial nach außen zurückspringende Abdeckfläche 5 die auf der Außenfläche des Ringkörpers 25 vorliegende Fadenreserve. Bei dieser säulenartigen Zusammenstellung von Wickelträgern kann nun eiaxiale Kompression erfolgen, bei der Fußteil 1 und Kopfteil 2 jedes Wickelträgers in axialer Richtung ineinandergeschoben werden. Die maximal mögliche Zusammenschiebung dieser beiden Teile ist in Fig. 3 dargestellt. Beim Zusammenschieben werden auch die Wickel axial komprimiert, wobei alle Wickel eine durchgehende Garnsäule bilden. Bei diesem axialen Zusammendrücken wird die auf der Außenfläche 26 untergebrachte Fadenreserve in keiner Weise tangiert. Sie ist daher frei gänglich, wenn die einzelnen Wickelträger nach der Kompression wieder voneinander gelöst werden.

Die axiale Kompression der Wickel und damit die Bildung einer homogenen Garnsäule führt zu gleichen Durchströmungsbedingungen für eine Färbeflotte, welche durch die Wickel hindurchgepreßt wird. Die axiale Kompression der Wickel bewirkt aber ferner, daß der beim Bespulen der Wickelträger entstandene Kreuzungswinkel des Garns verändert wird, indem die einzelnen Garnwindungen einen größeren Winkel mit der Achse des Wickelträgers bilden, der Faden beim Abwickeln also nur um einen reduzierten Betrag in Achsrichtung verlagert wird.

Zum Zusammenpressen des Wickelträgers in axialer Richtung ist es erforderlich, daß der axial wirkende Druck soweit ansteigt, daß die Sollbruchstellen 17 abreißen und den Sperring 16 damit von den Tragelementen 11 lösen. Wenn das erfolgt ist, verlagert sich der Sperring 15 gemeinsam mit dem Stützring 34 in Richtung auf den Anlaufring 3. Die zentrale Öffnung 21 des Sperrings 16 kann dabei als Führung auf einem nicht dargestellten Färbespeer oder -schwert verwendet werden.

Die Anlaufringfläche 4 des Anlaufrings 3 hat einen geringfügig größeren Durchmesser als die zylindrische Wickelfläche, welche gemeinsam von den Außenkanten der Tragelemente 11 des Fußteils 1 und des Kopfteils 2 gebildet wird. Der Wickelträger kann also zum Bespulen dadurch in Drehung versetzt werden, daß auf dieser Anlaufringfläche 4 eine Anlauftrommel kraftschlüssig abrollt.

Patentansprüche

- Aus zwei Hülsenteilen bestehender Wickelträger mit im wesentlichen zylindrischer Mantelfläche zur Aufnahme eines Garnwickels, wobei jeder Hülsenteil in Achsrichtung des Wikkelträgers verlaufende, durch Ringelemente miteinander käfigartig verbundene Tragelemente hat und beide Hülsenteile axial ineinanderschiebbar sind. dadurch gekennz e i c h n e t , daß das axial äußere Ende nur eines der Hülsenteile (1) mit einem in Umfangsrichtung geschlossenen Anlaufring (3) versehen ist, der eine über die von den Tragelementen (11,28) gebildete Wickelfläche radial nach außen vorstehende Anlaufringfläche (4) und an seinem radial innen liegenden Rand eine Abdeckfläche (5) und eine dieser gegenüber weiter radial nach innen versetzte Führungsfläche (7) aufweist, und daß an dem axial äußeren Ende des anderen Hülsenteils (2) ein in bezug auf die Wickelfläche radial nach innen versetzter, axial über die Tragelemente (11,28) hinaus vorstehender Ringkörper (25) vorgesehen ist, dessen Außenflächenradius gleich oder geringfügig kleiner ist als der Radius der Führungsfläche (7) des Anlaufrings (3).
- 2. Wickelträger nach Anspruch 1, dadurch gekennzeichnet, daß die Abdeckfläche (5) und die Führungsfläche (7) des Anlaufrings (3) koaxial verlaufen.
- 3. Wickelträger nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Endabschnitte der den Ringkörper (25) tragenden Tragelemente (28) radial außerhalb der Außenfläche (26) des Ringkörpers (25) mit radialem Abstand davon enden.

- 4. Wickelträger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das im Bereich der Längsmitte liegende Ende eines Hülsenteils (1) mit einem Sperring (16) verbunden ist, der über Sollbruchstellen (17) mit radial innen liegenden Flächen der Tragelemente (11) in Verbindung steht, während die im Bereich der Längsmitte des Wickelträgers liegenden Enden der Tragelemente (28) des anderen Hülsenteils (2) fest auf der Außenfläche eines Stützrings (34) sitzen und der Sperring (16) sowie der Stützring (34) axial aneinander zur Anlage kommen.
- 5. Wickelträger nach Anpruch 4, dadurch gekennzeichnet, daß der Sperring (16) einen Aufnahmeabschnitt hat, der in bezug auf die ihn tragenden Tragelemente (11) radial nach innen versetzt ist, und daß der Stützring (34) in den Raum zwischen dem Aufnahmeabschnitt und den diesen tragenden Tragelementen (28) eingreift.
- 6. Wickelträger nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die beiden Hülsenteile (1,2) über den Sperring (16) und den Stützring (34) in der Art einer Schnappverbindung miteinander verbunden sind.
- 7. Wickelträger nach einem der vorhergehenden Anprüche, dadurch gekennzeichnet, daß die Tragelemente (11,28) in Richtung auf die Längsachse des Wickelträgers nachgiebig sind.
- 8. Wickelträger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Ringkörper (25), der Sperring (16) und der Stützring (34) in Richtung auf die Längsachse des Wickelträgers nachgiebig sind.

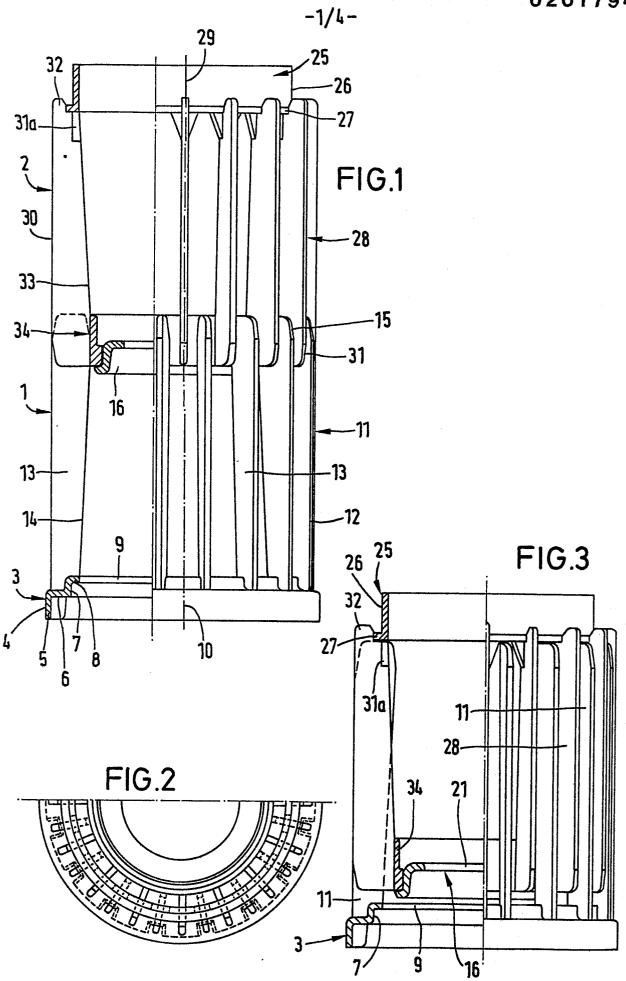
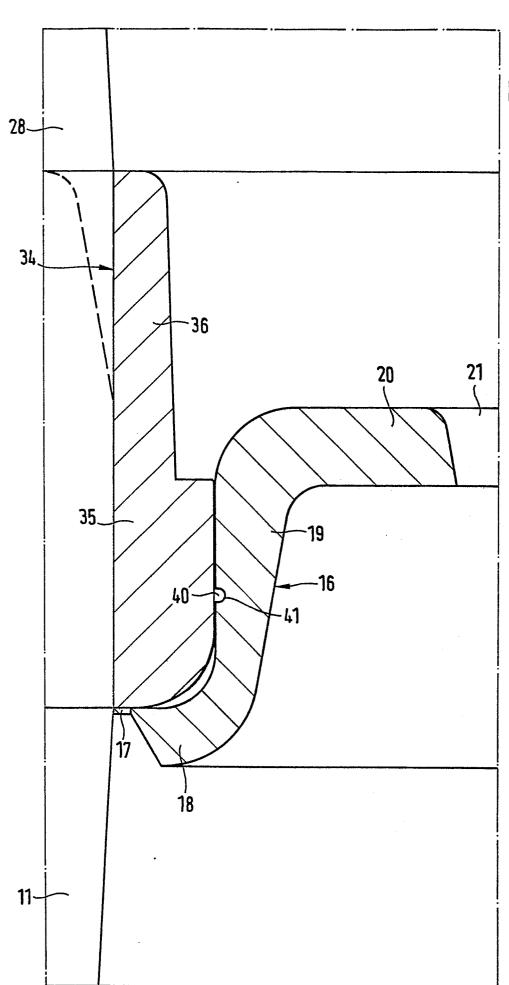
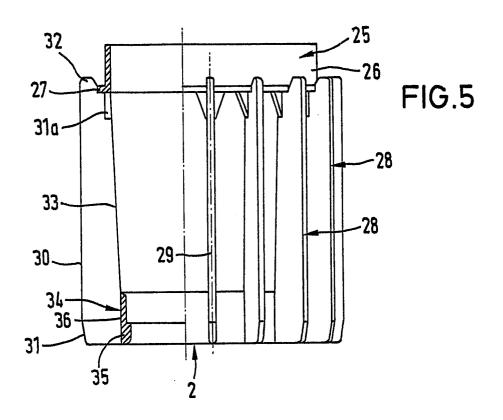
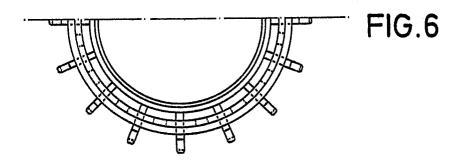
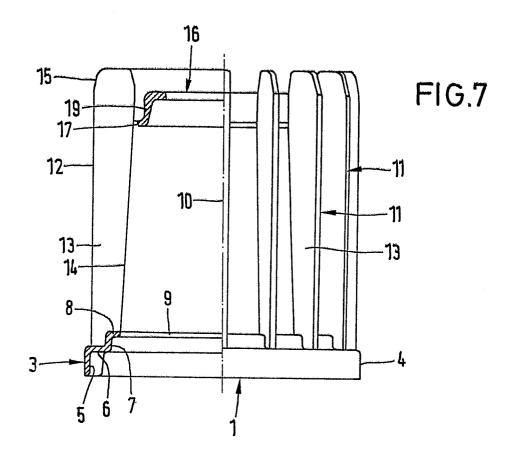






FIG.4

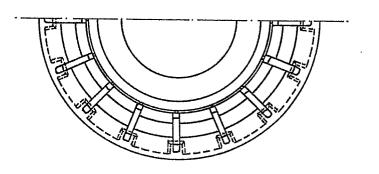


FIG.8