(1) Veröffentlichungsnummer:

0 203 272 A2

12)

EUROPÄISCHE PATENTANMELDUNG

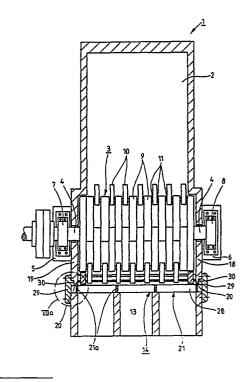
(21) Anmeldenummer: 86102587.2

(51) Int. Cl.4: B 02 C 13/284

22 Anmeldetag: 28.02.86

③ Priorität: 31.05.85 DE 3519516

Anmelder: Lindemann Maschinenfabrik GmbH, Erkrather Strasse 401, D-4000 Düsseidorf 1 (DE)


(3) Veröffentlichungstag der Anmeldung: 03.12.86 Patentblatt 86/49 Erfinder: Schönfeld, Joachim, Uhlandstrasse 11, D-4156 Willich (DE) Erfinder: Lapp, Hans-Günter, Gerhard Strasse 71, D-4030 Ratingen (DE) Erfinder: Greiner, Gabriele, Niersstrasse 23, D-4050 Mönchengladbach 4 (DE)

Benannte Vertragsstaaten: AT BE CH DE FR GB LI NL SE

74 Vertreter: Bergen, Klaus, Dipi.-Ing. et al, Patentanwälte Dr.-Ing. Reimar König Dipi.-Ing. Klaus Bergen Wilhelm-Tell-Strasse 14 Postfach 260162, D-4000 Düsseldorf 1 (DE)

54 Zerkleinerungsmaschine mit umlaufendem Rotor.

5) Um bei einer Zerkleinerungsmaschine (1) einen schnellen Rostwechsel zu ermöglichen, sowie eine individuelle, den jeweiligen Anforderungen angepaßte Einstellung der Maschine auf verschiedenartige, zu zerkleinernde Materialsorten ohne Demontage der Zerkleinerungsmaschine (1) vornehmen zu können, wird ein Auslaßrost (14) vorgeschlagen, der in den Stirnwänden (18, 19) des Gehäuses (2) aufliegt und ganz oder teilweise in axialer Richtung austauschbar ist.

Wilhelm-Teil-Str. 14 4000 Dusseldorf 1 Telefon 397026 Patentanwalte

86102587 2

- 1 -

36 437 B

LINDEMANN Maschinenfabrik G.m.b.H., Erkrather Straße 401, 4000 Düsseldorf 1

"Zerkleinerungsmaschine mit umlaufendem Rotor"

Die Erfindung betrifft eine Zerkleinerungsmaschine mit einem mit einem Guteinlaß versehenen Gehäuse, in dessen Stirnwänden ein mit Zerkleinerungswerkzeugen besetzter Rotor mit horizontaler Achse drehbar gelagert ist, und mit einem Unterhalb des Rotors angéordneten, austauschbaren Auslaßrost mit achsparallelen Roststäben.

Die US-PS 24 50 492 zeigt und beschreibt eine Zerkleinerungsmaschine vorstehender Art. Der Mahlrost umschließt $^{
m 10}$ dabei im wesentlichen die untere Rotorhälfte. Zu Wartungszwecken kann der achsparallele Roststäbe aufweisende Mahlrost auf Schienen zur Hälfte horizontal, seitlich aus dem Gehäuse herausgefahren werden. Abgesehen von der konstruktiv aufwendigen und relativ teuren schienengeführten Bauwei- 15 se des Mahlrostes, bringt das seitliche, horizontale Ausfahren des Rostes im Hinblick auf weitere nebenzuordnende Aggregate, wie beispielsweise Zu- und Abführvorrichtungen, Entstaubungs- und Sichtvorrichtungen und deren Haltegerüste, erhebliche Probleme mit sich. Schließlich ist mit die-20 ser bekannten Rostbauweise eine Anpassung des Rostes an verschiedenartiges Aufgabegut nicht möglich.

Aus der DE-OS 21 46 362 ist ferner eine zum Verarbeiten von Hausmüll vorgesehene Zerkleinerungsmaschine mit einem 25 Rost im Gehäuseunterteil bekannt. Nachteilig bei dieser bekannten Zerkleinerungsmaschine ist vor allem, daß es für Überholungsarbeiten oder zum Rostaustausch bei Fraktionsoder Materialwechsel zunächst erforderlich ist, die obere Gehäusehälfte des horizontal unterteilten Gehäuses abzuklappen und den im Gehäuseunterteil gelagerten Rotor zu entfernen, bevor der Rost zugänglich ist und nach oben ausgehoben werden kann.

Auch diese Zerkleinerungsmaschine stellt somit eine ebenso umständliche wie teure Konstruktion dar. Ein wesentlicher, sich ungünstig auswirkender Faktor ist dabei, daß erst nach mehreren Arbeitsschritten – nämlich Öffnen des Gehäuses, Ausheben des Rotors sowie Durchführen der damit verbundenen Sicherungsmaßnahmen – der auszutauschende Mahlrost frei zugänglich ist. Ein Anpassen an verschiedenartiges Aufgabegut ist auch mit dieser Bauart nicht möglich.

Ähnlich aufwendig ist auch die Demontage eines Siebkorbes bei einer aus der US-PS 41 29 260 bekannten Zerkleinerungs20 maschine. Der Siebkorb ist in diesem Fall axial aus dem Gehäuse ausschiebbar. Bevor der Siebkorb allerdings ausgeschoben werden kann, muß ein Gehäusedeckel gelöst werden, in dem auch gleichzeitig die Rotorachse gelagert ist, so daß mit dem Lösen des Deckels sämtliche, die Rotorachse tragenden Lagerteile mitgelöst werden müssen. Auch hier muß also der Rotor regelrecht ausgebaut werden. Erst danach ist der Siebkorb für Wartungsarbeiten zugänglich. Nachteilig ist auch bei dieser recht aufwendigen und nicht anpaßbaren Konstruktion, daß die Wartungszugänglichkeit der Zer30 kleinerungsmaschine durch den zuvor erforderlichen Ausbau der im Gehäusedeckel gelagerten Rotorachse stark eingeschränkt ist.

Der Erfindung liegt die Aufgabe zugrunde, eine Zerkleine-35 rungsmaschine der eingangs beschriebenen Art zu schaffen, die sowohl einen schnellen Rostwechsel erlaubt, als auch eine individuell den jeweiligen Anforderungen angepaßte Einstellung der Maschine auf die verschiedenartigen, zu zerkleinernden Materialsorten erlaubt, ohne daß dazu eine grundlegende Demontage der Zerkleinerungsmaschine erforderlich wäre. Hiervon ausgehend wird die Aufgabe erfindungsgemäß dadurch gelöst, daß mindestens eine der Stirnwände des Gehäuses im Bereich der Querschnitts-Kontur des Auslaßrostes zumindest eine Öffnung aufweist, in der der Auslaßrost gelagert ist und durch die der Auslaßrost ganz oder teilweise in axialer Richtung austauschbar ist. Für die 10 Öffnung ergibt sich vorzugsweise eine Sichel- bzw. Ringform.

Da vorzugsweise die antriebsfreie Stirnseite des Gehäuses gut zugänglich ist, ist an dieser Stelle der Austausch des Auslaßrostes in überraschend einfacher Weise möglich. Je 15 nach zu zerkleinernder Materialsorte, beispielsweise Haushaltsabfälle, Holz, Rindenabfälle etc. kann bzw. können hier der entsprechende Rost entweder als Ganzes oder als Teilstück oder einzelne seiner Stäbe ein- und ausgebaut werden, wobei aus fertigungstechnischen bzw. wirtschaft-²⁰lichen Gründen die Wahl des Rostaufbaus bestimmt wird. Bei einem erforderlichen Austausch des Auslaßrostes wirkt sich vor allem die Lagerung des Rostes in den Stirnwänden des Gehäuses besonders günstig aus; dadurch bedingt ist ein unmittelbarer Zugriff zu dem Auslaßrost gewährleistet, d.h. ²⁵mit anderen Worten, daß der Rost sofort frei zugänglich ist, ohne vorher aufwendige Ausbauten bzw. Demontagen anderer Maschinenbauteile vornehmen zu müssen.

Dadurch, daß in vorteilhafter Weiterbildung der Erfindung ³⁰axial im Gehäuse, vorzugsweise in der die Rotorachse enthaltenden Vertikalebene mindestens ein in den Stirnwänden des Gehäuses verankerter Steg verläuft, wird vermieden, daß bei Austausch eines einzelnen Roststabes beispielsweise sämtliche vorangehende, anliegende Roststäbe ausgebaut werteilung des Gehäuseunterteils in zwei Hälften bzw. mehrere

Teilabschnitte müssen weit weniger Roststäbe als bei einem ungeteilten Gehäuse im Falle eines Austauschs entnommen werden. Dieser Steg bzw. diese Stege stellen somit eine Abstützung bzw. Fixierung für Roststabgruppen dar. Je mehr Stege vorgesehen werden, umso geringer ist die Zahl notwendiger Weise beim Austausch einzelner Roststäbe insgesamt zu entfernender Stäbe.

10 für den Bedienungsmann hinsichtlich der Handhabung bzw. der Manipulationsmöglichkeit der Roststäbe Probleme mit sich bringen könnte, kann gemäß einem weiteren erfindungsgemäßen Ausführungsbeispiel bei Unterteilung des Auslaßrostes in einzelne austauschbare Roststäbe jeder Roststab an mindestens einem der Enden, vorzugsweise an der Seite, wo der Austausch des Rostes vorgenommen wird, ein abgestuftes, aus dem Gehäuse herausragendes Ansatzstück aufweisen, das sich zur Begrenzung der axialen Beweglichkeit mit der abgestuften Fläche gegen die innere Fläche der Stirnwand des Gehäuses abdrückt.

Durch die dadurch vorgegebene Angriffsmöglichkeit an dem hervorstehenden Ansatzstück wird die Handhabung mit den einzelnen Roststäben wesentlich erleichtert. Außerdem wird bedingt durch dieses abgestufte Ansatzstück ein Abstützen des Stabes an der Öffnung der Gehäusestirnwand möglich, wodurch die einzelnen Roststäbe alsdann nach dem Zusammenbau und während des Betriebszustandes der Zerkleinerungsmaschine gegen axiale Schübe weitestgehend gesichert sind.

30

Damit die Sicherung gegen axiale Schübe und die damit verbundene Sicherung der Stäbe gegen Herausfallen auch bei glatten Roststäben beispielsweise ohne Ansatzstück und auch bei einem kompletten Auslaßrost gewährleistet ist, ist gemäß einer vorteilhaften Weiterbildung der Erfindung die für den Austausch des Auslaßrostes vorgesehene Öffnung durch mindestens einen Deckel verschlossen.

Erheblich größere Sicherheit gegen das mögliche Herausfallen einzelner Roststäbe bietet das erfindungsgemäße Ausführungsbeispiel, bei dem der Deckel zur Begrenzung der axialen Verschiebung mit einem die Roststäbe übergreifenden Ansatzstück in die Öffnung in der Stirnwand des Gehäuses hineinragt.

Um auch noch solche Krafteinflüsse auszuschließen, die bei10 spielsweise ein Anheben der Roststäbe zur Folgen haben,
(welches beispielsweise durch die am Rotor auftretenden
Umfangskräfte ausgelöst werden kann,) weist in vorteilhafter Weiterbildung der Erfindung, insbesondere bei den glatten Roststäben, jeder austauschbare Roststab eine Eingriffs15 nut an mindestens einem der Enden auf, in die das in die
Öffnung der Stirnwand hineinragende, am Deckel befindliche
Ansatzstück eingreift.

Soll der Auslaßrost eine andere Rostspaltweite erhalten, 20 weil es gewisse Umstände, z.B. eine Änderung in der Beschaffenheit des zu zerkleinernden Materials bzw. eine Änderung der Materialsorte oder aber eine andere gewünschte Fraktionsgröße erforderlich macht, so können gemäß einem weiteren erfindungsgemäßen Ausführungsbeispiel alle Roststäbe 25 oder auch nur ein Teil der Roststäbe ausgetauscht werden, weil jeder austauschbare einzelne Roststab mindestens zwei die Roststabanordnung bestimmenden Distanznocken aufweist, die die einzelnen Roststäbe untereinander auf Abstand halten und die durch ihre Form sowohl die jeweiligen unter-30 schiedlichen Rostspaltweiten als auch die unterschiedlichen Spaltformen, d.h. die Schlagwinkel bestimmen. Die variierende, formenmäßige Gestaltung der Distanznocken (Größe und Form) bietet für zusätzliche Manipulationsmöglichkeiten Raum und hat damit verbunden unmittelbaren Einfluß bzw. 35 Auswirkungen auf die Rostspaltweite, die Spaltform bzw. auf die relevanten Schlagwinkel.

Mit zunehmender Schrägstellung der einzelnen Roststäbe, die an einem beispielsweise abgeschrägt gestalteten Distanznocken des vorangehenden Roststabes anliegen bzw. sich dort abstützen, sinkt der Schlagwinkel unter 900 und bildet einen spitzen Winkel, wodurch sich in Abhängigkeit davon die Rostspaltweite entsprechend verringert. Durch diese Manipulationsmöglichkeit mittels der Distanznocken bzw. durch die Schrägstellung der Roststäbe kann einerseits bei bestimmten zu zerkleinernden Materialien, beispielsweise Rinden und 10 Holz, eine bessere Zerkleinerung und eine daraus resultierende höhere Durchsatzleistung erzielt werden und andererseits kann bei feuchten Materialien ein Zusetzen des Auslaßrostes bzw. der Roststäbe weitestgehend verhindert werden.

15

5

Damit u.U. auftretende negative Krafteinflüsse weitestgehend ausgeschlossen werden, sind gemäß einer weiteren Ausführungsform der Erfindung die austauschbaren Roststäbe durch mindestens eine, axial im Gehäuse verlaufende, fest 20 fixierte Anschlagleiste, gegen die sich die daran anschlie-Benden einzelnen Roststäbe abstützen, gegen Verdrehungen in Umfangsrichtung gesichert.

Die Erfindung wird nachfolgend anhand von in der Zeichnung 25 dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1 einen Querschnitt durch eine erfindungsgemäße Zerkleinerungsmaschine;

30

Fig. 2 eine weitere Ausführungsform der Zerkleinerungsmaschine in einer der Fig. 1 entsprechenden Darstellung mit einem axial durch das Gehäuse, etwa in der Vertikalebene der Rotorachse, verlaufenden Steg;

35

Fig. 3 eine Ansicht der Zerkleinerungsmaschine in Richtung des Pfeils III in Fig. 5;

5

10

15

30

35

- Fig. 4 einen Schnitt entlang der Linie IV IV durch die Zerkleinerungsmaschine nach Fig. 1 mit einem an den Enden glatten Roststab und mit einer mit einem Deckel verschlossenen Auslaßöffnung;
- Fig. 5 eine weitere Ausführungsform der Zerkleinerungsmaschine in einer der Fig. 4 entsprechenden Darstellung mit einem an den Enden mit einem abgestuften
 Ansatzstück versehenen Roststab und mit einer mit
 einem Deckel verschlossenen Auslaßöffnung;
- Fig. 6 eine vergrößerte Darstellung des Ausschnittes VI in Fig. 5 ohne Deckel, mit entsprechender Draufsicht (Fig. 6a);
- Fig. 7a eine vergrößerte Darstellung des Ausschnittes VIIa in Fig. 4, mit einem an den Enden mit einer Eingriffsnut versehenen glatten Roststab;
- Fig. 7b eine vergrößerte Darstellung eines glatten Roststabes mit Deckel; und
- Fig. 8a bis 8c einen erfindungsgemäß ausgebildeten glatten Roststab in perspektivischer, vergrößerter Darstellung, in verschiedenen Ausführungsformen.

Die insgesamt mit 1 bezeichnete Zerkleinerungsmaschine besitzt ein Gehäuse 2. Im Gehäuse 2 läuft ein Zerkleinerungsrotor 3 in Drehrichtung R um, dessen Achse 4 beidseitig in auf Lagerböcken 5, 6 befestigten Lagern 7, 8 gelagert ist. Der Zerkleinerungsrotor 3 besteht aus mehreren im Abstand auf der Achse 4 aneinandergereihten Rotorscheiben 9, zwischen denen Zerkleinerungswerkzeuge 10 drehbeweglich auf Achsen 11 gehalten sind, die die Rotorscheiben 9 im radialen Abstand von der Achse 4 parallel zu dieser durchsetzen. Die Achse 4 steht über eine Kupplung mit einem nicht dargestellten Antrieb in Verbindung. Durch die spezielle, aus den Figuren 4 und 5 ersichtliche Anordnung der Zerklei-

nerungswerkzeuge werden Roststäbe bzw. ein aus ihnen gebildeter Auslaßrost 14 gleichmäßig von den Zerkleinerungswerkzeugen 10 bestrichen, was außer einer gleichmäßigen Zerkleinerung gleichzeitig eine Verminderung des Verschleißes und eine Herabsetzung der Stillstandzeiten zwischen den aus dem Verschleiß resultierenden, erforderlichen Rostwechseln zur Folge hat.

Im Gehäuse 2 ist ein Guteinlaß 12 und ein Gutauslaß 13 vorgesehen. Der Guteinlaß 12 befindet sich an der aufwärtsdrehenden Seite des Zerkleinerungsrotors 3 oberhalb der Rotorachse 4. Der Gutauslaß 13 wird durch den Auslaßrost 14 und eine an der aufwärtsdrehenden Seite des Rotors 3 sich unmittelbar an den Rost 14 anschließende Endklappe 15 abgedeckt. Die Endklappe 15 dient einer möglichen zusätzlichen Stückgrößenbeeinflussung sowie der Beseitigung von Rostverstopfungen und kann alternativ rein mechanisch oder hydraulisch, im dargestellten Ausführungsbeispiel in Fig. 1 und Fig. 2 beispielsweise durch eine Rasterklinke 16 ver-20 stellt werden. Die verschiedenen Positionen der Endklappe 15 sind dadurch entsprechend fixierbar. Der aus direkt auf der bzw. den Stirnwänden lagernden Roststäben 17 bestehende Auslaßrost 14 umschließt im wesentlichen die untere Rotorhälfte. Zumindest eine der Stirnwände 18, 19 des Gehäuses 2 25 weist im Bereich der aus Fig. 1 und 2 ersichtlichen Querschnittskontur des Auslaßrostes 14 eine Öffnung 20 auf (s. 2, 4 und 5), in der der Rost bzw. die Roststäbe gelagert ist bzw. sind und durch die der Auslaßrost 14 ganz oder teilweise in axialer Richtung austauschbar ist. Im 30 dargestellten Ausführungsbeispiel besitzt die Öffnung 20 Sichel- bzw. Ringsegmentform.

Bei Unterteilung des Auslaßrostes 14 in einzelne austauschbare Roststäbe 21 kann gemäß Fig. 2 axial im Gehäuse 2 etwa in der Vertikalebene I - I der Rotorachse 4 ein in den Stirnwänden 18, 19 des Gehäuses verankerter Steg 22 angeordnet sein. Dadurch wird erreicht, daß bei Austausch eines einzelnen Roststabes 21 nicht alle vorhergehenden Roststäbe 21 ausgetauscht werden müssen. Durch die Aufteilung bzw. Halbierung des Gehäuses 2 durch den Steg 22 wird die Anzahl der zu entfernenden Roststäbe 21 bei einem erforderlichen Austausch erheblich herabgesetzt und kann bei Anordnung noch weiterer Stege zusätzlich reduziert werden.

10

Die einzelnen, austauschbaren Roststäbe 21 können an mindestens einem ihrer Enden, insbesondere an der Seite, an der der Austausch der Roststäbe vorgenommen wird, mit einem abgestuften, aus dem Gehäuse 2 herausragenden Ansatzstück 15 23 versehen sein, so daß sich die abgestufte Fläche 24 zur Begrenzung der axialen Beweglichkeit jedes Roststabes 21 gegen die innere Fläche 25 der Stirnwand 18, 19 des Gehäuses 2 anlegt, wie in Fig. 5, 6 und 6a dargestellt. Der Ausund Einbau der einzelnen austauschbaren Roststäbe 21 läßt 20 sich zusätzlich noch dadurch vereinfachen, daß in dem Ansatzstück 23 jedes Roststabes 21 eine Werkzeugausnehmung in Form einer Nut 23a, beispielsweise ein Langloch, vorgesehen ist, die bzw. das mittig durch eine Bohrung erweitert ist, wie es die Draufsicht gemäß Fig. 6a zeigt. Dadurch ist 25 zusätzlich zu der ohnehin unter anderem aufgrund des Ansatzstückes 23 gegebenen problemlosen Handhabung der Roststäbe 21 die Möglichkeit gegeben, unter Zuhilfenahme eines entausgebildeten, beispielsweise sprechend T-förmigen Schlüssels, der durch die Nut 23a geführt und durch Verdre- $^{
m 30}$ hen verriegelt bzw. in Eingriff gebracht wird, die einzelnen Roststäbe 21 anzuheben und auszutauschen. Zur zusätzlichen Stützung bzw. Stabilisierung der einzelnen stäbe 21 sind an der inneren Fläche 25 der Stirnwand 18, 19 des Gehäuses 2 Auflageböcke oder eine Auflageleiste 26 35 vorgesehen.

Um die Roststäbe 21 vor unerwünschten Auswirkungen zusätzlicher Krafteinflüsse zu bewahren, die unter durch den aufwärtsdrehenden Rotor 2 verursacht werden und die eine Bewegung bzw. Verschiebung der einzelnen Roststäbe 21 in Umfangsrichtung des Rotors auslösen können, kann zur zusätzlichen Sicherung der Roststäbe 21 mindestens ein Deckel 27 an der äußeren Stirnwand 18, 19 des Gehäuses 2 befestigt werden, der, wie in Fig. 3 und Fig. 5 stellt, gegen das nach außen hervorragende, abgestufte An-10 satzstück 23 drückt und so die einzelnen Roststäbe 21 in Position hält. In dem dargestellten Ausführungsbeispiel gemäß Fig. 3 sind anstatt des einen Deckels 27 drei Deckel 27 vorgesehen. Es wäre allerdings auch eine andere Ausführungsform des Deckels 27 denkbar, als der mit seiner Anlage-15 fläche mit der Öffnung bzw. Stirnwand 18, 19 glatt abschlie-Bende, vorangehend erläuterte Deckel 27. Beispielsweise könnte für die abgestuften Roststäbe auch ein Deckel verwendet werden, wie er nachfolgend noch näher erläutert wird und in den Figuren 4 und 7a zu einem anderen Ausführungs-20 beispiel dargestellt ist.

Eine weitere Ausführungsform eines austauschbaren Roststabes 21 zeigen die Fig. 4 bzw. 7a und b. Dieser an den Enden glatte Roststab 28 kann gegen axiale Verschiebung durch einen einfachen, an der Außenfläche der Stirnwand 18, 19 des Gehäuses 2 befestigten Deckel 29, wie er beispielsweise in dem Ausführungsbeispiel gemäß Fig. 4 dargestellt ist, gesichert werden. Dabei braucht der Deckel 29 allerdings nicht unbedingt, wie im dargestellten Ausführungsbeispiel, 30 mit einem die Roststäbe übergreifenden Ansatzstück 30 versehen zu sein, das in die dann abgestuft ausgebildete Öffnung 20 in der Stirnwand 18, 19 des Gehäuses hineinragt, sondern der Deckel kann gegebenenfalls mit seiner Anlagefläche auch mit der Außenfläche der Stirnwand 18, 19 glatt

abschließen bzw. fluchten, wie in Fig. 7b dargestellt, so daß die Öffnung 20 verschlossen ist und der Roststab 28 bis unmittelbar an den Deckel heranreicht, wodurch dann ebenfalls eine entsprechende Sicherung gegen axiale Verschiebung gegeben ist. Um die einzelnen glatten Roststäbe 28 aber auch entsprechend gegen andere Krafteinflüsse sichern, beispielsweise um ein Anheben der Roststäbe aus ihrem Sitz zu vermeiden, kann jeder austauschbare glatte Roststab an mindestens einem seiner Enden eine Eingriffsnut 10 31 aufweisen, in die das in die Öffnung 20 der Stirnwand 18, 19 hineinragende, am Deckel 29 befindliche Ansatzstück 30 eingreift. Vor Verschiebungen in Umfangsrichtung schützt bei einzelnen Roststäben alternativ auch eine axial im Gehäuse verlaufende, fest fixierte Anschlagleiste 32, wie sie 15 in Fig. 1 beispielsweise an den Rostenden angebracht und dargestellt ist. Gegen diese Anschlagleiste 32 stützen sich die sich auf Abstand in gegenseitiger Anlage befindenden Roststäbe 21 ab.

20 Jeder austauschbare Roststab 21 kann mit mindestens zwei, je nach Maschinenbaugröße bzw. nach Länge des Roststabes 21 aber auch mit mehreren die Roststabanordnung bestimmenden Distanznocken 21a versehen sein, wie in Fig. 8a und b dargestellt. Es besteht aber auch die Möglichkeit, einen 25 nicht dargestellten, im Querschnitt rechteckigen Distanznocken 21a vorzusehen, der dann nicht abgeschrägt Durch die Distanznocken 21a werden die einzelnen austauschbaren Roststäbe 21 untereinander auf Abstand gehalten. Maßgebend für den Abstand der einzelnen Roststäbe untereinan-30 der ist das obere Maß - b - des Distanznockens 21a. Durch Manipulation mit diesem Maß - b - bzw. mit den entsprechenden, dadurch fixierten einzelnen Roststäben kann jede gewünschte Rostspaltweite - c - ohne weiteres erzeugt werden. Durch unterschiedliche Formen der Distanznocken 21a können 35 außerdem die unterschiedlichsten Spaltformen und Schlagwinkel & bzw. B erzeugt werden. Es besteht die Möglichkeit, durch Schrägstellung der Roste und der Distanznocken 21a, wie in dem Ausführungsbeispiel gemäß Fig. 8a dargestellt, den Schlagwinkel B so zu verändern bzw. auf einen spitzen Winkel unter 90° einzustellen, daß sich auch unterschiedliche Spaltformen & bzw. Rostspaltweiten - c - einstellen bzw. ergeben. Dadurch wird gleichzeitig zum einen eine Einflußnahme auf den Zerkleinerungsgrad möglich und zum anderen dem in Schlagrichtung S auf die schrägstehenden, in einem spitzen Winkel ausgerichteten Roststäbe auftreffenden Material ein günstigeres Widerstandsmoment entgegensetzt.

Fig. 8c zeigt eine weitere Ausführungsform, bei der rechteckige Ansatzstücke 23 an den Stirnseiten der Roststäbe 21

15 derart befestigt sind – entweder, wie dargestellt, angeschweißt oder angeschraubt – , daß sie durch gegenseitige Anlage die Roststäbe 21 in dem gewünschten Abstand halten. Auch hier kann in jedem Ansatzstück eine der erleichterten Manipulation dienende Nut 23a vorgesehen sein (in der Zeichnung nur eine dargestellt). Die Verschraubung der Ansatzstücke bietet eine sehr einfache Möglichkeit ihres Austausches gegen solche anderer Abmessungen, so daß auch hierdurch nicht nur ein schneller Austausch sondern auch eine hervorragende Möglichkeit zur Änderung der Roststababstände

25 gegeben ist.

Durch den möglichen schnellen Austausch der einzelnen Roststäbe untereinander können die Öffnungsquerschnitte und -formen des Auslaßrostes zur Beeinflussung der Größe 30 und/oder Dichte des zu zerkleinernden Materials manipuliert werden. Ob dabei das Material mehr oder minder dicht und kleiner oder größer ausfällt, wird durch die entsprechend gewählte Rostspaltweite - c - und Rostspaltform bzw. durch den Abstand der einzelnen Roststäbe untereinander bzw.

35

durch das obere Maß - b - des Distanznockens 21a vorgegeben. Die in Fig. 8b dargestellte, strichpunktierte Ausführungsform des Distanznockens 21a, dessen freie Stirnfläche gegenüber der des jeweils benachbarten Stabes zurückgesetzt ist, bietet den Vorteil, daß die Distanznocken 21a weitestgehend vor Verschleiß geschützt sind, der durch das auf den Auslaßrost bzw. die Roststäbe auftreffende Gut hervorgerufen wird.

Bei dem austauschbaren Roststab 21 mit abgestuftem Ansatzstück 23 besteht auch die Möglichkeit, anstelle des Distanznockens 21a das Ansatzstück 23 über den Roststabquerschnitt hinaus soweit zu verbreitern bzw. zu verlängern, daß die einzelnen Roststäbe 21 untereinander dadurch auf Abstand 15 gehalten werden. Dr.-Ing. Reimar König Dipl.-Ing. Klaus Bergen

Wilhelm-Tell-Str. 14 4000 Düsseldorf 1: Talafon 337026 Patentanwälte

- 14 -

LINDEMANN Maschinenfabrik G.m.b.H.,

Erkrather Straße 401, 4000 Düsseldorf 1

"Zerkleinerungsmaschine mit umlaufendem Rotor"

Patentansprüche:

- Zerkleinerungsmaschine mit einem mit einem Guteinlaß 1. versehenen Gehäuse, in dessen Stirnwänden ein mit Zerkleinerungswerkzeugen besetzter Rotor mit horizontaler Achse drehbar gelagert ist, und mit einem unterhalb 5 des Rotors angeordneten, austauschbaren Auslaßrost mit achsparallelen Roststäben, dadurch gekennzeichnet, daß mindestens eine der Stirnwände (18, 19) des Gehäuses im Bereich der Querschnitts-Kontur des Auslaßrostes (14) zumindest eine Öffnung (20) aufweist, in der der 10 Rost aufliegt und durch die der Auslaßrost (14) ganz oder teilweise in axialer Richtung austauschbar ist.
- Zerkleinerungsmaschine nach Anspruch 1, gekennzeichnet 2. durch mindestens einen axial im Gehäuse (2) verlaufen-15 den, in den Stirnwänden (18, 19) des Gehäuses (2) verankerten Steg (22), vorzugsweise in der die Rotorachse (4) enthaltenden Vertikalebene (I-I).
- Zerkleinerungsmaschine nach Anspruch 1 oder 2, dadurch З. 20 gekennzeichnet, daß bei Unterteilung des Auslaßrostes (14) in einzelne austauschbare Roststäbe (21) jeder

Roststab an mindestens einem seiner Enden, vorzugsweise an der Seite, an der der Austausch der Roststäbe (21) vorgenommen wird, ein abgestuftes, aus dem Gehäuse herausragendes Ansatzstück (23) aufweist, das sich zur Begrenzung der axialen Beweglichkeit mit seiner abgestuften Fläche (24) gegen die innere Fläche der Stirnwand (25) des Gehäuses (2) anlegt.

- 4. Zerkleinerungsmaschine nach einem oder mehreren der

 Ansprüche 1 bis 3, <u>dadurch gekennzeichnet</u>, daß die für den Austausch des Auslaßrostes (14) vorgesehene Öffnung (20) durch mindestens einen Deckel (27) zu verschließen ist.
- 20 Zerkleinerungsmaschine nach einem oder mehreren der Ansprüche 1 bis 4, <u>dadurch gekennzeichnet</u>, daß der Deckel (29) zur Begrenzung der axialen Verschiebung der Roststäbe (28) mit einem diese übergreifenden Ansatzstück (30) in die Öffnung (20) in der Stirnwand (18, 19) des Gehäuses (2) hineinragt.
- 6. Zerkleinerungsmaschine nach einem oder mehreren der Ansprüche 2 bis 5, <u>dadurch gekennzeichnet</u>, daß jeder austauschbare Roststab (28) eine Eingriffsnut (31) an mindestens einem seiner Enden aufweist, in die das in die Öffnung (20) der Stirnwand (18, 19) hineinragende, am Deckel (29) befindliche Ansatzstück (30) eingreift.
- 7. Zerkleinerungsmaschine nach einem oder mehreren der Ansprüche 2 bis 6, <u>dadurch gekennzeichnet</u>, daß jeder austauschbare einzelne Roststab (21) mindestens zwei die Roststabanordnung bestimmenden Distanznocken (21a) aufweist, die die einzelnen Roststabe (21) untereinander auf Abstand (b) halten, und durch die Form der

5

Distanznocken (21a) sowohl die jeweiligen unterschiedlichen Rostspaltweiten (c) als auch die unterschiedlichen Spaltformen, d.h. Schlagwinkel (\mathcal{L} und \mathcal{L}) bestimmt werden.

5

- 8. Zerkleinerungsmaschine nach einem oder mehreren der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß die austauschbaren Roststäbe (21) durch mindestens eine axial im Gehäuse (2) verlaufende fest fixierte Anschlagleiste (32), gegen die sich die sich auf Abstand in gegenseitiger Anlage befindenden Roststäbe (21) abstützen, gegen Verdrehungen in Umfangsrichtung gesichert sind.
- 159. Zerkleinerungsmaschine nach einem oder mehreren der Ansprüche 3 bis 8, gekennzeichnet durch eine Werkzeugausnehmung (23a), vorzugsweise in Form einer Nut oder eines Langloches in dem Ansatzstück (23) jedes Roststabes (21).

20

.:

10. Zerkleinerungsmaschine nach einem oder mehreren der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß die Ansatzstücke (23) derart verbreitert bzw. zu verbreitern sind, daß sie durch gegenseitige Anlage die Roststäbe (21) auf dem gewünschten Abstand halten.

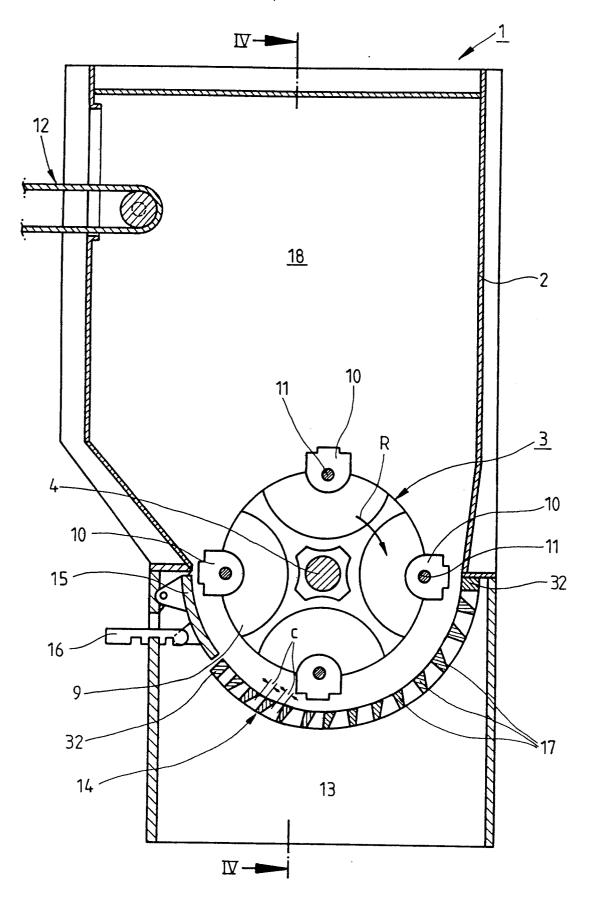


Fig.1

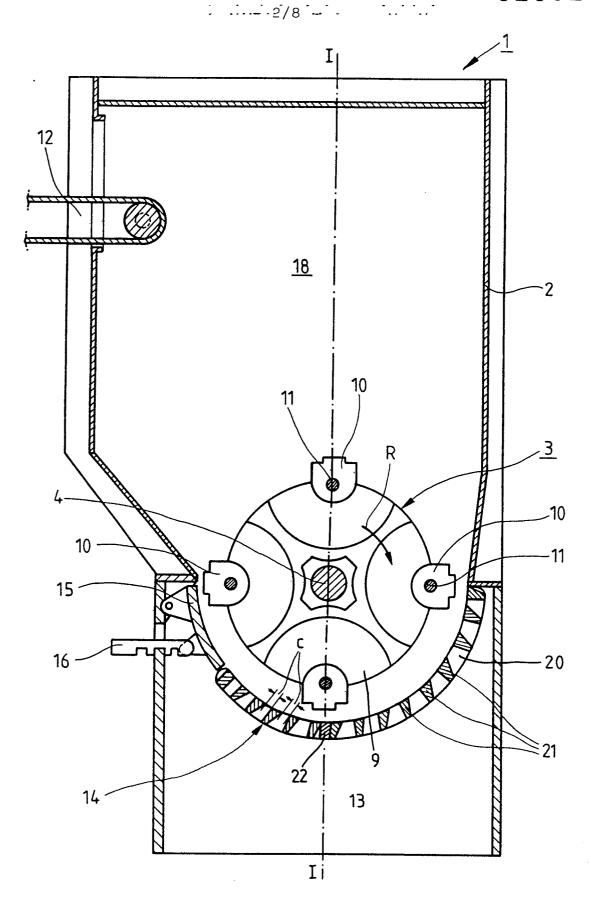


Fig. 2

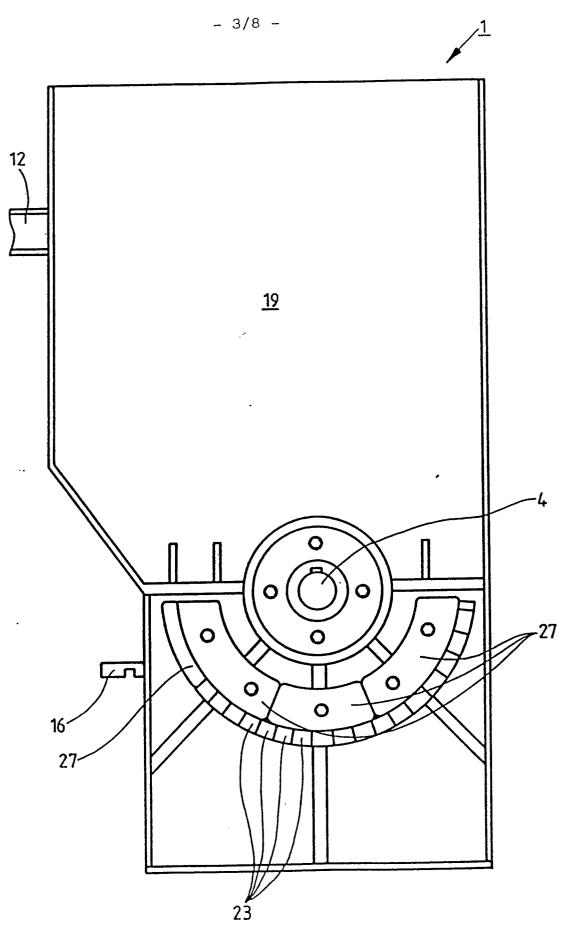
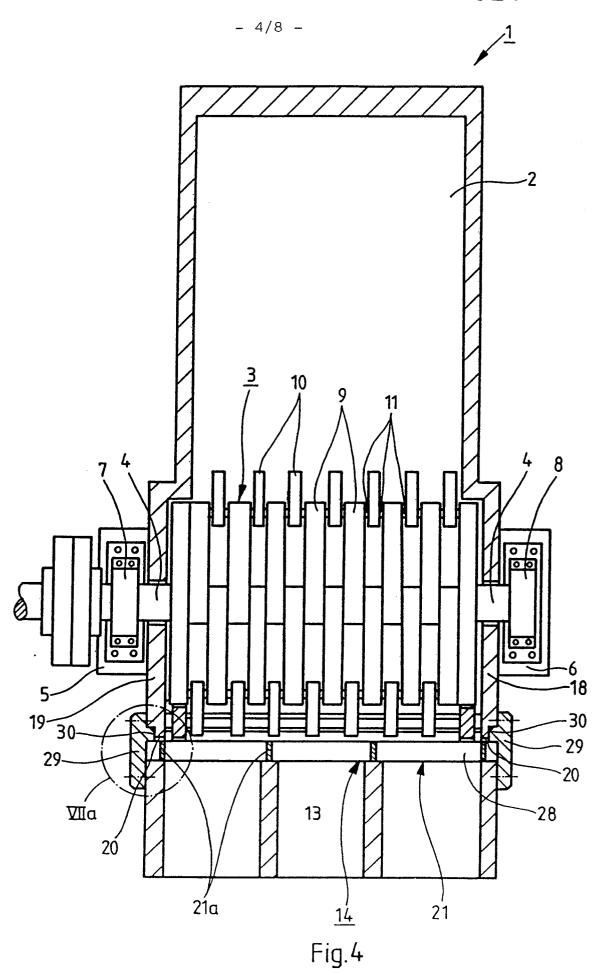
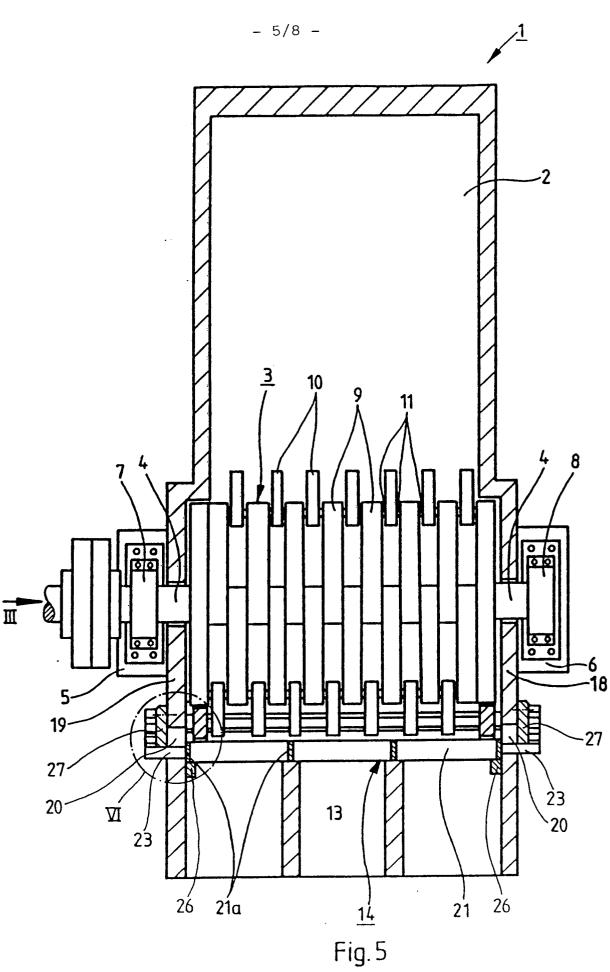




Fig.3

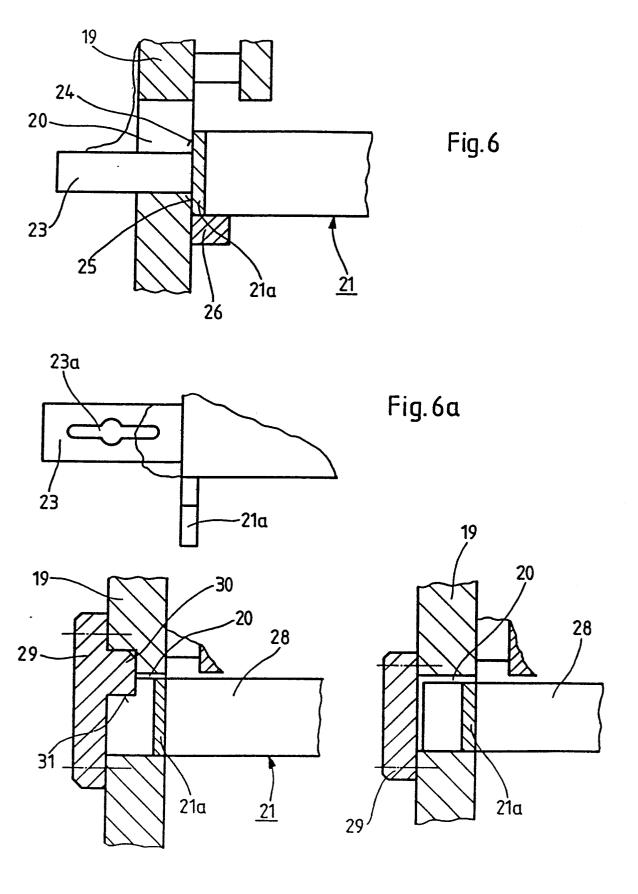
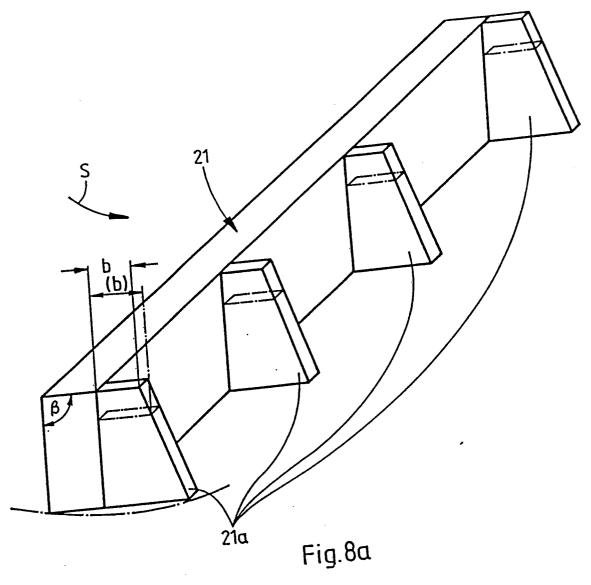
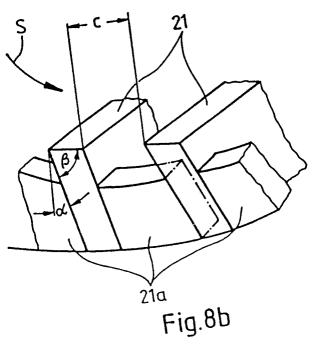




Fig. 7a

Fig.7b

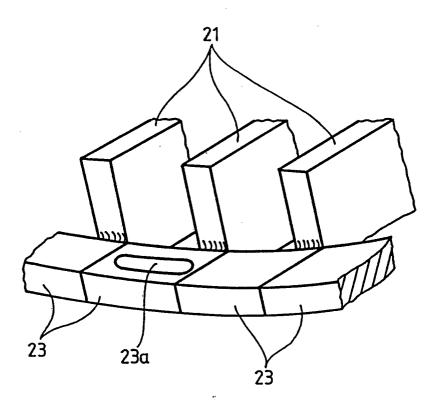


Fig.8c