(19) |
 |
|
(11) |
EP 0 204 927 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
13.06.1990 Bulletin 1990/24 |
(22) |
Date of filing: 17.04.1986 |
|
(51) |
International Patent Classification (IPC)5: E21D 21/00 |
|
(54) |
Yield tube rib bolt assembly
Zusammenbau von Gebirgsanker und Sollbruchrohr
Assemblage de boulon d'ancrage et tube destiné à la rupture
|
(84) |
Designated Contracting States: |
|
DE FR GB |
(30) |
Priority: |
06.06.1985 US 741995
|
(43) |
Date of publication of application: |
|
17.12.1986 Bulletin 1986/51 |
(73) |
Proprietor: Jim Walter Resources, Inc. |
|
Birmingham
Alabama 35207 (US) |
|
(72) |
Inventor: |
|
- Gauna, Michael
Tucaloosa
Alabama 35494 (US)
|
(74) |
Representative: Fuchs Mehler Weiss |
|
Patentanwälte
Postfach 46 60 65036 Wiesbaden 65036 Wiesbaden (DE) |
(56) |
References cited: :
AT-B- 352 055 BE-A- 621 579 DE-A- 3 237 091 DE-U- 8 317 269 US-A- 2 725 843
|
AU-A- 54 662 DE-A- 3 145 923 DE-U- 8 102 036 FR-A- 1 236 570 US-A- 4 058 079
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to a yield tube rib bolt assembly being useful in the underground
mining of minerals and particularly the mining of coal. While this invention is especially
applicable in coal mining operations, and will be described in that environment, the
scope of the invention should not be limited to that type of operation.
[0002] Generally, in a coal mining operation, coal is removed from the face of a coal seam
and deposited onto a flexible conveyor for removal from the mine.
[0003] Throughout the mine there are passageways which permit miners to move around through
the mine. These passageways are separated by pillars which are areas of the mine that
have not been mined. As these pillars have exposed faces, the vertical forces on the
pillars cause the pillars to expand into the passageways. If the expansion is severe,
the pillar side may collapse into the passageways.
[0004] In order to keep the pillar side from collapsing, angled rib bolts are used to support
the exposed sides of the pillars in the mine. These bolts are inserted into long holes
drilled into the face of the pillar, usually at a 45° angle with respect to the face
of the pillar. The bolts are held in place by an expansion shell or set resin in which
one end of the bolt is anchored.
[0005] In the past, a crescent washer at the head or exposed end of the bolt held a header
or bearing plate against the face of the pillar to inhibit expansion of the pillar
side and prevent its collapse. One of the problems which occurred in the prior art
structure was the breakage of the rib bolt when the stress of the expanding pillar
exceeded the failure strength of the rib bolt.
[0006] In order to overcome that problem, it has been proposed to place a yield device between
the exposed end of the bolt and the header or bearing plate. The yield device permits
the pillar to expand outwardly and keeps a constant tension on the bolt. However,
because the yield device gradually collapses or splits in a controlled manner, the
rib bolts do not abruptly break. Once the yield device is destroyed, the bolt head
acts against the bearing plate and the bolt then acts as standard rib bolt undergoing
load elongation.
[0007] The yield device should also allow the pillar to temporarily distress itself while
maintaining rib bolt control. This should further increase rib longevity and especially
prevent rib bolt failures in coal face work areas.
[0008] From the FR-A-1 236 570(2) it is known to form the bearing plate as a yield device.
For that reason the bearing plates are provided with anti- clinal bulges having complicated
shapes which serve as crushable bins.
[0009] In the case of setting the anchor bolt in an acute angle with respect to the wall
face, the bearing plates have additionally to be adapted to that angle.
[0010] However, with that construction the possible adjusting path is confined to the size
of the anti- clinal bulges.
[0011] In the DE-U-8 317 269 an anchor for securing loaded mountains is described which
comprises a yield device consisting of a wear cylindrical shell being disposed between
the anchor head and the bearing plate and encompassing the anchor rod. The anchor
head has the shape of a spherical segment or a truncated cone projecting into the
cylindrical shell and possesses a lead-in boring for the anchor shaft. If the pillar
expands outwardly, the anchor head moves into the cylindrical shell while expanding
the shell.
[0012] However a disadvantage of this construction is that the anchor head and the cylindrical
shell have to be precisely manufactured to fit each other in order to offer an exactly
definable counter-holding force. Moreover, even small amounts of dust, or sand adhering
to the surface of the anchor head or the inner surface of the cylindrical shell strongly
infuence the magnitude of the counter-holding force.
[0013] Furthermore, as the anchor head disappears in the cylindrical shell, the expansion
of the pillar is difficult to control.
[0014] The present invention as claimed in claim 1 relates to a simple yield device which
inhibits rib bolt breakage and controls horizontal expansion of pillars in coal mines
without having the above- described disadvantages. It is an object of the invention
to provide a novel device for controlling the expansion of pillars in coal mines and
reduce rib bolt failures. It is another object of the invention to provide a novel
device for controlling the expansion of pillars and coal mines in a simple, yet effective
manner. Other objects and advantages of the present invention will become apparent
to those skilled in the art from a consideration of the attached drawing in which
like numerals indicate like elements and in which:
Figure 1 is a cross-sectional elevational view of a portion of a coal mine with the
novel device of the invention installed.
Figure 2 is an expanded view of a portion of Figure 1 showing the novel device of
the invention in greater detail, and
Figure 3 is a perspective view, partially in cross-section, of the novel device of
the invention.
[0015] Referring now to Figures 1 and 2, there is therein shown a cross-section of a coal
mine with a passageway 10 running under a roof 12 which may be a strata of coal or
overburden. Along one side of passageway 10 is a seam face 14 which is the edge of
a strata of coal or rock which forms pillar 16. Passageway 10 has a floor 18. Passageway
10 is made by mining out the minerals in the seam.
[0016] In order to prevent outward collapse of pillar 16, an angled rib bolt 20 is used
to secure a bearing plate against face 14 of pillar 16.
[0017] Rib bolt 20 may be a conventional bolt used in mining operations as a roof bolt and
consists of a shank 22 which is threaded at end 24 for engagement with a bolt expansion
shell anchor unit 25. Expansion shell anchor unit 25 may be of the type sold commercially
by the Birmingham Bolt Company of Ensley, Alabama. Rib bolt 20 may be an elongated
inch (1.91 cm) diameter rod of grade 55 steel which will break or fail when a stress
of about 30,000 pounds (13,620 kg) is applied to it. Of course, other rib bolts of
different diameter and material may be used, each having a maximum load bearing capacity
before failure. The maximum load before failure may range from 20,000 pounds (9,080
kg) to 30,000 pounds (13,620 kgs) or more depending upon the diameter and material
of the rib bolt.
[0018] The shank 22 of the present rib bolt may be made of steel, fiberglass, wood, and
the bolt head of steel, fiberglass, or cast iron.
[0019] Bolt head 26 includes a main body portion which is of nutlike configuration, one
end of which is enlarged to provide a peripheral flange 28 which is uniplanar with
a body terminal.
[0020] A washer 30 may be placed over shank 22 of rib bolt 20 and rests against peripheral
flange 28 of bolt head 26.
[0021] A collapsible yield device 32 is placed over shank 22 of rib bolt 20 and rests against
washer 30 or flange 28. Collapsible yield device 32 may be a hollow steel tube of
14 to 16 gauge. End 34 of tube 32 rests against washer 30 or flange 28. End 34 of
yield device or tube 32 is cut at right angles to the longitudinal axis of tube 32
so that its end 34 fits snugly against washer 30 or flange 28. The other end 36 of
tube 30 is cut at an angle of about 45° (equal to the acute angle which rib bolt 20
makes with face 14 of pillar 16).
[0022] A bearing plate 38, having a central hole, is placed over shank 22 of rib bolt 20
to rest against end 36 of tube 32. Bearing plate 38 may be of variable thickness and
dimension (6 inches (15.24 cm) in width by 16 inches (40.64 cm) in length is common).
Angle rib bolt 20 is inserted in a hole 40 (see Figure 2) drilled in a conventional
way into pillar 16 at an angle of about 45° with respect to the vertical face 14 of
pillar 16. To hold the upper end of rib bolt 20 securely in place, an expansion shell
anchor or set resin is used at the upper end of hole 40. After hole 40 has been drilled
in pillar 16, rib bolt 20 with an expansion shell anchor is then pushed up until the
bearing plate 38 is in position against the pillar face 14. Rib bolt 20 is then rotated.
During the rotation of rib bolt 20, the expansion anchor sets, rib bolt 20 is tightened
upwardly in hole 40 until bearing plate 38 fits snugly against face 14. After the
bolt is tightened, rib bolt 20 holds bearing plate 38 tightly against face 14 while
yield device or tube 32 is held tightly against bearing plate 38 by the compression
effect of washer 30 and bolt head 26.
[0023] The rotation of rib bolt 20 is accomplished by a mechanically driven socket which
applies a torque which generates a minimum bolt load of about 2,500 pounds. Figure
3 shows collapsible yield device 32 in greater detail. Collapsible yield device 32
is a hollow, round tube of steel or other high tensile strength material with an outside
diameter of approximately 1" and of variable length (6 inches may be used).
[0024] The outside diameter need only be less than the diameter of washer 30 or bolt flange
28 which may be 2-inches in diameter. Washer 30 or bolt flange 28 is of hardened steel,
so that tube 32 can collapse or split between its ends 34 and 36 when sufficient stress
is placed on tube 32 as it is being compressed between washer 30 and bearing plate
38. The inner diameter of tube 32 need only be large enough to accommodate the shank
22 of rib bolt 20 which may be inch (1.91 cm) in outer diameter. Tube 32 may be of
14 to 16 gauge in thickness. The strength of tube 32 is determined by its thickness
and the nature of the material of which it is made. The strength of tube 32 should
be such that tube 32 will not collapse when the setting torque is applied to bolt
head 26, but tube 32 will collapse at a load below the failure strength of the rib
bolt. For example, for a rib bolt of inch (1.91 cm) in diameter of grade 55 steel,
tube 32 should not collapse at a load of 2,500 pounds (1,135 kg), but will collapse
or split at a load below 30,000 pounds (13,620 kg).
[0025] After the assembly of the rib bolt 20, the bolt head 26, the washer 30, the yield
device 32 and bearing plate 38 has been secured in place, the system will provide
support for pillar 16. Of course a system of such rib bolt assemblies will be used
in an actual mine setting. Generally, such rib bolt assemblies are installed on approximately
4-ft. (1.22 m) centers.
[0026] In an actual installation in which rib bolt assemblies with and without yield devices
were compared, it was found that as the pillar expanded, the yield tubes began to
split or crush prior to the breaking of all the rib bolts which did not have yield
tubes. As the pillar further expanded beyond the point where all of the rib bolts
without yield tubes were broken, 50 percent of the yield tubes deformed to where the
washer rested against the bearing plate. At this point, no rib bolts of those assemblies
with yield tubes failed. Even as the pillar further expanded up to the point where
80 percent of the yield tubes were deformed so that the washer was resting against
the bearing plate, none of the rib bolts of this assembly broke.
[0027] While the present invention has been illustrated and described in connection with
a conventional expansion shell anchor type bolt assembly, it is to be understood that
it may also be employed with a resin type rib bolt or roof bolt by making appropriate
changes to the various elements of the invention.
[0028] Various other changes may be made within the scope of the appended claims.
1. A combination comprising an elongated rib bolt (20) to be fixed in a mine at one
end in a receiving hole (40) in a mine wall (14), the rib bolt having an exposed portion
extending outwardly beyond the face of the mine wall and terminating in an exposed
end, the rib bolt further having a predetermined failure strength, a bearing plate
(38) mounted on the rib bolt portion and resting against the mine wall, a cylindrical
shell (32) encompassing the rib bolt mounted on the exposed portion between the bearing
plate and the exposed end, the cylindrical shell permitting the wall face to expand
outwardly by being gradually destroyed, and means (26, 28, 30) mounted on the exposed
end for tightly compressing the cylindrical shell and the bearing plate together and
forcing the bearing plate tightly against the face of the mine with a predetermined
torque, the cylindrical shell being capable of withstanding the predetermined torque
characterized in that the cylindrical shell (32) is longitudinally collapsible with
a predetermined adjustable collapsing-rate in response to an applied force lower than
the predetermined failure strength of the rib bolt (20), thus keeping a constant tension
on the rib bolt (20).
2. The combination as recited in claim 1, characterized in that the cylindrical shell
(32) is made of metal.
3. The combination as recited in claim 1 in which the predetermined torque generates
a minimum load of about 2,500 pounds (1,135 kg) and the failure strength of the rib
bolt is about 30,000 pounds (13,620 kg).
4. The combination as recited in claim 1 in which the cylindrical shell (32) will
not collapse under a longitudinal compressive load of about 2,500 pounds (1,135 kg)
but will collapse under a compressive load of less than about 30,000 pounds (13,620
kg).
5. The combination as recited in claim 1 in which the rib bolt (20) is fixed in a
receiving hole (40) in the face of a mine, which receiving hole (40) is directed at
an acute angle with respect to the face (14) of the mine and the cylindrical shell
(32) has one end (34) perpendicular to its longitudinal axis and has a distant end
(36) lying in a plane at an acute angle with respect to its longitudinal axis, the
acute angle of the receiving hole (40) being equal to the acute angle of the distant
end (36) of the cylindrical shell (32).
1. Eine Kombination, mit einem verlängerten Gebirgsanker, der in einer Grube an einem
Ende in einem Aufnahmeloch in einer Grubenwand befestigt wird, wobei der Gebirgsanker
ein exponiertes Teilstück aufweist, das sich nach außen über die Front der Grubenwand
erstreckt, und in einem exponierten Ende abschließt, und wobei der Gebirgsanker weiterhin
einen festgelegten Bruchwiderstand aufweist, einer Sohlplatte, die auf das Gebirgsankerteilstück
montiert ist, und die an der Grubenwand anliegt, einer zylindrischen Hülse, die den
Gebirgsanker einschließt, und auf der exponierten Teilstück zwischen der Sohlplatte
und dem exponierten Ende montiert ist, wobei die zylindrische Gehäuse der Wandfront
gestattet, sich nach außen auszudehnen, indem sie nach und nach zerstört wird, und
auf das exponierte Ende montierte Mittel, um das zylindrische Hülse und die Sohlplatte
fest zusammen zu pressen und die Sohlplatte mit einem festgelegten Drehmoment fest
gegen die Front der Grubenwand zu drücken, wobei die zylindrische Hülse in der Lage
ist, das festgelegte Drehmoment auszuhalten, dadurch gekennzeichnet, daß die zylindrische
Hülse (32) in ihrer Längsrichtung mit einer festgelegten, einstellbaren Kollabierrate
als Anwort auf eine angelegte Kraft, die geringer als der festgelegte Bruchwiderstand
des Gebirgsankers (20) ist kollabierbar ist, um so eine konstante Spannung auf den
Gebirgsanker (20) zu erhalten.
2. Kombination nach Anspruch 1, dadurch gekennzeichnet, daß die zylindrische Hülse
(32) aus Metall gefertigt ist.
3. Kombination nach Anspruch 1, dadurch gekennzeichnet, daß das festgelegte Drehmoment
einen Mindestdruck von ungefähr 2.500 pounds (11,131 N) erzeugt, und daß der Bruchwiderstand
des Gebirgsankers ungefähr 30.000 pounds (133,567 N) beträgt.
4. Kombination nach Anspruch 1, dadurch gekennzeichnet, daß die zylindrische Hülse
(32) nicht unter einem Pressdruck in Längsrichtung von ungefähr 2.500 pounds (1,135
kg), sondern unter einem Pressdruck von weniger als ungefähr 30.000 pounds (13.620
kg) kollabiert.
5. Kombination nach Anspruch 1, dadurch gekennzeichnet, daß der Gebirgsanker (20)
in einem Aufnahmeloch (40) in der Front einer Grubenwand befestigt ist, wobei das
Aufnahmeloch (40) in einem spitzen Winkel in Bezug auf die Front der Grubenwand ausgerichtet
ist, und daß die zylindrische Hülse (32) ein zu ihrer Längsachse senkrechtes Ende
(34) und ein beabstandetes Ende (36) aufweist, das in einer Ebene liegt, die einen
spitzen Winkel in Bezug auf ihre Längsachse bildet, wobei der spitze Winkel des Aufnahmelochs
(40) gleich dem spitzen Winkel des beabstandeten Endes (36) der zylindrischen Hülse
(32) ist.
1. Ensemble combiné comprenant un boulon d'ancrage allongé (20) destiné à fixé, par
une extrémité, dans une mine, dans un trou de réception (40) ménagé dans une paroi
(14) de la mine, le boulon d'ancrage comportant une partie dégagée s'étendant à l'extérieur
de la face de la paroi de la mine et se terminant par une extrémité dégagée, le boulon
d'ancrage possédant en outre une résistance prédéterminée à la rupture, une plaque
d'appui (38) montée sur ladite partie du boulon d'ancrage et prenant appui contre
la paroi de la mine, une coque cylindrique (32) entourant le boulon d'ancrage et montée
sur la partie dégagée? entre la plaque d'appui et l'extrémité dégagée, la coque cylindrique
permettant une dilatation, en direction de l'extérieur, de la face de la paroi, sous
l'effet de sa destruction graduelle, et des moyens (26, 28, 30) montés sur la partie
dégagée de manière à comprimer fortement la coque cylindrique et la plaque d'appui
l'une contre l'autre et à repousser fortement la plaque d'appui contre la face de
la mine avec un couple prédéterminé, la coque cylindrique étant apte à résister au
couple prédéterminé, caractérisé en ce que la coque cylindrique (32) peut être aplatie
longitudinalement avec un taux réglable prédéterminé d'aplatissement, en réponse à
une force appliquée inférieure à la résistance prédéterminée à la rupture du boulon
d'ancrage (20), ce qui maintient l'application d'une tension constante à ce dernier.
2. Ensemble combiné selon la revendication 1, caractérisé en ce que la coque cylindrique
(32) est réalisée en un métal.
3. Ensemble combiné selon la revendication 1, dans lequel le couple prédéterminé produit
une charge minimale d'environ 2500 livres (1,135 kg) et la résistance à la rupture
du boulon d'ancrage est égale à environ 30000 livres (13,620 kg).
4. Ensemble combiné selon la revendication 1, dans lequel la coque cylindrique (32)
ne s'aplatit pas sous l'action d'une charge de compression longitudinale d'environ
2500 livres (1,135 kg), mais s'aplatit sous l'action d'une charge de compression inférieure
à environ 30 000 livres (13,620 kg).
5. Ensemble combiné selon la revendications 1, dans lequel le boulon d'ancrage (20)
est fixé dans un trou de réception (40) ménagé dans la face d'une mine et dirigé de
manière à faire un angle aigu par rapport à la face (14) de la mine, et la coque cylindrique
(32) possède une extrémité (34) perpendiculaire à son axe longitudinal et une extrémité
distante (36) située dans un plan faisant un angle aigu par rapport à l'axe longitudinal
de la coque, l'angle aigu du trou de réception (40) étant égal à l'angle aigu de l'extrémité
distante (36) de la coque cylindrique (32).
