(1) Veröffentlichungsnummer:

0 205 822 A2

2 EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: 86105698.4

(51) Int. Cl.4: **C25D 13/22**, B65D 17/00

② Anmeidetag: 24.04.86

(30) Priorität: 02.05.85 DE 3515672

- Veröffentlichungstag der Anmeldung: 30.12.86 Patentblatt 86/52
- Benannte Vertragsstaaten:

 AT BE CH DE FR GB IT LI NL SE
- 71 Anmelder: Schmalbach-Lubeca AG Schmalbachstrasse 1 D-3300 Braunschweig(DE)
- © Erfinder: Bolte, Georg, Dr. Dipl.-Chem. Klosterhof 15 D-3303 Vechelde(DE)
- Vertreter: Döring, Rudolf, Dr.-Ing. Patentanwälte Dr.-Ing. R. Döring Dipl.-Phys. Dr. J. Fricke Jasperallee 1a D-3300 Braunschweig(DE)
- 😣 Verfahren und Vorrichtung zur Herstellung von Aufreissdeckeln.
- Das Verfahren und die Vorrichtung sehen eine Rundumlackierung von Aufreißdeckeln vor, welche aus dünnwandigem Metall geformt sind und eine umfängliche Anrollung aufweisen sowie mit einer durch Ritzung bzw. Ein-oder Ausstanzung im Deckelspiegel vorbereiteten oder hergestellten Aufreißöffnung ausgerüstet sind. Zur Rundumlackierung der Deckel werden diese durch ein Elektrotauchbad sowie nachfolgend durch eine Spül-und Trockenbehandlungszone mit in lotrechter Richtung verlaufender Ebene des Deckelspiegels hindurchbewegt und dabei ausschließlich im Bereich der Innenwandfläche der Anrollung abgestützt gehalten.

EP 0 205 822 A2

Verfahren und Vorrichtung zur Herstellung von Aufreißdeckeln

5

Die Erfindung betrifft ein Verfahren zur Herstellung von Aufreißdeckeln, die aus dünnwandigem, Tiefziehen geformtem durch Stanzen und ferromagnetischem Werkstoff umfänglichen Anrollung bestehen, und die eine Rundumlackierung und eine Ritzung bzw. Einstanzung oder eine Ausstanzung zur Bildung der Aufreißöffnung aufweisen, wobei im Falle einer Ausstanzung der Aufreißöffnung diese mit einer abdeckenden aufsiegelbaren Aufreißfolie, vorzugsweise einer Kunststoff-Aluminiumfolie, ausrüstbar sind.

1

Bei der Herstellung von Aufreißdeckeln nach dem einleitend genannten Verfahren erfolgte die Rundumlackierung der Deckel dadurch, daß die ausgestanzten Zuschnitte der einzelnen Deckel durch beidseits aufgebrachten Lack beschichtet und nachfolgend erst die Form des Deckels mit der umfänglichen Anrollung sowie der Aufreißöffnung durch Ritzen bzw. durch Ein-oder Ausstanzen des Öffnungsbereiches erfolgte, ehe im Falle der Ausstanzung anschließend der Aufreißverschluß in Form der genannten Aufreißfolie aufgesiegelt wurde.

Im Hinblick auf die erst nach der Lackbeschichtung des Zuschnittes erfolgte Formung des Deckels können für das bekannte Verfahren nur sehr elastische Lacke verwendet werden, die bei der notwendigen Formung des Zuschnittes nicht zu Rißstellen oder Abplatzungen neigen.

Durch die nach der erfolgten Lackierung durch entsprechende Ritzung bzw. Ein-oder Ausstanzung im Deckelspiegel vorbereitete oder hergestellte Aufreißöffnung ergibt sich das weitere Problem, daß an der Ritzung bzw. an dem Öffnungsrand der Ein-oder Ausstanzung eine Schnittkante entsteht, die als freie Metalloberfläche einen besonders korrosionsgefährdeten Bereich des Deckels bildet. Aus diesem Grunde war die Benutzung von Deckeln nur im Zusammenhang mit Behältern für trockene Füllgüter möglich, falls nicht zusätzliche Maßnahmen ergriffen wurden, um die gefährdeten Bereiche mit einer korrosionsschützenden Abdeckung zu versehen. Zur Erzielung dieses Schnittkantenschutzes muß entweder eine Nachlackierung oder eine zusätzliche Abdeckung durch eine Innenfolie, d.h. eine bei aufgebrachtem Deckel auf der Behälterinnenseite befindliche Folie, vorgenommen werden, oder aber es war eine Umbördelung des Randbereiches der Ausstanzung erforderlich, damit die Schnittkante bei der Verschlußstellung des Deckels auf dem Behälter auf die Deckelaußenseite zu liegen kommt und hierdurch eine Berührung mit dem Füllgut ausgeschlossen wurde. Aber selbst außenliegende Schnittkanten sind korrosionsgefährdet, auch wenn sie durch die aufgesiegelte Abreißfolie mit abgedeckt werden.

Der Erfindung leigt die Aufgabe zugrunde, ein Verfahren der einleitend genannten Art so auszubilden, daß die Lackierung des Deckels in einem Arbeitsgang erreicht und dabei auch ein Schnittkantenschutz erzielt wird.

Zur Lösung vorstehender Aufgabe kennzeichnet sich das einleitend genannte Verfahren erfindungsgemäß dadurch, daß der Deckel nach seiner Formung und Ritzung bzw. nach der Ein-oder Ausstanzung zur Bildung der Aufreißöffnung zum Zwecke der Lackierung durch ein Elektrotauchbad hindurchbewegt und dabei sowie während nachfolgender Spül-und Tricknungsbehandlungen mit in lotrechter Richtung verlaufender Ebene des Deckelspiegels und ausschließlich im Bereich der Innenwandfläche seiner Anrollung abgestützt gehalten wird.

Durch die vorgesehene Tauchlackierung des bereits vollständig geformten und geritzten bzw. mit der Ein-oder Ausstanzung zur Bildung der Aufreißöffnung versehenen Deckels wird eine Rundumlackierung mit verstärktem Lackauftrag im Bereich der Schnittkanten erreicht, weil die Abscheidung der Lackkomponente aus dem Tauchbad an den Schnittkanten infolge der dort vorhandenen größeren Feldstärke besonders intensiv ist. Durch die vorgeehene Abstützung des Deckels im Bereich der Innenwandfläche seiner Anrollung werden die Abstützflächen bzw. die punktförmigen Abstützstellen, an denen kein Niederschlag des Lackes erfolgen kann, in einen Bereich gelegt, der beim späteren Aufbringen der Dichtungsmasse in die Deckelanrollung von der Dichtungsmasse abgedeckt und beim Aufbringen des Deckels auf den Behälter in den inneren Bereich der Falznaht zu liegen kommt, wo er gegen äußere Einflüsse geschützt untergebracht ist.

Zweckmäßig ist es, wenn der Deckel während seiner Bewegung durch das Elektrotauchbad hindurch sowie während der nachfolgenden Spül-und Trocknungsbehandlung zum Andruck an die Abstützung der Einwirkung magnetischer Feldkräfte ausgesetzt wird. Auf diese Weise erfolgt ein Andruck der Deckel an die Bügel, ohne daß ein Andruckelement mit den Deckeln in Berührung kommt.

Vorrichtungen zur Durchführung des oben beschriebenen Verfahrens kennzeichnen sich erfindungsgemäß dadurch, daß oberhalb eines Elektrotauchbeckens ein Förderer vorgesehen ist, über dessen Länge paarweise im Abstand quer zur 10

30

40

Förderbewegung und in Längsrichtung Förderers fluchtend angeordnete durch Führung des Förderers vorübergehend in das Becken eintauchende Bügel gehalten sind, die je Paar mit gegensinnig quer zur Förderrichtung vorspringenden Stützfingern zum Eingriff in die Anrollunspiegelbildlich an jedes gen Bügelpaar anhängbarer Deckel ausgerüstet sind, und daß jeder Reihe von Bügelpaaren eine parallel zu dem Förderer und sich zwischen dei Bügel der in Reihe angeordneten Paare hindurch erstreckende ortsfeste Magnetschiene vorgesehen ist.

Der Förderer kann zur Überführung der Bügel den daran gehaltenen Deckeln mit Förderrichtung zunächst einen in Richtung abwärts geneigten Abschnitt aufweisen, so daß die Bügel mit den daran befestigten Deckeln im Verlauf dieses Förderweges in das Elektrotauchbad eingetaucht werden. An diesen in Förderrichtung nach unten geneigten Abschnitt kann sich ein horizontaler Weg des Förderers anschließen, dem dann ein in Förderrichtung geneigt aufsteigender Abschnitt folgt, um die Bügel mit den Deckeln wieder aus dem Tauchbad herauszuheben. In gleicher Weise kann der Förderer auch im Bereich der sich an das Elektrotauchbad anschließenden Spülbecken geführt werden, ehe er die Deckel durch eine Trocknungszone hindurchführt. Die ortsfeste Magnetschiene ist dabei so angeordnet und ausgeführt, daß sie dem Weg des Förderers folgt. Sie liegt also in dem Elektrotauchbad bzw. auch in Spülbad dem nachfolgenden innerhalb Flüssigkeit und wirkt über den gesamten Förderweg der Bügel bzw. der daran befestigten Deckel auf die Deckel ein, um diese gegen die Bügel zu drücken.

Die Deckel sind ihrerseits an den von den Bügeln vorspringenden Stützfingern gehalten, wobei in der Regel drei Stützfinger ausreichen, um die Deckel lagegesichert an den Bügeln zu halten.

Die von der Magnetschiene auf die Deckel ausgeübten Andruckkräfte können dabei relativ gering sein, da das Gewicht der Deckel nur klein ist und auch bei der Bewegung der Deckel durch das Tauch-bzw. Spülbad nur geringe Kräfte auf die Deckel durch die Relativbewegung in dem Bad ausgeübt werden.

Vorteilhaft ist es, wenn die Bügelpaare jeweils an parallel zu den Tragstangen verlaufenden Haltestangen befestigt sind. Hierdurch ist es möglich, mehrere Bügelpaare nebeneinander anzuordnen und auf diese Weise die gesamte Breite des Elektrotauchbades quer zur Förderrichtung der zu beschichtenden Deckel auszunutzen.

Eine besonders einfache Ausgestaltung ergibt sich, wenn die Bügel aus geraden Stäben bestehen, die eine dreieckige Fläche umschließen und die Stützfinger als an den Ecken des Dreieckes aus dessen Ebene vorspringende Stäbe ausgebildet sind.

Die vorgenannte Ausgestaltung ist besonders günstig geeignet für die Lackierung von Deckeln kreisrunden Querschnittes.

Die Befestigung der Deckel erfolgt auf den jeweiligen Außenseiten der Bügel, so daß die Magnetschiene auf die an den Bügeln zu haltenden Deckel eine Zugkraft ausübt, durch welche die Deckel ihrerseits gegen die nach außen gerichteten Stützfinger der Bügel gedrückt werden.

Besonders vorteilhaft ist es, wenn ein elektrischleitender Förderer verwendet wird, der im Bereich des Elektrotauchbades gleichzeitig die eine Elektrode bildet, während auf dem Boden des Beckens die andere Gegenelektrode angeordnet wird.

Die Magnetschiene kann entweder über einen durchgehenden Steg auf dem Beckenboden bzw. an entsprechenden Haltevorrichtungen außerhalb des Beckens befestigt sein oder aber über Einzelstützen gehalten werden. Die Magnetschiene ist zweckmäßigerweise als Dauermagnet ausgebildet und kann aus diesem Grunde in einfacher Weise aus aneinandergereihten Einzelabschnitten bestehen.

Die Zeichnung gibt in schematischer Darstellung eine Vorrichtung zur Durchführung des neuen Verfahrens wieder.

Es zeigen:

Fig. 1 in vereinfachter Darstellung einen Schnitt in Förderrichtung durch ein Elektrotauchbecken mit darüber angeordnetem Förderer,

Fig 2 in perspektivischer Darstellung eine Einzelheit aus der Anordnung nach Fig. 1, jedoch ohne die Deckel,

Fig. 3 in vergrößerter Darstellung einen Blick in Richtung des Pfeiles III in Fig. 1,

Fig 4 einen Schnitt entlang der Schnittlinie IV-IV der Anordnung nach Fig. 3.

In der Fig. 1 ist das Elektrotauchbecken 1 in Form einer Mulde ausgebildet und auf seinem Boden mit einer in gestrichelten Linien wiedergegebenen Elektrode 2 ausgerüstet. Oberhalb des Beckens 1 ist ein durch eine strichpunktierte Linie dargestellter Förderer 3 vorgesehen, welcher in Richtung des Pfeiles 4 kontinuierlich angetrieben wird, und der beispielsweise als Ket tenförderer ausgebildet ist und ebenfalls als Elektrode dient.

Im rechten Teil der Fig. 1 ist schematisch angedeutet, daß die Elektrode 2, welche sich entlang dem Boden des Beckens 1 erstreckt,mit dem einen Pol 5 und der Förderer 3 mit dem anderen Pol 6 einer Gleichstromguelle 7 verbunden sind.

Der Förderer 3 ist mit quer zur Förderrichtung verlaufenden Tragstangen 8 ausgerüstet, die zwischen oder unterhalb der einzelnen Förderglieder so gehalten und angeordnet sind, daß sie die Führung des Förderers 3 um Umlenkrollen nicht behindern.

An den Tragstangen sind von deren Unterseite herabragende Bügelanordnungen 9 befestigt, welche zur Aufnahme von fertiggeformten Deckeln 10 dienen, die mit einer Ritzung bzw. Ein-oder Ausstanzung des Deckelspiegels zur Bildung einer Aufreißöffnung versehen sind. Diese Deckel 10 sind in den Figuren nur schematisch und ohne Wiedergabe der vorbereiteten bzw. fertiggestellten Aufreißöffnungen dargestellt.

Der Förderer 3 weist oberhalb des Elektrotauchbeckens 1 einen in Förderrichtung geneigten Abschnitt 3a sowie einen parallel und oberhalb des Flüssigkeitsniveaus 18 verlaufenden Mittelabschnitt sowie einen in Förderrichtung sich anschließenden ansteigenden Abschnitt 3b auf. Während der Förderbewegung gelangen auf diese Weise die an den Tragstangen 8 gehaltenen Bügelanordnungen 9 mit den daran gehaltenen Deckeln 10 in die Elektrotauchflüssigkeit und werden im Bereich des ansteigenden Abschnittes 3b wieder aus der Tauchflüssigkeit herausgehoben.

Die Bügelanordnungen 9 sind besonders deutlich aus den Fig. 2 bis 4 ersichtlich. Es sind jeweils zwei Bügel 11 und 12, welche in dem dargestellten Beispiel jeweils eine dreieckige Fläche umschließen und aus Stäben bestehen, an einer Haltestange 13 befestigt, die ihrerseits über einen Verbindungsstab 14 and der Tragstange 8 gehalten sind. Dabei können in Längsrichtung der Tragstangen 8 eine Reihe von Bügelanordnungen 9 vorgesehen sein, die einen solchen Abstand aufweisen müssen, daß auf den Bügeln beiderseits spiegelbildlich die Deckel 10 gehalten werden können.

Die Bügel 11 und 12 der Bügelpaare sind jeweils mit nach außen weisenden Stützfingern 15 ausgerüstet, welche in dem dargestellten Beispiel an den Ecken der jeweils ein Dreieck umschließenden Bügel 12 und 13 vorspringen. Die oberen Stützfinger 15 werden dabei durch Verlängerungen der Haltestangen 13 gebildet.

Zwischen den Bügeln 11 und 12 eines jeden Paares der Anordnung ist eine parallel zu dem Förderer 3 und sich zwischen die Bügel der in Reihe angeordneten Paare hindurch erstreckende ortsfeste Magnetschiene 16 vorgesehen, die in dem Becken 1 entweder mittels eines bis zum Boden ragenden isolierten Steges 17 (Fig. 3) oder aber mittels im Abstand angeordneter Stützen gehalten ist. Die Magnetschiene 16 besteht aus einem dauermagnetischen Werkstoff. Sie kann aus

Einzelabschnitten bestehen, die reihenförmig dem Förderweg der Bügel 11 bzw. 12 folgen und so angeordnet sind, daß sie sich stets zwischen den Bügeln 11 und 12 eines jeden Paares erstrecken.

Die Fig. 3 zeigt deutlich, daß Stützfinger 15 der Bügelanordnungen 9 im Bereich der Innenwandfläche der Anrollungen 10a der Deckel 10 eingreifen, wobei die Deckel 10 in der in Fig. 3 wiedergegebenen Position durch die magnetischen Kräfte der Magnetschiene 16 gehalten bzw. gegen die Stützfinger 15 gedrückt werden.

Beim Elektrotauchlackieren durch Hindurchfördern der Deckel 10 durch das Elektrotauchbad 1 erfolgt eine Rundumbeschichtung der Deckel 10 mit Ausnahme derjenigen Stellen, an denen die Stützfinger 15 an den Anrollungen 10a der Deckel 10 angreifen. Diese relativ kleinen Stützflächen der Anrollungen 10a liegen jedoch in demjenigen Bereich des Deckels, der beim späteren Einbringen der Dichtungsmasse in die Anrollungen von der Dichtungsmasse abgedeckt wird und beim Verbinden der Deckel 10 mit einer Behälteröffnung in das Innere der zwischen dem Deckel und dem Öffnungsrand des Behälters zu bildenden Falznaht zu liegen kommt. Hierdurch wird die Gefahr einer Korrosion an diesen unbeschichteten Stellen praktisch vollständig ausgeschlossen. Alle anderen Flächenbereiche des Deckels, insbesondere auch die Schnittkanten, werden hingegen in einem Arbeitsgang beim Hindurchfördern der Deckel 10 durch das Elektrotauchbad 1 voll beschichtet.

Die Weiterförderung der Deckel 10 durch ein dem Elektrotauchbad nachgeordnetes Spülbad kann in gleicher Weise vorgenommen werden, wie dies im Zusammenhang mit der Fig. 1 beschrieben ist. Zu diesem Zweck erstreckt sich die Magnetschiene 16 auch bis durch das nachfolgende Spülbad hindurch und ist fernerhin über das Spülbad hinaus weitergeführt bis durch die Trocknungszone, so daß die Deckel 10 an den Bügelanordnungen 9 bis zum Abschluß des Trocknungsvorganges aufgrund der auf sie einwirkenden Magnetkräfte sicher an den Bügelanordnungen 9 gehalten werden.

Ansprüche

1. Verfahren zur Herstellung von Aufreißdeckeln, die aus dünnwandigem, durch Stanzen und Tiefziehen geformtem ferromagnetischem Werkstoff mit einer umfänglichen Anrollung bestehen, und die eine Rundumlackierung und eine Ritzung bzw. Einstanzung oder eine Ausstanzung zur Bildung der Aufreißöffnung aufweisen, wobei im Falle einer Ausstanzung der Aufreißöffnung diese mit einer abdeckenden aufsiegelbaren Aufreißfolie,

vorzugsweise einer Kunststoff-Aluminiumfolie, ausrüstbar sind, dadurch gekennzeichnet, daß der Deckel nach seiner Formung und Ritzung bzw. nach der Ein-oder Ausstanzung zur Bildung der Aufreißöffnung zum Zwecke der Lackierung durch ein Elektrotauchbad hindurchbewegt und dabei sowie während nachfolgender Spül-und Trocknungsbehandlungen mit in lotrechter Richtung verlaufender Ebene des Deckelspiegels und ausschließlich im Bereich der Innenwandfläche seiner Anrollung abgestützt gehalten wird.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Deckel während seiner Bewegung durch das Elektrotauchbad hindurch sowie während der nachfolgenden Spül-und Trocknungsbehandlung zum Andruck an die Abstützung der Einwirkung magnetischer Feldkräfte ausgesetzt wird.
- 3. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, daß oberhalb eines Elektrotauchbades (1) ein Förderer (3) vorgesehen ist, über dessen Länge paarweise im Abstand quer zur

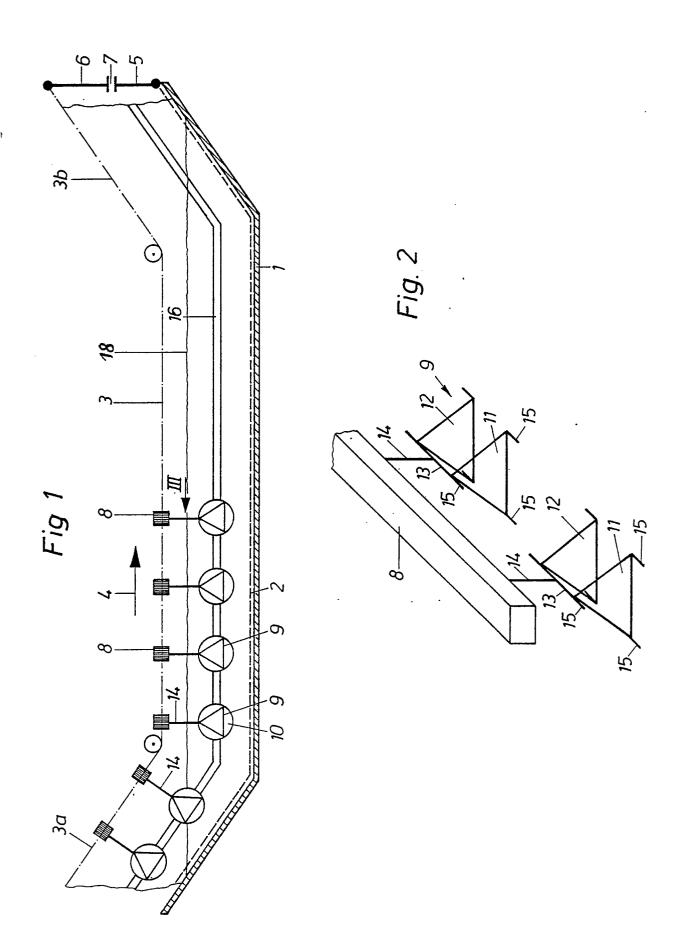
Förderbewegung und in Längsrichtung Förderers fluchtend angeordnete durch Führung des Förderers vorübergehend in das Becken eintauchende Bügel (11,12) gehalten sind, die ie Paar mit gegensinnig guer zur Förderrichtung vorspringenden Stützfingern (15) zum Eingriff in die spiegelbildlich Anrollungen (10a) an Bügelpaar anhängbarer Deckel (10) ausgerüstet sind, und daß jeder Reihe von Bügelpaaren eine parallel zu dem Förderer und sich zwischen die Bügel der in Reihe angeordneten Paare hindurch erstreckende ortsfeste Magnetschiene (16) vorgesehen ist.

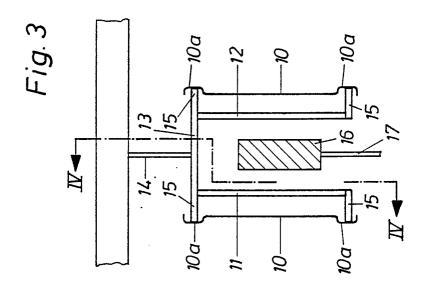
- 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Bügelpaare jeweils an parallel zu Tragstangen (8) verlaufenden Haltestangen (13) befestigt sind.
- 5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Bügel (11,12) aus geraden Stäben bestehen, die eine dreieckige Fläche umschließen und die Stützfinger (15) als an den Ecken des Dreieckes aus dessen Ebene vorspringende Stäbe ausgebildet sind.

25

15

30


35


40

45

50

55

