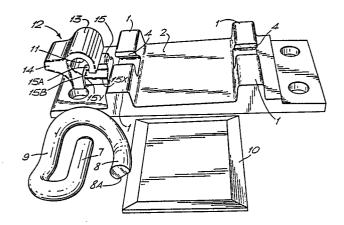
11) Publication number:

0 206 618 A2

12)

EUROPEAN PATENT APPLICATION

(21) Application number: 86304392.3


(51) Int. Cl.4: E 01 B 9/48

22) Date of filing: 09.06.86

30 Priority: 19.06.85 GB 8515471

7) Applicant: PANDROL LIMITED, 1, Vincent Square, London, SW1P 2PN (GB)

- 43 Date of publication of application: 30.12.86 Bulletin 86/52
- (7) Inventor: Brindley, Peter William, 57 Middleton Avenue, Dinnington Nr. Sheffield S31 7QP (GB)
- 24 Designated Contracting States: AT BE CH DE GB IT LI
- A Representative: Andrews, Robert Leonard et al, HASELTINE LAKE & Co. Hazlitt House, 28 Southampton Bulldings Chancery Lane, London WC2A 1AT (GB)
- 64 Holding a railway rail down on a support member.
- between which the rail stands, the openings (4) in ribs (1) between which the rail stands, the openings (4) being wider at the bottom than at the top. An anchoring device (12) for a rail clip (7-9) has a portion (13) formed with a passageway (11), into which is driven a straight leg (7) of the clip, the leg pressing upwardly on the roof of the passageway (11). A portion (14) projects in one direction from one side of the portion (13) and a part (9) of the clip bears downwardly on it. A portion (15X) projects in the opposite direction from the opposite side of the portion 13 and it is part of a securing region (15) which is wider at the bottom than at the top and lies in the opening (4) and is passed upwardly against surfaces (5) of the base plate defining the opening (4). The part (8) of the clip bears downwardly on the upper surface of the rail flange (20B).

1 HOLDING A RAILWAY RAIL DOWN ON A SUPPORT MEMBER

In the specification of United Kingdom Patent No. 1510224 there is disclosed an anchoring device comprising 5 a first portion which is formed with a substantially horizontal passageway and a second portion projecting sideways in one direction from one side of the first portion, the anchoring device being such that it may be included in an assembly comprising a support member for a 10 railway rail, a railway rail standing on the support member and having a flange at its foot projecting sideways in opposite directions from the central web of the rail, the anchoring device beside an edge of the flange, and a railway rail-fastening clip which has been 15 made by bending a metal bar and which has a substantially straight leg in said passageway, another part bearing downwardly on the upper surface of the rail flange and a further part bearing downwardly on said second portion of the anchoring device. Many of the anchoring devices 20 which have been incorporated in assemblies as described above incorporate a third portion projecting sideways in the opposite direction from the opposite side of the first portion. Such a device, with the third portion, is referred to below as an anchoring device of the type 25 defined .

There is also disclosed in the same specification an assembly comprising a support member for a railway rail, a railway rail standing on the support member, an anchoring device having a first portion formed with a substantially horizontal passageway and having on one side of the first portion a second portion projecting in one direction away from the first portion and a railway rail-fastening clip which has been made by bending a metal bar and which has a substantially straight leg in said passageway, another part bearing downwardly on the upper surface of the rail flange and a further part bearing downwardly on the second portion of the anchoring

1 device. Again the anchoring device can have the third portion. Such an assembly, with the third portion, is referred to below as an assembly of the type defined.

portion of the previously third devices substantially 5 anchoring has a rectangular cross-section, with rounded corners, as seen vertical section plane parallel to the axis of passageway. It helps to position the anchoring device in a mould into which a sand/cement/water mixture is poured 10 to form a concrete railway sleeper incorporating four of the anchoring devices, each with a long tail below the passageway and projecting within the concrete, the length of the tail being at least five times the width of the passageway. The upper surface of the third portion lies 15 flush with the flat upper surface of the concrete and the lower surface of the second portion lies on the upper surface of the concrete.

The clip disclosed in the specification mentioned above has become known as an "e-clip".

It is an object of the invention to use "e-clips" or other resilient clips with existing base plates, known as "K plates", which were designed to be fixed to railway sleepers made of wood and to receive non-resilient fastenings to hold down railway rails.

According to a first aspect of the 25 invention, there is provided an anchoring device of the type defined, characterised in that the third portion of the anchoring device is part of a securing region of the anchoring device and this securing region has an increase 30 in width of at least 40%, proceeding downwardly, and the lowest point on the anchoring device is lower than the bottom of the passageway by a distance which is less than twice the maximum width of the passageway, whereby the anchoring device may be included in a said assembly in 35 which the support member is a base plate which has an opening in it, the opening having, proceeding downwardly, an increase in width, the rail standing on one side of 1

5

10

15

20

25

30

35

the opening in the base plate and the first portion of the anchoring device being on the opposite side of the opening, the securing region of the anchoring device being in the opening and being caused by the clip to be pressed upwardly against surfaces on the base plate which define the opening.

According to a second aspect of the invention, provided an assembly of the type defined characterised in that the third portion of the anchoring device is part of a securing region of the anchoring device and this securing region has an increase in width of at least 40%, proceeding downwardly, and the lowest point on the anchoring device is lower than the bottom of the passageway by a distance which is less than twice the maximum width of the passageway, and characterised in that the support member is a base plate which has an opening in it, the opening having, proceeding downwardly, an increase in width, the rail standing on one side of the opening in the base plate and the first portion of the anchoring device being on the opposite side of the opening, the securing region of the anchoring device being in the opening and being caused by the clip to be pressed upwardly against surfaces on the base plate which define the opening.

The above-mentioned width of the securing region of the anchoring device is in the examples described below, with reference to the accompanying drawings, the width measured parallel to the passageway in the first portion and the width increases smoothly, proceeding Instead of that, the first-mentioned width downwardly. of the securing region could be the width measured perpendicularly to the passageway and/or the width could increase sharply in a single step so that the securing one or two upwardly facing horizontal region has shoulders. The opening in the base plate is in the examples described below, with reference to the drawings, formed in an upstanding rib extending across the top of

1 the base plate and the above-mentioned width of the opening is the width measured parallel to the rib; this width increases smoothly, proceeding downwardly. Instead of that, the first-mentioned width of the opening could 5 be the width measured perpendicularly to the rib, if the rib is provided, or parallel to the length of the plate if no rib is provided and/or the width could increase sharply in a single step so that one or two downwardly facing horizontal shoulders is or are formed.

The increase in width of the securing region of the anchoring member could be an increase by at least 60%, better still more than 80%. The securing region could be substantially in the form of a letter L or an inverted letter T or an inverted letter Y.

For a better understanding of the invention and to show how it may be carried into effect, three examples in accordance with it are described below with reference to the accompanying drawings, in which:

Figures 1 to 3 show a side view, a plan view and 20 an end view from the right, respectively, of a conventional railway base plate,

Figure 4 shows a perspective view of the same base plate, a pad, a railway rail-fastening clip and an anchoring device for anchoring the clip to the base 25 plate,

Figures 5 to 7 show views from three sides of a modified version of the anchoring device,

Figure 8 shows an underneath plan view of the anchoring device of Figures 5 to 7.

30 Figure 9 shows an end view of part of an assembly of a base plate, a pad, a clip, an anchoring device and a rail,

Figure 10 shows a plan view of most of the part shown in Figure 9, and

35 Figure 11 shows a side view of the same part.

The base plate shown in Figures 1 to 4 is a conventional plate known as a "K plate". It is

1 rectangular and has two upstanding ribs 1 extending across it between which there is a flat surface 2 which has a gradient of about 1:40 when the lower flat surface 3 of the plate is horizontal. The plate is formed by 5 rolling steel and after the rolling process an opening 4 is formed in each rib, this opening extending the full height of the rib and, in effect, dividing it into two ribs which are aligned and have their ends spaced apart. The opening 4 is at first of constant width, proceeding 10 downwardly from the top of the rib 1, this width being measured parallel to the length of the rib, and then this width increases progressively and smoothly, so that two curved surfaces 5 define the opening 4 below the part thereof which is of constant width. Thus the opening has letter 15 substantially the form of an inverted Conventionally, the foot of a railway rail stands on the surface 2 between the two ribs 1 and the plate is fixed to a wooden railway sleeper by suitable fastening devices passing through holes 6. The rail has conventionally 20 been held down on the plate by outmoded non-resilient fastening devices and it is now desired to discard them but not the base plate and, without moving the base plate, to hold the rail down using so-called "e clips". Figure 4 shows a suitable assembly for this purpose.

25 Figure 4 shows the same base plate and an "e-clip" according to U.K. Patent No. 1510224, the clip having a substantially straight leg 7 and two parts 8 and 9 on opposite sides of it, of which the part 8 has a flat and inclined surface 8A on its under side, which bears 30 downwardly on the sloping upper surface of the flange of a flange-footed railway rail when the latter stands on a rubber pad 10 which is laid on the surface 2 of the base plate.

The straight leg 7 of the clip is driven into a 35 straight and horizontal passageway 11 in an anchoring device 12 made of malleable cast iron, the passageway 11 being open at both ends, although in principle it could

1 be closed at one end, and closed at the top. It is of circular cross-section and the mouth of the passageway at each end of the passageway is flared. On one side of the portion 13 of the anchoring device which is formed with 5 the passageway, there is a projecting ledge 14 which projects in one direction (to the left, considering Figure 4) away from the portion 13 and the lower surface of the part 9 of the clip bears downwardly on the upper surface of this ledge 14. A securing region 15 of the 10 anchoring device has a part 15X which projects sideways in the opposite direction (compared with the ledge 14) from the opposite side of the portion 13 and a part 15Y which lies below the passageway 11. The securing region 15 has a width, measured parallel to the passageway 11, 15 which, proceeding downwardly, is at first constant and then increases progressively by more than 80%. The securing region 15 has two sideways-projecting wings 15B extending from the bottom of a vertical-sided part 15A and has a cross-section substantially in the form of an The lowest point on the anchoring 20 inverted letter Y. device is lower than the bottom of the passageway by an amount which is less than twice the maximum width of the passageway 11.

The anchoring device is so placed that its securing region 15 lies in the opening 4 in one of the ribs 1 of the base plate and when the straight leg 7 of the clip is driven into the passageway 11 the straightleg 7 exerts an upward force on the roof of the passageway 11, which causes the upper surfaces of the wings on the securing region 15 to press against the surfaces 5 in the rib 1 of the base plate, whereby the anchoring device is fixed in its desired position.

In the modified version of the anchoring device shown in Figures 5 to 8, material is saved by reducing 35 the radial thickness of the part 13 of the anchoring device in places, to \underline{x} at one place, the result being that at each end of the device there is a flange 16 and a

1 rib 17 runs along the top of the device. The portion 13 of the anchoring device is regarded as all that part between the imaginary vertical planes A and B, in Figure 6, which are parallel to a vertical plane containing the 5 axis C of the passageway 11. The securing region 15 of the anchoring device has a part 15A which lies in the upper part, of constant width, of the opening 4 in the rib 1 of the base plate and below the part 15A there is a part of increasing width, proceeding downwardly, 10 consisting of two sideways-projecting wings 15B having upper curved surfaces 15C which are pressed against the surface 5 in the rib of the base plate. The width of the portion 15 at the bottom of the wings 15B is about 90% greater than the width of the part 15A.

The lowest point on the anchoring device is lower than the bottom of the passageway 11 by an amount y which is less than $1^1/2$ times the maximum width w of the passageway and is in fact about equal to the maximum width of the passageway.

20 Recesses 18 and 19 contribute to a reduction in cost of the device.

The base plate shown in Figures 9 to 11 is substantially the same as that shown in Figures 1 to 3 but the holes 6 through it are of square cross-section.

The pad 10 is substantially the same as that shown in Figure 4 and so is the clip but here there is a flat surface 9A of flatiron shape on the under-side of the part 9 of the clip, at the wider end of which there is a vertical surface 9B on the clip which faces downwardly, considering Figure 10, i.e. in the direction opposite to that in which the leg 7 of the clip has been driven into the passageway 11 in the anchoring device 12. On the ledge 14 of the anchoring device 12 there is an upward projection 14A at one end of which there is a vertical surface 14B which faces in the opposite direction to the surface 9B on the clip. When the leg 7 of the clip is being driven into the passageway 11 in the anchoring

1 device 12, the part 9 of the clip slides over the projection 14A until the surface 9B has gone past the surface 14B and then the part 9 of the clip drops slightly. Then the surface 14B directly confronts the surface 9B so that movement of the clip in a direction such that the leg 7 comes out of the passageway 11, due to vibration or acts of vandalism or sabotage, is prevented.

The edges 15E and 15F of the wings 15B are 10 inclined to the horizontal as seen in Figure 9 and the parts 15A and 15B which are inserted in the opening 4 are tapered from left to right, considering Figure 9, to permit of easy insertion of these parts into the opening 4 but a tight fit of these parts when fully inserted in 15 the opening.

In other respects the anchoring device shown in Figures 9 to 11 is in principle the same as that shown in Figures 5 to 8. The rail 20, which is the same as that in the assembly which is partly shown in Figure 4, is 20 symmetrical about a centre line 20A and a flange 20B extending in opposite directions from the bottom of a central web 20 at the top of which is a rail head 20D.

25

30

1 CLAIMS:

1. An anchoring device (12) which is suitable for anchoring a railway rail-fastening clip (7,8,9), the device comprising a first portion (13) which is formed 5 with a substantially horizontal passageway (11), a second portion (14) projecting sideways in one direction from one side of the first portion (13) and a third portion (15X) projecting sideways in the opposite direction from the opposite side of the first portion (13),10 anchoring device (12) being such that it may be included in an assembly comprising a support member (1-6) for a railway rail, a railway rail (20) standing on the support member (1-6) and having a flange (20B) at its foot from the projecting sideways in opposite directions 15 central web (20C) of the rail, the anchoring device (12) beside an edge of the flange (20B) and a railway rail-fastening clip (7,8,9) which has been made by bending a metal bar and which has a substantially straight leg (7) in said passageway (11), another part 20 (8) bearing downwardly on the upper surface of the rail flange (20B) and a further part (9) bearing downwardly on said second portion (14) of the anchoring device (12), characterised in that the third portion (15X) of the anchoring device (12) is part of a securing region (15) 25 of the anchoring device and this securing region (15) has an increase in width of at least 40%, proceeding downwardly, and the lowest point on the anchoring device (12) is lower than the bottom of the passageway (11) by a distance (y) which is less than twice the maximum width 30 (w) of the passageway, whereby the anchoring device (12) may be included in a said assembly in which the support member (1-6) is a base plate which has an opening (4) in it, the opening (4) having, proceeding downwardly, an increase in width, the rail (20) standing on one side of 35 the opening (4) in the base plate and the first portion (13) of the anchoring device (12) being on the opposite side of the opening (4), the securing region (15) of the

- 1 anchoring device (12) being in the opening (4) and being caused by the clip (7,8,9) to be pressed upwardly against surfaces (5) on the base plate which define the opening (4).
- 2. An assembly comprising a support member (1-6) for a railway rail, a railway rail (20) standing on the support member (1-6), an anchoring device (12) having a first portion (13) formed with a substantially horizontal passageway (11), having on one side of the first portion (13) a second portion (14) projecting in one direction away from the first portion (13) and having on the opposite side of the first portion (13) a third portion

(15X) projecting in the opposite direction away from the first portion (13), and a railway rail-fastening clip

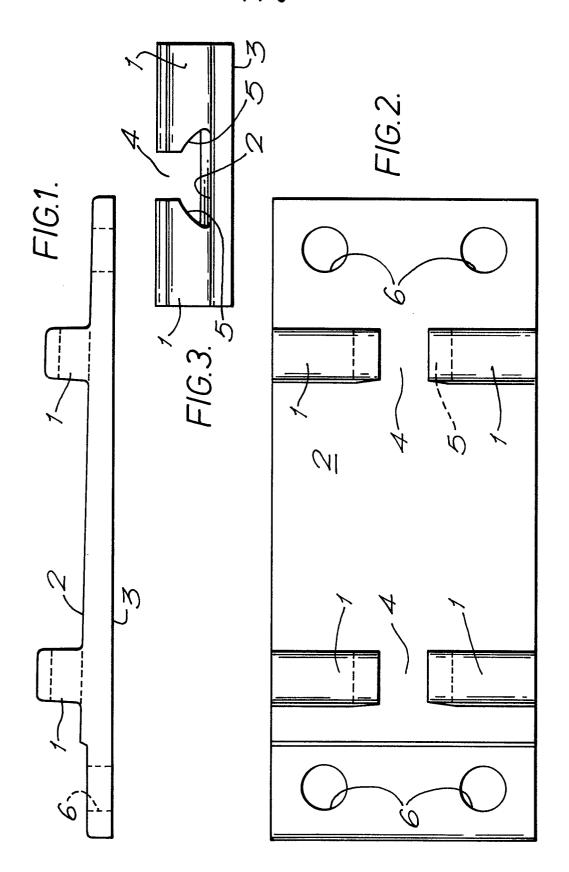
- 15 (7-9) which has been made by bending a metal bar and which has a substantially straight leg (7) in said passageway (11), another part (8) bearing downwardly on the upper surface of the rail flange (20B) and a further part (9) bearing downwardly on the second portion (14) of
- 20 the anchoring device (12), characterised in that the third portion (15%) of the anchoring device (12) is part of a securing region (15) of the anchoring device and this securing region has an increase in width of at least 40%, proceeding downwardly, and the lowest point on the
- 25 anchoring device (12) is lower than the bottom of the passageway (11) by a distance (y) which is less than twice the maximum width (w) of the passageway, and characterised in that the support member (1-6) is a base plate which has an opening (4) in it, the opening (4)
- 30 having, proceeding downwardly, an increase in width, the rail (20) standing on one side of the opening (4) in the base plate and the first portion (13) of the anchoring device (12) being on the opposite side of the opening
- (4), the securing region (15) of the anchoring device 35 (12) being in the said opening (4) and being caused by the clip (7,8,9) to be pressed upwardly against surfaces
 - (5) on the base plate which define the opening (4).

- 3. A device according to claim 1 or an assembly according to claim 2 characterised in that the width of the securing region (15) of the anchoring device (12) which increases, proceeding downwardly, is the width measured parallel to the passageway (11) in the first portion (13).
 - 4. A device or an assembly according to any preceding claim characterised in that the width of the securing region (15) of the anchoring device (12) which increases, proceeding downwardly, increases smoothly.

10

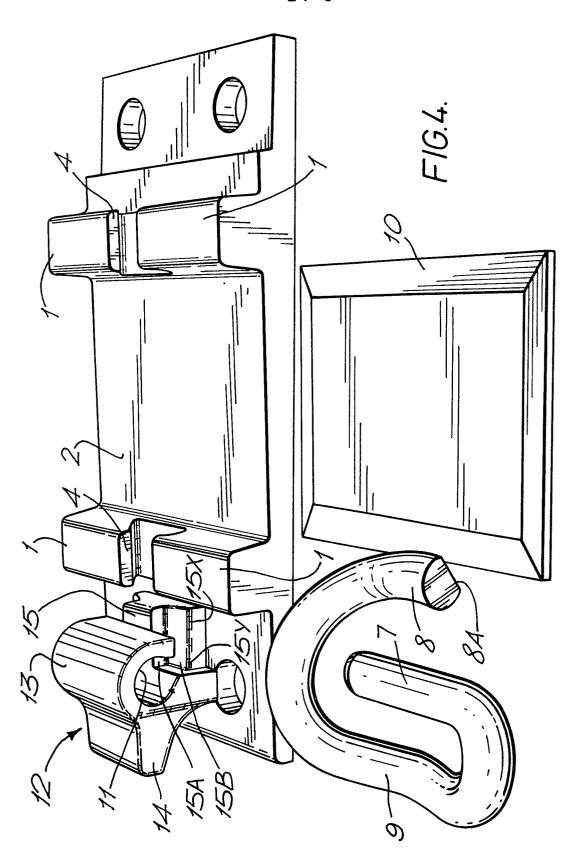
15

20


25

30

35


- 5. A device or an assembly according to claim 4 characterised in that said width of the securing region (15) increases by virtue of there being two sideways-projecting wings (15B) in the securing region (15).
- 6. A device or an assembly according to claim 5 characterised in that the upper surfaces (15C) of the wings (15B) are smoothly curved.
- 7. A device or an assembly according to claim 5 or 6 characterised in that above the wings (15B) there is a part (15A) of the securing region (15) which is of constant width, proceeding downwardly.
 - 8. A device or an assembly according to any preceding claim characterised in that the securing region (15) of the anchoring device (12) is substantially in the form of an inverted letter Y.
 - 9. A device according to any preceding claim characterised in that the second portion (14) of the anchoring device (12) is formed on its upper side with a substantially vertical surface (14B) which can co-operate with a substantially vertical surface (9B) on the underside of the said further part (9) of the clip (7 to 9) to prevent such movement of the clip that the substantially straight leg (7) thereof comes out of the passageway (11) in the anchoring device (12).
 - 10. An assembly according to any one of claims 1 to 8 characterised in that the second portion (14) of the anchoring device (12) is formed on its upper side with a

substantially vertical surface (14B) and the under side of said further part (9) of the clip (7 to 9) is formed with a substantially vertical surface (9B) which faces said surface (14B) to prevent such movement of the clip that the substantially straight leg (7) thereof comes out of the passageway (11) in the anchoring device (12).

